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Abstract

We consider a single server retrial queueing system with variant working vacations and vacation interruption where
the regular busy server is subjected to breakdown due to the arrival of negative customers. As soon as the orbit becomes empty at
the time of regular service completion for a positive customer, the server takes at most J number working vacations until at least
one customer is received in the orbit when the server returns from a working vacation. During the working vacation period, the
server serves at a lower speed service rate (u,<u;). Using the method of supplementary variable technique, we determined the
steady state probability generating function for the system and its orbit. We also obtained some analytical expressions for various
performance measures such as system state probabilities, the mean orbit size, the mean system size, and reliability measures of

this model. Finally, some numerical examples are presented.
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1. Introduction

In queueing theory, vacation queues and retrial
queues have been intensive research topics for a long time. We
can find general models in vacation queues from Ke et al.
(2010) and in retrial queues from Artalejo and Gomez-Corral
(2008). In a retrial queueing system, retrial queues with
repeated attempts are characterized by the fact that an arriving
customer finds the server busy upon arrival and is requested to
leave the service area and join a retrial queue called orbit.
After some time the customer in the orbit can repeat their
request for service. An arbitrary customer in the orbit who
repeats the request for service is independent of the rest of the
customers in the orbit. Such queues play a special role in
computer and telecommunication systems.

Queues with negative customers (called G-queues)
have huge interests of concern due to their extensive
applications in computers, communication networks, neural
networks and manufacturing systems (Chao et al, 1999;

*Corresponding author
Email address: psdurail7@gmail.com

Harrison, 2014). The name G-queue was adopted for a queue
with negative customers in the acknowledgment of Gelenbe,
who first introduced this type of queue in Gelenbe (1989,
1991). Harrison (2004) has studied the idea of compositional
reversed Markov processes with applications to G-networks.
The positive customer arrives into the system and gets service
as ordinary queueing customers, but the negative customers
enter into the system only at the service time of positive
customers. This type of negative customer removes the
positive customers who is in service from the system and
causes the server breakdown and the service channel will fail
for a short interval of time. When the server fails, it will be
sent for repair immediately. After completion of repair, the
server is again treated as good as new. Do (2011) has
presented a survey on queueing systems with G-networks,
negative customers and applications. Choudhury and Ke
(2012) and Rajadurai et al. (2014, 2015a) have discussed the
retrial queue with the concept of breakdown and repair.
Recently, Krishnakumar et al. (2013), Do et al. (2014), Gao
and Wang (2014), Peng et al. (2014), and Rajadurai et al.
(2015b, 2016a, 2016b) have discussed different types of
queueing models operating with the simultaneous presence of
negative arrivals.
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In a vacation queueing system, the server com-
pletely stops the service and is unavailable for primary
customers during a short period of time. This period of time is
referred as a vacation. But in a working vacation period (WV),
the server gives service to customers at a lower service rate.
This queueing system has major applications in providing
network service, web service, file transfer service, and mail
service.

In 2002, an M/M/1 queueing system with working
vacations was first introduced by Servi and Finn (2002).
Later, Wu and Takagi (2006) extended the M/M/1/WV queue
to an M/G/1/WV queue. Do (2010) have studied the concept
of M/M/1 retrial queue with working vacations. Arivudai-
nambi et al. (2014) introduced M/G/1 retrial queue with a
single working vacation. Furthermore, during the working
vacation period if there are customers at a lower service
completion instant, the server can stop the vacation and come
back to the normal busy state. This policy is called vacation
interruption. Recently, Gao et al. (2014), Gao and Liu (2013),
Rajadurai et al. (2016b, 2016c), Zhang and Hou (2012),
Zhang and Liu (2015), analyzed a single server retrial queue
with working vacations and vacation interruption.

1.1 The organization of the paper

In this paper, we consider a generalization of the well-
known model discussed by Arivudainambi et al. (2014) and Gao
et al. (2014) with concepts of an M/G/1 retrial G-queue with
unreliable server under variant working vacations policy and
vacation interruption. To the authors best of knowledge, there are
reports available on the concept of a retrial queueing system with
a working vacation using the method of matrix geometry analysis,
but no work was published in the queueing literature with the
combination of a single server retrial queueing system with
general retrial times, negative customers, variant working
vacations, vacation interruption, server breakdowns, and repair
using the supplementary variable technique. The mathematical
results and theory of queues of this model provide to serve a
specific and convincing application in the computer processing
system. This proposed model has potential practical real life
application in production to order system to enhance the
performance of the production facility and to stop the production
facility from becoming overloaded, in computer processing
system and telephone consultation of medical service systems.
Our model is helpful to managers who design a system with
economic management.

