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Abstract

The research considers the flow shop scheduling problem under the Just-In-Time (JIT) philosophy. There are n jobs
waiting to be processed through m operations of a flow shop production system. The objective is to determine the job schedule
such that the total cost consisting of setup, earliness, and tardiness costs, is minimized. To represent the problem, the Integer
Linear Programming (ILP) mathematical model is created. A Memetic Algorithm (MA) is developed to determine the proper
solution. The evolutionary procedure, worked as the global search, is applied to seek for the good job sequences. In order to
conduct the local search, an optimal timing algorithm is developed and inserted in the procedure to determine the best schedule of
each job sequence. From the numerical experiment of 360 problems, the proposed MA can provide optimal solutions for 355
problems. It is obvious that the MA can provide the good solution in a reasonable amount of time.
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1. Introduction

In the past several years, many researchers have
conducted research in the production scheduling under the
Just-In-Time (JIT) philosophy. The objective of the JIT is to
produce and deliver products not before or after their
committed due dates. Any jobs completed early must be held
by manufacturer until their due dates and, hence, incur some
costs as a result of product deterioration, storage, and insu-
rance. On the other hand, those jobs completed after their due
dates can cause many problems such as customer penalties,
loss of sales, or potential loss of reputation. In accordance
with Baker and Scudder (1990), an ideal schedule is the one in
which all jobs are finished exactly on their due dates. The
most obvious objective of scheduling problem under the JIT
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policy is to minimize the deviations of job completion times
around their due dates. It can be seen as the minimization
problem of total sum of earliness and tardiness penalties (E/T
scheduling problem). The E/T scheduling problem can be
divided into several categories according to the types of
machine system, due date, and characteristics of weight
penalties.

According to Pinedo (2002), the E/T scheduling
problem of jobs having different due dates in a single machine
production system is NP hard. Lee and Kim (1995) studied the
job scheduling problem on single machine with common due
date. The objective was to minimize the total generally
weighted of earliness and tardiness penalties. The similar
problem but with distinct due dates was discussed by Lee and
Choi (1995). Szwarc and Mukhopadhyay (1995) proposed an
optimal timing to find an optimal timing job starting position
for the E/T problem with the predetermined job sequence.
Sarper (1995) proposed the minimization problem of the sum
of absolute deviations of job completion times around a
common due date for the two machines flow shop. Moslehi et
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al. (2009) studied similar problem but distinct due dates. The
author addressed the case of minimizing the sum of maximum
earliness and tardiness. Yoon and Ventura (2002) proposed a
procedure for minimizing the mean weighted absolute devia-
tion of job completion times around their due dates when jobs
are scheduled in a lot-streaming flow shop. Sufen et al. (2005)
discussed the E/T scheduling problem of n jobs m machines
flow shop with uncertainty of job processing times. Chandra
et al. (2009) considered the E/T problem under a common due
date in the flow shop production system. The similar problem
but with distinct due date was discussed by Schaller and
Valente (2013) and M’Hallah (2014). According to the survey
research on E/T scheduling problems with job due window
conducted by Janiak et al. (2015), both common and distinct
due window problems are NP-hard. While Yeung et al. (2004)
discussed the E/T scheduling problem with common due
window, the cases of problem with distinct due windows were
studied by Behnamian et al. (2009), Koulamas (1996), and
Wan and Yen (2002). Nonetheless, as being known so far,
there is no research conducted relevant to the E/T scheduling
problem with flow shop machine system and job distinct due
windows.