The rest of this paper is given as follows. The detailed
mathematical model description and practical applications of this
model are given is section 2. In section 3, the steady state joint
distribution of the server state and the number of customers in the
orbit/system are obtained. Some system performance measures
and reliability measures are discussed in section 4. In section 5,
important special cases are derived. In section 6, the effects of
various parameters on the system performance are analyzed
numerically. Conclusion and summary of the work are presented
in section 7.

2. Description of the Model

This section, we consider a single server retrial queue-
ing system with variant working vacations and vacation
interruption, where the regular busy server is subjected to
breakdown due to the arrival of negative customers.

The arrival process: Customers arrive at the system
according to a Poisson process with rate A.

The retrial process: If an arriving positive customer
finds the server free, the customer begins his service
immediately. Otherwise the server is busy, on working
vacation or breakdown; the arrivals join the pool of
blocked customers called an orbit in accordance with
FCEFS discipline. That is, only one customer at the head
of the orbit queue is allowed access to the server. Inter-
retrial times follow a general random variable R with an
arbitrary distribution R(¢) having corresponding Laplace

Stieltijes Transform (LST) R*(9).

The variant working vacations policy: The server
begins a working vacation each time the orbit becomes
empty and the vacation time follows an exponential
distribution with parameter 6. If any customer arrives in
a vacation period, the server continues to work at a
lower speed service rate (u, < u;). The working vacation
period is an operational period at a lower speed.
According to the vacation interruption rule, if any
customer is in the system at the service completion
instant in the vacation period, the server will stop the
vacation and come back to the normal busy state
immediately. Otherwise, if no customers are in the
system at the end of the vacation or at regular service
completion instant, the server takes at most J number
working vacations until at least one customer is received
in the orbit and then the server returns from a working
vacation. After completion of J" working vacation, if
there is no customer in the orbit, the server remains idle
to serve a new customer. When a vacation ends, if there
are customers in the orbit, the server switches to the
normal working level. During the working vacation
period, the service time follows a general random
variable S, with distribution function (d.f) S, (¢)

having LST S (9) and the first moment is
57 (0)= I % O5dS, (x), for (i = 1,2, ...J).
0

The regular service process: Whenever a new positive
customer or retry positive customer arrives at the server
idle state, the server immediately starts normal service
for the arrivals. The service time follows a general dis-

tribution and it is denoted by the random variable S,

with distribution function S),(¢) having LST S,(9) and

o0
the first moment is given by S;’ ) zjxe_ﬁxdgb(x).

0
The removal rule and the repair process: The
negative customers arrive from outside the system
according to a Poisson arrival rate J. These negative
customers arrive only at the regular service time of the
positive customers. Negative customers can not
accumulate in a queue and do not receive service, will
remove the positive customers being in service from the
system. These types of negative customers cause server
breakdown and the service channel will fail for a short
interval of time. When the server fails, it is sent for



P. Rajadurai / Songklanakarin J. Sci. Technol. 40 (1), 231-242, 2018 233

repair immediately. After completion of repair, the
server is again treated as good as new. The repair time
(denoted by G) of the server is assumed to be arbitrarily
distributed with distribution function G(?) having

LSTG'(9) and the first and second moments are

denoted by g(l) and g(z).

e Various stochastic processes involved in the system are
assumed to be independent of each other.

2.1 Practical application of the proposed model

Example 1: Our model has a potential practical application in
the area of a computer processing system. In a computer
processing system, the buffer size (orbit) used to store
messages is finite and the messages (customers) arrive into the
system one by one. The processor (server) is in charge of
processing messages. A working mail server may be affected
by a virus (negative customers) and the system may be
subjected to electronic fails (breakdowns) during the service
period and receive repair immediately. If the processor is
available, indicating that it is not currently working on a task,
a message is processed. The messages are temporarily stored
in a buffer to be served some time later (retrial time)
according to first-come-first-serve (FCFS) if the processor is
unavailable. To enhance the computer performance, whenever
all messages are processed and no new messages arrive, the
processor will perform a sequence of maintenance jobs, such
as virus scan (working vacations). During the maintenance
period, the processor can deal with the messages at the slower
rate to economize the cost (working vacation period). Upon
completion of the each maintenance, the processor checks the
messages and decides whether or not to resume the normal
service rate (first working vacation). At this moment, if no
message is in the system then the processor may decide to go
for another maintenance activity (finite number of working
vacations). This type of working vacation discipline is a good
approximation of such computer processing system.

Example 2: The suggested model has another practical real
life application in the telephone consultation of medical
service systems. Nowadays, many doctors have opened
telephone consultation services to patients (called positive
customers). Here, we consider a telephone consultation
service system staffed with a chief physician (main server)
and a physician assistant (substitute server). The physician
assistant only provides service to the patients when the chief
physician is on vacation (working vacation) and the service
rate of the physician assistant is usually slower than the chief
physician. In generally, there is a phone operator who is
responsible to establish communications between doctors and
patients or notes down the order of the calls, corresponding to
the ‘orbit’. If the line is busy when a patient makes a call, he
cannot queue but tries again sometime later (retrial), otherwise
he is served immediately by the chief physician or the
physician assistant. During the consultation time of patients,
the telephone signal status is very low or no network coverage
(negative customer), and the patient’s call has lost service.
Once the signal strength is full (repaired), then the system is
again treated as good as new to serve. When the chief
physician finds no patient call, he will need to rest from his

work, i.e., go on a vacation. During the chief physician’s
vacation period, the physician assistant will serve the patients,
if any, and after his service completion if there are patients in
the system, the chief physician will come back from his
vacation whether his vacation has ended or not, i.e., vacation
interruption happens. Meanwhile, if there is no patient when a
vacation ends, the chief physician begins a finite number of
vacations (at most J working vacations), otherwise, the chief
physician takes over as the physician assistant. To understand
the patient’s condition, the chief physician will restart his
service no matter how long the physician assistant has served
the patient. On the other hand, to minimize the idle time of the
chief physician, immediately on a service completion, the
phone operator will call (or search for) the customers who are
in orbit under FCFS and the search time is assumed to be
generally distributed, which is corresponding to the general
retrial time policy.

3. Steady State Analysis of the System

In this section, we develop the steady state
difference-differential equations for the retrial queueing
system by treating the elapsed retrial times, the elapsed
service times, the elapsed working vacation times, and the
elapsed repair times as supplementary variables. Then we
derive the probability generating function (PGF) for the server
states and the PGF for the number of customers in the system
and orbit.

3.1 The steady state equations

In steady state, we assume that R(0)=0, R(«)=1,
Sy(0) =0, Sp(e0) = 1, $,(0) = 0, S,(0) = 1, G(0) = 0, G(e0) = 1
are continuous at x = 0. So that the function
a(x), wy(x), u,(x), and &(y) are the conditional completion
rates (hazard rate) for retrial, normal service, lower rate
service, and repair, respectively.
dR(x) dSy(x)
1-R(x) 1-8,(x)’

ds,(x)
1-5,(0"

_ dG(x)
E(x)dx = G0

ie., a(x)dx = 3 iy (xX)dx = i, (x)dx =

In addition, let R°(r), S)(¢), S°(r) and G°(r) be the elapsed
retrial time, elapsed normal service time, elapsed working
vacation time, and elapsed repair time, respectively, at time 7.
Further, we introduce the random variable (i =1, 2,...J),

0, if the server is free and in i"™ working vacation period,
1, if the server is free and in regular service period,

C(t) =142, ifthe server is busy and in regular service period at time ¢,

3, if the server is busy and in i working vacation period at time ¢,

4

, if the server is under repair period at time .

Thus the supplementary variables
RY(0), SL(2), S2(¢) and G°(¢) are introduced in order to obtain a

bivariate Markov process {C(t),N ), t= 0}, where C(?) de-

notes the server states (0,1,2,3,4) depending on whether the
server is free on both regular busy period and working
vacation period, regular busy, on working vacation, or under
repair. If C(f) = 1 and N(¢) > 0, then R’(#) represents the
elapsed retrial time and if C(f) = 2 and N(?) > 0, then
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Sg (¢) corresponds to the elapsed time of the customer being served in a regular busy period. If C(r) = 3 and N(?) > 0, then

SS (¢) corresponds to the elapsed time the customer is being served at the lower rate service period on i™ stage. If C(f) = 4 and

N(t) >0, then G°(r) corresponds to the elapsed time of the server being repaired.

We analyze the ergodicity of the embedded Markov chain at departure, vacation or repair epochs. Let {z,; n = 1,2,...}
be the sequence of epochs of either normal service completion times or working vacation completion times or the repair period

ends. The sequence of random vectors Z, = {X (l,, +), M| (f,, +)} forms a Markov chain which is embedded in the retrial queueing
system. It follows from Appendix that {z ;e nN}is ergodic if and only if p< R*(A) for our system is stable, where
p= (1/5)(1 —S;(a))(l +5g<‘>).
For the process, we define the limiting probabilities as 0,(1)=P{C(t)=0, N(t)=0} and F,(t) = P{C(t) =1, N(1)=0}

as the probability densities

P(x.0)dx = P{C(z) =L,N(t)=n, x<R(¢) <x+dx}, fort>0, x>0andn>1.

I, (x,t)dx = P{C(z) =2L,N(t)=n, x<S)(1) < x+dx}, fort>0, x>0, n>0.

0,,(x,1)dx = P{C(z) =3, N({t)=n, x<S°(t)<x+ dx}, for >0, x>0 and 1> 0.