In recent-years, a growing number of literatures
suggest the application of Genetic Algorithm (GA) as one of
those powerful metaheuristic being used to solve combina-
torial optimization problems (Cheng el al., 1995, Reeves,
1995; Sevaux & Dauzere-Peres, 2003). According to Sevaux
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and Dauzere-Peres (2003), the main difference between the
GA and other metaheuristics such as Tabu Search (TS) or
Simulated Annealing (SA) is that not only GA maintains the
population of solution rather than unique current solution but
it allows the exploration of a larger solution space as well.
Because of those benefits discussed previously and the simpli-
city to represent each job as a gene of a chromosome in the
solution representation, the GA has been applied by many
researchers to seek for the good solution in the job sequencing
problems. Some of them are Lee and Choi (1995), Lee and
Kim (1995), Murata et al. (1996), Reeves (1995), and Sufen et
al. (2005). The Memetic Algorithm (MA) can be considered
as the extension model of general GA. According to Tavak-
koli-Moghaddam et al. (2009), unlike traditional GA, the
Memetic Algorithm is population-based search approach com-
bining evolutionary procedure with local refinement strategies
such as local neighborhood search.

This paper considers the E/T scheduling problem of
jobs having distinct due windows in m-operation flow shop
production system. The mathematical model is introduced to
represent the problem. In order to determine the starting time
of each job when the job sequence is known, the optimal
timing algorithm for the E/T flow shop scheduling system is
created. The Memetic Algorithm based on evolutionary pro-
cedure with the insertion of optimal timing algorithm is
presented to determine the good solution to the problem.

There are n jobs waiting to be process on m machines flow shop production system. Each job has its own earliness
penalty, tardiness penalty, earliest due date, and latest due date. Any jobs completed before their earliest due dates incur earliness
penalties. On the other hand, those jobs completed after their latest due dates incur tardiness penalties. All jobs are assumed to be
available for the production at the beginning of planning horizon. The objective is to determine production schedule such that the
sum of earliness and tardiness costs of all jobs are minimized. The following notations are used throughout the paper.

n =number of jobs

m =number of machines

i, j = index of jobs

[i1.[ j]= index of job positions in given sequence
k =index of machines

g = index of sub-schedules

r =index of job clusters

C; , = completion time of job i on machine k
w, = length of due window of job i

e.

; = earliest due date of job i

t; = latest due date of job i

g =earliness of job i

;i,j=012...n
;L j=1,2,...,n

v k=12,...m
;9=12,...G
»r=212,...,R

s Wi =t

i i ~§

; E; =max(e; -C;,.0)

i,m:
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T, =tardiness of job i i T = max(Civm -t ,O)
oT, = the time period of job i when that job completed after its earliest due date ;OT, = max(C; , —¢;,0)
OTi2 = the time period of job i when that job completed before its latest due date ;oTi2 = max(ti ~Cim ,0)
a = earliness cost of job i

B =tardiness cost of job i

Vij = setup cost of job j when it immediately processed after job i. Here, y, i refers to the setup cost of job j when it is the first job

being process on a machine.

Py = processing time of job i on machine k

TC = total cost

J; =jobiofalln jobs

J, =adummy job having processing time on all machines equal to zero
g = job in i™" position of the given sequence

J gf"S‘ = the first job in sub-schedule g

J'gast =the last job in sub-schedule g

o, =clusterr

J. =jobiinclusterr Ji=F R+, B B+, W, WHLLLLT, T L

ir
Je, = the first job in cluster r

Jg, =thelastearly job in cluster r

Jwe = the last job is completed in due window and condition t,, ~Cy, >0 is hold
Jr, = the first tardy job in cluster r

J., =thelastjob in clusterr

1if job i precedes job j
X :«[

0 otherwise

y, = theshift distance being calculated from early jobs in cluster r; y _ min fe,-C.}

F<i<E b

y, = the shift distance being calculated from jobs completed in due window with the condition t, —C; >0 for i=E+1,..W
are hold; v, — EIEQN{“ -C;,

séiﬁt = starting time of the job in sub-schedule G+1; SGﬁEt =

Clast = completion time of the last job in sub-schedule G; Séﬁt —C&' =0
R, = the last cluster on sub-schedule g

M = large number

The following example demonstrates the problem characteristic.
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Example 1:
Given that five jobs are waiting to be processed through three operations of a flow shop production system. The data of

each job are presented in the Table 1.