R,(x,0)dx = P{C(z) =4, N(t)=n, x<G(t) <x+ dx},for £>0,x>0and n>0.

The following probabilities are used in the subsequent sections:
0, (t) is the probability that the system is idle at time ¢ and the server is in /" working vacation. F)(#) is the probability that the

system is idle at time ¢ and the server is in a regular busy period. P (x,?) is the probability that at time ¢ there are exactly n
customers in the orbit with the elapsed retrial time of the test customer undergoing retrial lying in between x and x + dx.
Hb,n (x,?) is the probability that at time ¢ there are exactly n customers in the orbit with the elapsed regular service time of the

test customer undergoing service lying in between x and x + dx. Q,-qn(x, t) is the probability that at time ¢ there are exactly n
customers in the orbit with the elapsed lower rate service time of the test customer undergoing service lying in between x and x +
dx on ™ stage. R (x,?) is the probability that at time ¢ there are exactly n customers in the orbit with the elapsed repair time of

server in between x and x + dx. We assume that the stability condition ( p<R (ﬂ,)) is fulfilled in the sequel and so that we can

set O = tll_)rg 0,00 K =}Lrgf})(t) and limiting densities for = 0, x> 0, n 21 and (i=1,2,...J)

P(x)= llim B,(x,0); 1I,,(x)=lmll, ,(x,0); O,(x)=lmQ,, (x5 and R,(x)=lmR, (x,?).

By using the method of supplementary variable technique, we formulate the system of governing equations of this model as
follows:

ARy =60, . (1
(A+6)0,0= Tl_lb’o(x),ub(x)dx+TQLO(x),uV(x)dx+].OR0(x)§(x)dx. (2)
0 0 0
(2+6)0, =00, +TQI.,0 (), (x)dx, (i=1,2,..0). 3)
0
%+(l+a(x))Pn(x):O, n>1. (4)
Wﬂmm%u))nb,o (x)=0, n=0. (5)
M+(l+5+,u,,(x))l’[b,n(x)=ll'[b,n_] (x), n>1. (6)

dx
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@+(l+9+uv(x))Qi’0(x)=O, n=0, (i=12,.J). (7)
X
@+ (A+0+1,(x)) 0, (x) = A0, (x), n=1, (i=1,2,..]). (8)
X
@+(/{+§(x))Ro(x)=O, n=0. 9)
X
@Jr(mg(x))len (x)=AR, (x), n>1. (10)
X
To solve Equations (4) through (10), the steady state boundary conditions at x = 0 are followed,
P,(0) = Il’[bn(x),ub(x)dx+z‘[Ql,,(x),uv(x)dx+IR (NEX)dx, n>1. an
i=1 g
IT,,4(0) = Up(x)a(x)dwaJ'Q (xX)dx+ AP, J 0. (12)
i=l ¢
o0 o0 J o0
I, (0) = J' P (v)a(x)dx+ A J’ P(x)dx+6 I 0., (x)dx |, n>1. (13)
0 0 i=l ¢
20,0, n=0, (i=12,..J)
Qi,n(0)={0 ¢ o . (14)
R,(0) =5J'nn(x)dx, n>0. (15)

The normalizing condition is

B +ZQ . +ij (x)dx+Z[J.an(x)dx+ZJ.Q, n(x)dx+IR (x)dx]—l (16)

n=l ¢ i=1 ¢

3.2 Steady state solution

The steady state solution of the retrial queueing model is obtained by using the PGF function technique. To solve the
above equations, the PGFs are defined for |z| < 1 as follows:

P(x,2)= ) B, (0)z"; P(0,2)= Y P, (0)z"; T, (x,2) = Y T, (x)z"; T1,(0,2) =Y TI,, (0)z";

n=1 n=1 n=0 n=0
0,(x,2)=Y 0,,(02"; 00,2)=Y_0,,(0)z"; R(x,z)= Y R,(x)z" and R(x,0)= D R, (0)z".
n=0 n=0 n=0 n=0

On multiplying the Equations (4) through (10) by z” and summing over n, (n = 0,1,2...) and solving the partial differential
equations, we get

P(x,z) = P(0,2)[1- R(x)]e . (17)
I, (x,2) =TT, (0,2)[1 = S, (x)]e” ), (18)
0,(x,2) = 0,(0,2)[1 -5, (x)]e . (19
R(x,2) = R(0,2)[1- G(x)]e "), (20)

where b(z) = A(1-z), 4,(z)= (5 +A(1 —z)) and A4,(z)= (0 + (- Z))
From the Equations (11) through (1 5) we can obtain

J
P(0,2) = I 1, (x, 2) 4 (x)dx+z j 0.(x, 2), (x)dx + j R(x, 2)E (x)dx — [Z o +PO]. @1)
i1

i=l
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1, (0,2) = J-P(x z)a(x)dx+/1jp(x z)dx+QZJQ (x,2), (x)dx + AP, (22)
i=l o

0,(0,z) = jin,o~ (23)

R(0,2)=6 I 1, (x, 2)dx. 24)

Inserting the equations (21) through (24) in (18) and do some calculation, we get,

M,(0,2) =2 (O PO Ry ez (1-8° ) |+ 28, +W<z>iQi,o- (25)
i=1

where V(z) = %[1 - (Av(z))].

Using the equation (21)-(25) in (17), we get

J
P(0,z) = T1,(0,2)S, (Ab(z))+ZQ,.(o, 2)S; (4,(2))+R(0,2)G" (b(2)) - [ZQ o+ Po] (26)
i=1
Using equation (18) and (25) through (26) in (24), we get
R(0,z) = 811, (0, 2) M . 27
4,(2)

Using equations (24) through (27), we get

J
/'LZ{PO (SG)-1)+ Y0 [V(S()+S; (Av(z))—l}}

i=1

P(0,z) = (28)
- (R* (A)+z(1-R* (/1))) S(2)
8G" (b(2))(1-5, (4
where  S(z) =[S; (A,, (Z))+ ( (Z))/(l (Z)b( b(z)))].
b
Using equation (28) in (25), we get
J
A[PORWZ D+ 00V ()45 (4,(2) - 1}}
I1,(0,z) = =l . 29

z —(R*(,l) +2(1- R*(l)))S(z)

Using equations (23) and (27) through (29) in (17) through (20), then we get the results for the following
PGFs P(x,z), I, (x,z), O;(x,z) and R(x, y,z). Next we are interested in investigating the marginal orbit size distributions
due to system state of the server.

Corollary 1. Under the stability condition p < R*(A), the stationary joint distributions of the number of customers in the orbit
when server being idle, busy, on working vacation and under repairs is given by

J
(1=K @) (1) 30,1015 (400)-1]
= . (30)

Pe= -[ P z)de= z—(R*(/l)+z(1 —R*(l)))S(z)

J
A(l—SZ(%@)))(%R*mxz—1)+ZQ,-,0 [zV(z)+S;“(Av<z))—1}J
=l (31)

I, (z) = | (x,z)dx =
: ! e 4@ x(z- (R @) +20-F 2))5G)|

0,(2)= I 0,(x,2)dx ={2Q, oV (2)/6}, for (i =1,2,...]). (32)
0
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a(1-5, (Ab(z)))(l—G*(b(z)))[]f,R"(l)(z—lHiQi’o [/()+5] (Av(z))_qj
i=1

R@)= J.R(x, 2)dx= (33)
0

Ab(z)xb(z)x(z—(R* (,1)+z(1—R*(,1)))S(z))
J J
Applying the normalizing condition P + Z Q0,0+ P +TIT,(1) + Z O;(1)+ R(1) =1 and using the equations by setting z= 1 in

i=l1 i=1

(43)-(48), we get

* ; R*(A)+(A/9)(1—S:(9))

RR (A)+;Qi,o L(/W)(l_SZ((S))(]+5gm)((1_3;“(9))(2_13*(/1))—1
where  p= (/1/5)(1 —52(5))(1 +5g(])); 4,(2) = (5 +Al-2) )’ 4,(2)= (9+A(l =) ); rE =)

5G" (b(2)(1-5, (4,(2))
4,2) '

)] :R*(/l)—(/l/(s)(l—S;‘((S))(msg(”). (34)

and S(z) :[s; (4,(2))+

Corollary 2. The probability generating function of number of customers in the system and orbit size distribution at stationary
point of time is

~ L = _ Nrl(z) Nr2(z)
K(z)=R+ ;Qﬁo + P(2) + +R(z) + z[n H(2)+ ;Qi(z)J S TRy TS (35)

where
Nrl(z) = BR (A)(z-1)S(2)
g (1—2)(1+(,12V(z)/9))><1)r1(z)+z(1—R*(A))[V(Z)S(z)m:(4,(2))—1]
Nr2(2)=) 0, ) ) )
T |H(1-8(4,2) () +5(1-G (b)) ¥ (2)+S; (4,2)) 1]
Drl(z) = {z ~(R' (W) +z0-F (l)))S(z)}
. 5G" (b(2))(1-5; (4,(2)))
S(z)z{s,,(Ab(z))+ e
4 d Nr3(z)  Nré(z)
K (z)=F X P(2)+ R(z I1, (z (z) |= . (36)
,(2) 0+;Q,,0+ (2)+ (){ b )+;Q,( )J oo T D
where

Nr3(z)=PBR (X)(z-1)
J (1-2)(1+(AV(2)/0))x Driz) + z(1-R" (L) )| V(2)S(2) + S, (4,(2)) -1
=g, A (1=K W)@ (46)-1]
T+ (1-5, (4.0)) (@) + 8 (1-G (6(2))) ) 2V @)+ S, (4,)) 1]

Where Py and Q; is given in Equation (34).
4. System Performance Measures

In this section, we derive some system probabilities, mean number of customers in the orbit/system and reliability
measures of the model.