Table 1. Data for Example 1.

; . . . . Processing times Due
) Setup cost in dollars/setup (; ;) Earliness cost in Tardiness cost in (daygs]) windows
dollars/day (¢,) dollars/day ()

=1 =2 =3 j=4 j=5 Rt Rz Rs e
i=0 2 2 3 5 2 0 0 0 0 0 0 0
i=1 0 1 3 4 4 2 4 10 8 5 29 31
i=2 2 0 1 3 3 3 6 9 7 8 43 46
i=3 1 2 0 2 2 1 3 7 5 10 32 34
i=4 3 1 2 0 5 2 4 10 9 10 59 61
i=5 1 2 1 3 0 2 5 6 9 10 55 58

The Gantt chart in the Figure 1 represents one possible production schedule of the problem (this schedule may not be
the optimal). Here, the research assumes that all jobs are processed with the same sequence on all machines.

Machine 1 1 3 2 5 4
Machine 2 1 3 2 5 4
Machine 3 1 3 2 5 4
o Z P
e; ties t, €& t €5 t5€4 by

Figure 1. One possible production schedule.

The cost associated with schedule in Figure 1 can be calculated as follows:

Setup Cost: The total setup cost incurred from the sequence can be calculated sy, + ;3 + 735 + Yo 5 + 754 = 2+3+2+3+3
=$13.

Earliness cost: Job 1, 2, and 5 are early for 6, 2, and 3 days, respectively. The earliness cost can be calculated as
0, + a,E, + asEg = 2(6)+3(2)+2(3) = $24

Tardiness cost: Only job 4 is tardy. The tardy costis g,T,=4(1) = $4.

Note that job 3 has no penalty since it is completed within the due window.
The total cost; TC = 13+24+4 = $41.

2.1 Integer linear programming
The mathematical model based on Integer Linear Programming (ILP) was developed and can be shown as follows:

Objective Function

n n

n
minimize TC =" (o, E; + BT, )+ 2. > 71 1%
ia i ja
j#i
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Constraints

n

T, -1 @)
=

" 2
> %=1 j=12..n @
0

i

n

Zx” <1 1=12,..,n ©
1

j#

C.,>PR, i=1,2..n “)
Chu—Cu+M(1=%,)2P, (i # j)=1ounik=L..m ®)
Ci ~Cis 2Py i=1,2,.0 Kk =2,0m ©)
Cim +E —OT, =¢ fi=1,2,..n Y
Cim —T, +0T, =1, =120 ®)

The objective function represents the sum of total cost including setup, earliness and tardiness costs of all jobs.
Constraint (1) identifies the first job of the sequence. Constraint (2) ensures that each job can have at most one immediately
preceding job. According to constraint (3), there is at most one job can be immediately processed after job i. Constraint (4)
guarantees that the first job being process on the first machine cannot start before the time of zero. Constraint (5) ensures that any
two adjacent jobs on the same machine are processed continuously without overlapping. Constraint (6) requires that any
operations of a job cannot be overlapped. Constraints (7) and (8) are to determine earliness and tardiness of job i.

In order to determine the problem solution, the Memetic Algorithm is proposed. The evolutionary procedure is applied
to search for the good job sequence. In order to determine the optimal schedule for each job sequence, the optimal timing

algorithm is constructed and inserted into the evolutionary procedure.

3. Problem Properties

Define the initial schedule as the schedule in which all jobs in the given sequence are started on each machine as soon

as possible. Note that in the optimal schedule, each job cannot be processed before its starting times in the initial schedule.