4.1 System state probabilities

From Equations (30) through (33), by setting z — 1 and applying L-Hospital’s rule whenever necessary, then we get
the following results,
1) The probability that the server is idle during the retrial, is given by,
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(1- R*(A)){PO(A/(S)(I -5,))(1 +5g<‘>)+[/1(1 Jj(@)igw ((v)(1-ss@)1 +5g(]))+(1/0))ﬂ

R*(A) 7(1/5)(1 —S;(é))(l +5g(1))
(i1) The probability that the server is regular busy, is given by,

. J
/1[1?(5)][1})12*(/1) - ;Q,-,o(l -suo)1 +(’1/9))]

R*(0)-(4/8)(1-5,(8))(1+27)

(i)  The probability that the server is on working vacation, is given by,

J J J
D0=2"00) :{AZQ,-,O(l—SCw)) /9}
i=1 i=1 i=l1

(iv)  The probability that the server is under repair, is given by,
J

,1(1 - s;‘(a))ga) [pOR*(g) +Y 0 (1 - sj(e))(l + (1/9))]
i=1

R(2)-(#/8)(1-5,®))(1+ 57

P=P(l)=

I, =11,(1) =

R=R()=

4.2 Mean system size and orbit size
If the system is in the steady state condition,

(i)  The mean number of customers in the orbit (L) is obtained by differentiating (35) with respect to z and evaluating at z = 1

Nr()Dr (1)~ Dr(DNr(1)
3(Dr) '
J (1 +(/1(1 —Sf(e))/e))(Dr;) +2p(1 +/1/9)(1 —sj(e))

Ni? = 25BR (2)+2) 0,
g ’ ; ’ _z(l—R*(/l))(l—Sj(e))((/l/e)(e+5)+5/1g<”—ASZ(5)(1+5g">))

(1 +(/1(1 —ij(e))/e))(/:)rq”)+2V'(1)(/1/9)(qu”)

Ni'= 6/11%R*(/1)—32Qi’0 +2(1—R*(/1))(1(1—S: (9))+ 2/12S§'(9)+2V'(1)((/15/9)+5g<‘> — A8, (5)( +5g<‘>)))
i=1

, . d
L, —Ko(l)—lzl_r)rlleKo(z)_Qo{

+(1-85)(1 +A/9)[2V'(l)/1(l +5g0)+61%¢? (1-5, (9))}
Dr/(1) = —zs(R*(z)—p)
qu'"a):3(1+z,1(1—R*(z))(1—S;((s))(1+5g<”))
where p = (/1/5)(1 -S; (5))(1 +5g<‘>); 57(0) = Ixeedev(x); V(1) = %(1 —S:(0)+as;"(0));
z'=2,2(2S;’(5)(1+5g(1))+5g(2)(lfS;(c?)));

(i) The mean number of customers in the system (L,) is obtained by differentiating (34) with respect to z and evaluating
atz=1

Nr(1)Dr;(1) - Drj(1)Nr;(1)
3(Dr))

Lo = K1) = limiKs(Z) =0
z—l dz

where Ni/{1) = Nr;'(1)+POR*(/1)(m +(1+26)(5g" - 25, (5)(1+5g“>)))—3ig,0 (1—Sj(9))[(ﬂ,/9)(0r;)+/12 (2+5g(1))}

i=1
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4.3 Reliability measures

To justify and validate the analytical results of the model, the availability measure (4,) and failure frequency (F)) are
obtained as follows:
(1)  The steady state availability 4,, which is the probability that the server is either busy, on a working vacation or in an idle
period such that the steady state availability of the server is given by

4, = l—liml(R(z))
=1-R(1)
J
/1(1—52(5))g(”[%R*(/1)+ZQ,-,o (1-57@)(1 +(l/9))]
i=1

R (1)~ (2/5)(1-8,®))(1+62")

(i) The steady state failure frequency is obtained as

A1 —SZ(&)){POR*(A) £ 0,(1-510)(1 +(/1/9))]

R*(A) —(/1/5)(1 —S;((S))(l +5g<‘>)

=1-

Ffzéxl"[b:

5. Special Cases

In this section, we analyze briefly some special cases of our model, which are consistent with the existing literature.
Case (i): No negative arrival, no breakdown, no vacation interruption, and single working vacation