Property 1: If there is no idle time between any two consecutive jobs i and I in the initial schedule, the optimal schedule

can have idle time between i and iy only when tisa — €y > P[i+l],m'

Explanation: Given that, in an initial schedule, there is no idle time between jobs I and Jfisg ON the last machine. In the
optimal schedule, if job J; is not early (C[i] o> e[i]) and job J;,,;, is not tardy(c[m] N gt[m]), $ince Cyi,yy y > Cpigm » the term

triaag — € must be greater than C[i+1],m _C[i],m , Which can be written as shown in (9).

iz — €1 2 Crisgm — Cligm ©)
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When there is idle time between jobs J[i] and J[Hl], the amount of c[ _C[i]m is greater than P[M]m. The

i+1],m

condition can be written as follows.

Cristzm —Cripm > Bisagm (10)
The inequality (11) is constructed from inequalities (9) and (10)
tivg — € > Risgm (11)

From the initial schedule, given that two consecutive jobs are placed in the same cluster with the following conditions.

iy — € < Rivgm (12)

S[i+l],m _C[i],m =0 (13)

Property 2: In the optimal schedule, jobs belong to the same cluster must be processed without interruption.

Explanation: Inequality (12) and equation (13) identify the property.

Property 3: In the optimal schedule, for each cluster, those early jobs must be processed before those tardy jobs.

Explanation: Given that, on the last machine, jobs Jii and iy 1€ grouped in the same cluster, the following

equation can be created by adding the term — S[i]’m ~PBijmOn both sides of the inequality (12).

t[i+l] - S[i],m - I:)[i],m - F)[i+1],m < e[i] - S[i],m - I:)[i],m (14)

The inequality (15), reduced from inequality (14), confirms that the early job must be processed before the tardy job.

tig — Crivgm <€~ Cpipm (15)

Property 4: In the optimal schedule, for each cluster, those early jobs must be processed before those on-time jobs.

Explanation: Since €igy < iy the term €] _C[i+1],m is less than tiag _C[i+l],m' Applying this relationship to the

inequality (15), the result can be shown as follows which concludes to the property.

€1y — Cristpm <Yz — Crisgm <€ — Cpigm (16)

Property 5: In the optimal schedule, for each cluster, those on-time jobs must be processed before those tardy jobs.

Explanation: Since ey <ty the term €] _C[i],m is less than tri) _C[i],m' Applying this relationship to the

inequality (15), the result can be shown as follows which concludes to the property.
t[i+1] _C[i+1],m < e[i] _C[i],m < t[i] _C[i],m (17)

Property 6: In the optimal schedule, if two consecutive jobs of the same cluster are early, then Epp > Ejiag-
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Explanation: If two consecutive early jobs are grouped in the same cluster, the condition iy must be

=€, < Fisym

hold. The result is shown in the following inequality (18).

€y ~ €y < Pivagm (18)
The following inequality is created by adding the term — S[i] = P[i] o on both sides of the inequality (18).
€i+11 — Stizm — Pizm — Rivgm <€ — Sipm — Rigm (19)

The inequality (19) can be reduced to the inequality (20). Since both jobs are early, the two terms on both sides are

positive and therefore the earliness of i is greater than the earliness of N
e+ — Crisym <€ — Cripm (20)

Property 7: In the optimal schedule, if two consecutive jobs of the same cluster are tardy, then iy > Top-

Explanation: If two consecutive tardy jobs are grouped in the same cluster, the condition trisy — €y, < Prisggm Must
be hold, which results in the following inequality (21).
vy — i < Risagm (21)
The following inequality is created by adding the term — S[i]’m - P[i],m on both sides of the inequality (21).
tizay = Sgipm — Fizm = Rism <ty = Spizm = Rigm (22)

The inequality (22) can be reduced to the inequality (23). Here, both jobs are late; the two terms on both sides are

negative. Since, the tardiness is the absolute value of lateness, the tardiness of ‘][i+1] is greater than iy

tiag — Crisgm <ip — Cpipm (23)

4. Optimal Timing Algorithm

The function of Optimal Timing Algorithm (OPT) is to determine the optimal starting time of each job for a given
sequence. The concept of the algorithm starts from constructing the initial schedule and, then, dividing jobs into clusters before
grouping several clusters into sub-schedule. The final step of the algorithm is to shift each job cluster to the right side until the
sum of earliness and tardiness costs of all jobs is lowest. The concept of OPT procedure introduced in this study can be explained
as follows.