In this case, our model becomes an M/G/1 retrial queue with a single working vacation. We assume that (J, 6, J) — (0,
0, 1) in the main result is obtained as follows,

SR w-24") {[(S:(i—lz)—1)(R*(A)+z(1—R*(A)))+(1—z)R*(A)S:(l)J}SZ(/l—/Iz)
| 2ES)-R WS, '

K (2)
s;“(/l)(z—(R*(/l) +2-R ()S; (A—Az))

This coincides with the result of Arivudainambi et al. (2014).
Case (ii): No negative arrival, no breakdown, and multiple working vacations

In this case, our model becomes a single server retrial queueing system with working vacations. We assume that 3 =0
and J = o and the main result of Ks(z) can be as follows:

(z —(R*(/m) +z(1- R"(l)))S; (Ab(z)))((/'LV(z)/H)+ 1)
+2(1-R ) (S (4 @) +V@)S; (4))-1]
+(1-s; (Ab(z)))[(S: (4,2)=1)(R* () +20- R () + ZV(Z):|

(1 —Z)(z (R +20-R(1)s, (Ab(z)))

This coincides with the result of Gao et al. (2014).
Case (iii): Single working vacation

When J = 1, our model can be reduced to a single server retrial queueing system with negative customers, single
working vacation, and vacation interruption where the server is subjected to breakdown and repair.
Case (iv): Multiple working vacations

When J = oo, our model can be reduced to a single server retrial queueing system with negative customers, multiple
working vacations, and vacation interruption where the server is subjected to breakdown and repair.

(1-)

K. (z)=F

6. Numerical Examples

In this section, we present some numerical examples

. - : | where the exponential distribution is f(x)=ve **,x>0, Er-
using MATLAB in order to illustrate the effect of various P ) *

parameters in the system performance measures. For the
purpose of a numerical illustration, we assume that all
distribution functions like retrial, regular service, working
vacation, and repair are exponentially, Erlangian, and hyper-
exponentially distributed. All parameter values are selected
with the aim of satisfying the steady state condition p < g*(1),

lang-2 stage distribution is f(x)=v’x¢ **,x>0 and hyper-

is f(x)=cve  +(1- c)uze_uzx,x >0.
The interpretation of the results based on numerical
illustration carried out for the different performance measures
is shown in Tables 1-3.

exponential distribution
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Table 1.  Effects of retrial rates (a) on Q;0, Ly and P.
Retrial distribution Exponential Erlang-2 stage Hyper-Exponential
a Q/}() Lq P Q/}() Lq P Q/}() Lq P
retrial rate
2.00 0.1053 0.2736 0.1228 0.0048 1.5899 0.5394 0.0829 0.3967 0.2011
3.00 0.1115 0.1702 0.0827 0.0321 0.4576 0.3532 0.0930 0.2643 0.1354
4.00 0.1147 0.1180 0.0623 0.0455 0.3268 0.2617 0.0981 0.1977 0.1020
5.00 0.1167 0.0865 0.0500 0.0534 0.2615 0.2076 0.1013 0.1576 0.0818
6.00 0.1180 0.0654 0.0417 0.0586 0.2211 0.1720 0.1033 0.1309 0.0682
Table 2. Effects of negative arrival rates (J) on L,, 4, and Fy.
Retrial distribution Exponential Erlang-2 stage Hyper-Exponential
5 L, 4, F L, 4, F, L, A, F,
negative arrival rate
0.20 0.3282 0.9980 0.0020 0.7140 0.9870 0.0065 0.4330 0.9976 0.0031
0.30 0.3535 0.9970 0.0044 0.8093 0.9808 0.0144 0.4667 0.9965 0.0069
0.40 0.3784 0.9961 0.0078 0.9048 0.9747 0.0253 0.5002 0.9954 0.0121
0.50 0.4031 0.9951 0.0121 1.0005 0.9687 0.0391 0.5334 0.9943 0.0187
0.60 0.4274 0.9942 0.0173 1.0964 0.9628 0.0557 0.5665 0.9933 0.0266
Table 3. Effects of lower speed service rates () on Py, Ly and Q.
Vacation distribution Exponential Erlang-2 stage Hyper-Exponential
Iy Py L, ] Py L, ] Py L, 0
Lower speed service rate
2.00 0.2334 0.0788 0.0729 0.1633  0.1539  0.0766 02178  0.1056  0.0783
3.00 0.2405 0.0757 0.0601 0.1720  0.1536  0.0688 02256  0.1033  0.0665
4.00 0.2455 0.0738 0.0512 0.1793  0.1514  0.0622 0.2313  0.1025  0.0578
5.00 0.2493 0.0726 0.0445 0.1854  0.1489  0.0568 0.2357  0.1028  0.0511