On the last machine, any two jobs are assigned to the same cluster when the conditions (12) and (13) are hold. Jobs in
the same cluster should be processed continuously without idle time. Since earliness and tardiness of each job are determined by
comparing the job completion time on the last machine with its due window, only starting, processing, and completion times of
job on the last machine are considered. Applying the clustering method to the initial schedule in the Figure 1, there are three

clusters as shown in the Figure 2.
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Machine 1 1 3 2 5 | 4 2 }

Machine 2 1 3 2 . 5 4

Machine 3 (1 3 Ol 2 < s 4 >
31 tllé3 tl3 eiz t:z €ty ly

o1 ={01.3s} 0, ={J2} o3 ={J5,04}

Figure 2. Results obtained from clustering method.
After all clusters are determined, they must be grouped into sub-schedule. The clusters ¢, and o, will be in the
same sub-schedule if the equation (24) is hold.

CL,r = SF,r+1 (24)

For any cluster g, = {J Er , the equation (25) is applied to determine

JF+1,I'"""] E,r'JE+1,r"""]W,r"]W+1,r"""] L,r}

whether or not the cluster should be shifted to the right.

s =S, - 3 b (25)

i=F i=W+1

If A(r) <0, the cluster o should not be moved because it will only increase the total cost. On the other hand, if

A(r) >0, the cluster o should be shifted to the right side. Therefore, the total cost can be reduced by the product of A(r) and

shift distance E(r) . Here, the shift distance can be calculated using the equation (26)
E(r) = min {yl, y,, St —Céa“} (26)

g+l

If cluster o, does not have any jobs of condition e, <C;, <t;, then
Yo =0 27)

If there are no early jobs in the cluster o, , this cluster should not be shifted to the right. In this case, the following

conditions are hold.

A== B, (28)
i=W+1
y, =0 29)

Suppose that all jobs belong to the cluster o are completed within their due windows and ended before their latest

due dates (ti —C.. >0),then

ir



A. Chaimanee & W. Supithak / Songklanakarin J. Sci. Technol. 40 (5), 1203-1218, 2018 1211

A(r)=0 (30)
Yy = (31)
If all jobs in cluster o are tardy jobs, then
L
A0 ==Y A (32)
i=W+1
Yy = (33)
y, = (34)

The optimal timing procedure constructed in the research can be summarized as follows:
Step O: Re-index each job according to its position in given sequence. Then, determine the initial schedule by starting each
job on each machine as soon as possible.

Step 1: Divide n jobs on last machine into clusters, if inequality (12) and equation (13) are valid, jobs J[i] and iy e
grouped in the same cluster.
Step 2: Group each cluster into sub-schedule according to equation (24).
Step 3: Set g=0.
Step 4: Set g=g+1, if g>G, go to step 9. Otherwise, calculate a(ryand g(r)for each cluster in sub-schedule g and go to step 5.
Step 5: Determine the minimal h such that Zh:A(r) <0
r=1
Step 5.1: if h exists and h=Rg, go to step 4. Otherwise, consider step 5.2.
Step 5.2: if h exists and / # Rg, go to step 6. Otherwise, consider step 5.3.
Step 5.3: if h does not exist, then go to step 7.
Step 6: The first h clusters must not be moved. Remove the first h clusters from consideration, go to step 5 to evaluate the
remaining clusters.
Step 7: Consider (1<r < Ry): determine the smallest £ (r)and, then, shift clusters in the sub-schedule g to the right at the
distance equals to the smallest E(r) . Go to step 8.
Step8:  If CéaS‘ < sgﬁ:f‘, update A(r)and E(r). go to step 5. Else, if céas‘ = sgﬁ:f‘, combine sub-schedule g with sub-schedule
g+1 and go to step 4.
Step 9: Stop.

So far, only the operations of jobs on the last machine have been considered. For each job, the starting time of the

remaining operations (machines m-1 to 1) can be determined using the following equations.
Cix = min(si+1,k1si,k+1) i=12...n1:k=12...m-1 (35)

Cok =Snku k=1,2,...,m-1 (36)

The calculation of the optimal timing algorithm for the problem discussed in the Example 1 is demonstrated in the
Example 2.
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Example 2:
In the Example 1, the given job sequence is J, > J,>J,> J. > J,. The optimal starting time of each job in this

sequence can be determined using the optimal timing algorithm explained previously as follows:

Step 0: The initial schedule is shown in Figure 1. Note that by re-indexing jobs according to their positions, jobs J,,J,,J,,J, and
J, can be called ‘][1]’ J[z]’ J[3] , J[4], and s respectively.

Step 1: Apply inequality (12) and equation (13) to divide five jobs into clusters. The job members of each cluster are shown as
follows:
Cluster 1: 3[1]-3[21

Cluster 2: i

Cluster 3: \][4],\][5]

Step 2: Group each cluster into sub-schedule according to equation (24)
Sub-schedule 1: Cluster 1, Cluster 2
Sub-schedule 2: Cluster 3
Set g=0.
Step 4: Set g=0+1, consider the first sub-schedule.
AQ) = oy = 2,E@Q) =min{6,1,1} =1

F'j)
—
@D
4

A(2) = a5 =3, E(2) =min{2, 0,1} =1

Step 51 A(1) >0, A() +A(2) > 0.
Step 5.3: The minimal h does not exist, go to step 7.
Step 7: Shift cluster 1 and 2 by min {E@), E(2)} =1. 90 to step 8

Step 8: (:l'ast = 32"“5‘ =42, combine sub-schedule 1 with sub-schedule 2. The second sub-schedule is now composed of clusters

1, 2, and 3. Go to step 4.
Step 4: Set g = 1+1 = 2, consider the second sub-schedule.

AQ) = oy — Bz =2-3=-1E(@Q) =min{5, 00,00} =5

AQ2) = oy =3+ E(2) = min{l, o0, 0} =1

AB) =ap — sy =2-4=-2,E(3) =min{3,00,00f =3
Step 5: A() <0-

Step 5.2: The minimal h=1, go to step 6
Step 6: The first cluster does not move. Delete the first cluster from the consideration and go to step 5.

Step 5: A(2) > 0, A(2)+A(3) > 0.
Step 5.3: The minimal h does not exist, go to step 7.
Step 7: Shift cluster 2 and 3 by min {E(2), E(S)} —1,00tostep 8

Step 8: C18st < 5 /it (63 < o0) , Update A(2) , A(3) s E(2) » E(3) - GO to step 5.
A(2) =0, E(2) = min{x,3,00}=3
ARB) = apy — Bsy =2—-4=-2, E(3) = min{2, o0, o} = 2

Step 5: A(2) = 0.
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Step 5.2: The minimal h=2, go to step 6.

Step 6: The second cluster does not move. Delete the second cluster from the consideration and go to step 5.
Step 51 A(3) <0-
Step 5.1: The minimal h=R¢=3, go to step 4.
Step 4: Set g=2+1=3, g>G (3>2), go to step 9.
Step 9: Stop.
The result obtained from the procedures is shown in the Figure 3 below.

SRERE .
PP L |
- i
Machine 1 1 3 2 5 4 §
Machine 2 1 3 2 | 5 4 §
T ; 1l
i ; il : Pl I
Machine 3 1 3 | 2 5 4
€ t1é3 t.3 € t.z €s tlséét ty

Figure 3. Results from the optimal timing algorithm.

From the Figure 3, jobs 1 and 5 are early while job 4 is tardy. The total cost associated with final schedule can be
calculated as (setup cost = $13) + (earliness cost = $14) + (tardiness cost = $8) = $35.