Table 1 shows that when retrial rate (a) increases,
then the probability that server is idle in working vacation
(Q1p) increases, the mean orbit size (L,) decreases and
probability that server is idle during retrial time (P) also
decreases for the values of A=1;0=2; ub=5;8=0.2; pv =
3; £=3;J=00; c=0.7. Table 2 shows that when the negative
arrival rate () increases, the mean orbit size (L,) increases,
the servers availability (4,) decreases, and the servers failure
frequency (£7) also increases for the values of A =1;0 = 3; u,
=10; J=w0; =5;a=2; u,=4; c =0.7. Table 3 shows that
when the lower speed service rate (u,) increases, the
probability that the server is idle (P,) increases, then the mean
orbit size (L,) decreases and the probability that the server is
on working vacation (Q1) also decrease for the values of A =
0.5;0=2;a=2;ub=5;6=03;¢=3;J=1;¢c=0.7. The
above results facilitate an insight into the system performance
measures of the unreliable M/G/1 retrial G-queue with variant
working vacations.

For the effect of the parameters A, a, §, &, ub, and puv
on the system performance measures, three dimensional
graphs are illustrated in Figures 1-3. In Figure 1, the surface
displays an upward trend as expected when increasing the
value of the arrival rate (1) and negative arrival rate (J) against
the mean orbit size (L), that is suppose the number of arriving
messages and the number of viruses affecting time increases,
the average number of packets in the buffer increases. Figure
2 shows that the server’s availability probability (4,) increases
when increasing the value of the lower service rate (u,) and
regular service rate (u,) that is, if the systems availability
increases when increasing the values of the processing time
and the virus scan processing time. In Figure 3, we
demonstrate the effect of variation of the mean orbit size (L)
decreases for increasing the value of repair rate (&) and retrial
rate (a), that is the average number of packets in the buffer

increases which increases the values of retransmission time
and recovering time of the system.

From the above numerical examples, we can find
the influence of parameters on the performance measures in
the system and know that the results are coincident with the
practical situations.

MNegative arrival rate (8) nz 2 Arrival rate (A)

Figure 1. L, versus 4 and o.

Lower service rate (i)

Senvice rate ()

Figure 2. A4, versus u; and p,.
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Figure 3. L, versus x, and a.

7. Conclusions

In this paper, we have studied a single server retrial
queueing system with variant working vacations and vacation
interruption, where the regular busy server subjected to
breakdown and repair due to the arrival of negative customers.
The analytical results, which are validated with the help of
numerical illustrations, may be useful in various real life
situations to design the outputs. The probability generating
functions for the numbers of customers in the system and its
orbit when it is free, busy, on working vacation or under
repair are found by using the supplementary variable
technique. Some varieties of performance measures of the
system are calculated. The explicit expressions for the average
queue length of orbit and system have been obtained. Finally,
some numerical examples are presented to study the impact of
the system parameters. The novelty of this investigation is the
introduction of both single working vacation (J=1) and
multiple working vacations (J=c) in presence of retrial G-
queues and server breakdown. This proposed model has
potential practical real life application in production and order
systems to enhance the performance of the production facility
and to prevent the production facility from overload in a
computer processing system or in telephone consultation of
medical service systems. Hopefully, this investigation will be
a great help to the system managers who can design a system
with economic management and make decisions regarding the
size of the system and other factors in a well-to-do manner.
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Appendix

The embedded Markov chain {Zn; ne N} is ergodic if and only if p < R*(1), for our system to be stable, where

D= (/1/5)(1 —S;‘(a))(l +5gM )

Proof: To prove the sufficient condition of ergodicity, it is very convenient to use Foster’s criterion (Pakes, 1969), which
states that the chain {Zn; neN } is an irreducible and aperiodic Markov chain is ergodic if there exists a non-negative

function f{j), jeN and &> 0, such that mean drift y; :E‘[f(zn+1)—f(zn)/zn :j] is finite for all jeN andy/; <—¢ for all jeN,

except perhaps for a finite number j’s. In our case, we consider the function f{j)=j. then we have
(/1/5)(1 —52(5))(1 + 5g<‘>) -1,

B (/1/5)(1 —52(5))(1 + 5g<”) “R*(A),

if j=0,
if j=1,2...

Clearly the inequality p < R*(A) is a sufficient condition for ergodicity.
To prove the necessary condition, As noted in Sennott et al. (1983), if the Markov chain {Z,,; nZl} satisfies Kaplan’s

condition, namely, y; < oo for all j > 0 and there exits j, € N such that y; > 0 for j > j,. Notice that, in our case, Kaplan’s
condition is satisfied because there is a k such that m; = 0 for j <i - k and i > 0, where M = (m;;) is the one step transition

matrix of {Z,; neN}.Then p=R"(1) implies the non-Ergodicity of the Markov chain.