5. Memetic Algorithm

The Memetic Algorithm is proposed to determine the good solution to the problem in a reasonable amount of time. In
this research, the evolutionary procedure is applied to determine the good job sequence, which can be considered as the global
search. For the local search, the optimal timing algorithm presented in the previous section is inserted in the evolutionary
procedure. The function of OPT is to determine the best starting position of each job for the given job sequence. The Memetic

procedure is illustrated in the Figure 4.

No

Random l
. p.
Generating Parents Randomly
Sequences select a pair of
chromosomes
Optimal
Timing <
Algorithm
No Offsprings
‘ Mutation |
Meet the
Stopping } Selection |<—| Evaluation ‘
Criterion?

Termination

Figure 4. MA procedure.
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5.1 Representation and initialization

In the representation, a chromosome can be considered as a sequence of jobs. Each gene is an integer number represented
a job in the sequence. For the illustration, a chromosome of [1 3 2 5 4] represents the production sequence of J1>J3>J2>Js>Ja.
Note that all machines have the same production sequence and the optimal timing algorithm can be applied to each production
sequence in order to generate the best schedule. The chromosomes in the initial population are generated until the number of

chromosomes equals to the initial population size.

5.2 Crossover procedure (Uniform order based crossover)

According to Lee and Choi (1995), the uniform order based crossover is considered to be best fit for job sequencing
problems. Therefore, this method is selected as the crossover operator in the research.

5.3 Mutation procedure (Swapping mutation)

Each offspring created from the crossover operator is evaluated to see if the mutation should occur. The swapping
mutation is used here. The method is to, first, randomly select two genes from a chromosome and, then, exchange their positions.

5.4 Evaluation

The purpose of evaluation is to determine quality and fitness value of each chromosome. The total cost of each
chromosome (TCi), represented the chromosome quality, can be calculated according to the objective function mentioned in the
session 2.1. The chromosome fitness value (fi) is determined using the equation 37. This value can be considered as the
probability that each chromosome will be selected as a member of the next generation. Here, those good chromosomes with low

total costs have greater chances to be selected.
fi=o (37)

5.5 Selection

Similar to the work of Cheng et al. (1995), two selection operations, elitist and roulette wheel, are applied to perform
the reproduction step of evolutionary procedures. The elitist is implemented to preserve the best chromosome in the enlarge
population (parents + off-springs) of current generation for the population of next generation. The roulette wheel is, then, applied
to select the remaining chromosomes to be the members of the next generation in such a way that a fitter chromosome has greater

chance to be selected.

6. Computational Results

This section is to evaluate the performance of Memetic Algorithm discussed previously. The solution obtained from the
Memetic Algorithm is compared with the optimal solution yielded from Integer Linear Programming (small size problems) and
the Branch and Bound method (small and large size problems). All three approaches are coded with the MATLAB R2014b and
compiled with the Intel(R) Core(TM) i7 CPU processor 3.07 GHz RAM 7.88 GB. In the Branch and Bound (B&B), the partial
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job schedules are created by applying the optimal timing algorithm to partial job sequences. The remaining partial job sequences
after applying the concept of Branch and Bound to the Example 1, using the solution obtained from the MA as an upper bound,
are demonstrated in the Figure 5. The deviation percentage value (%Dev) applied to evaluate the MA performance can be
calculated as:

(TCua - TCOpt) x100 (38)

(%Dev) =
TCopt

where TCua is the total cost obtained from the MA.

TCopt is the optimal total cost obtained from the ILP (small size problems) and the B&B (small and large size problems).

2 jobs partial sequences 3 jobs partial sequences 4 jobs partial sequences

{1.2},17C=3 (1.2.5.7C=6 {{152,5,4}5 TC=21

{1,3,2,4}, TC=20
{1.3,2}, TC=17

L9 snrc=15— {1.3.4.7C=17
{1,4).7C=6 {13,535 TC=17 {{1’2’5’4}’ re=2s

{1.5},TC=6 {{1,5,4},]’(‘: 17

{1.3,2,5},TC=20

2,40, 7C=5
2 —=
12,5}, TC=5 {{255,4},TC=20
— 13,1,2.4), TC=14
3,1,2), TC=11
G.1.2), {3:1,2,5}:3@:14{{3,1,2,5,4},TC:29
{3,1},TC:10 {351,4}5TC:14
(3.1.5).TC=14 {{3,1,5,4}, TC =25
3 - {3.2,4},TC=38
3,20.7C=5
(3.2.51.TC=8 {{3,2, 5.4}, TC=23
3,4).TC=5

B.sn1C=5 = (3.54).7C=16

—

=Y

{ There is no partial sequence having the total cost which is less than the upper bound

5 { {5.4}.TC=13

Note: Upper bound obtained from the MA solution= $29

Figure 5. Branch and Bound structure for Example 1.
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Table 2 presents the details of problem setup. To
determine the proper probabilities of crossover (pc) and
mutation (pm), forty trial problems were evaluated. The
experiment suggests that the combination of pc.=0.8 and
pm=0.1 should be selected. In comparison to the other, this
combination yields the best result for thirty four out of forty
problems. Three stopping criteria are applied in the MA. The
first criterion stops the search when total cost of the best
chromosome in a generation equals to zero. The second

criterion terminates the MA when the total cost reduction

Table 2.  Details of problem setup.
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percentage is smaller than 0.01 after 200 consecutive
generations. The last criterion finishes the search when the
number of generations reaches 1,000.

In the experiment, the influences of number of jobs
(3 levels), number of machines (2 levels), and ratio of
tardiness to earliness penalties (4 levels) on the MA
performance are evaluated. Note that there are totally twenty
four treatments with fifteen replications in each treatment. The
summary results from twenty four treatment combinations are

shown in Table 3.

Characteristics

Values

Number of jobs (n) 5,10, 12
Number of machines (m) 3,5
Processing time (Pi)

Due dates

Deviation of Due dates
Earliest due dates (e;)
Latest due dates (t;)
Earliness cost (0[i )

Tardiness cost ( yi2 )
Setup cost (7i i )

Discrete uniform [1,10]

Discrete uniform [ min (i P (1.52n:zm: Py)/m)]
Vi K

i=1 k=1

Discrete uniform [1,3]
Due dates - Deviation of Due dates
Due dates + Deviation of Due dates

Discrete uniform [1,5]
0.5¢;» 1.0¢;» 150, 2.0¢;;

Discrete uniform [0,5]

Table 3. Average deviation percentage and average computational time of each treatment (15 replications of each treatment).
Treatments Number of Average Deviation Average Computational Time (sec.)
(nm, g/ e) optimal solution Percentage Value from 15
T found problems MA Branch and Bound ILP
(5,3,0.5) 15 0.00 10.51 0.04 9.39
(5,3,1.0) 15 0.00 9.56 0.04 10.08
(5,3,1.5) 15 0.00 10.59 0.03 8.55
(5,3,2.0) 15 0.00 9.76 0.03 10.58
(5,5,0.5) 15 0.00 9.78 0.05 21.31
(5,5,1.0) 15 0.00 10.13 0.05 23.36
(5,5,1.5) 15 0.00 9.69 0.05 23.04
(5,5,2.0) 15 0.00 9.49 0.06 21.17
(10,3,0.5) 15 0.00 26.97 65.34 N/A
(10,3,1.0) 15 0.00 22.54 391.08 N/A
(10,3,1.5) 15 0.00 22.42 429.82 N/A
(10,3,2.0) 15 0.00 21.29 126.33 N/A
(10,5,0.5) 14 0.02 22.01 783.62 N/A
(10,5,1.0) 14 0.02 20.66 952.54 N/A
(10,5,1.5) 15 0.00 20.38 1320.30 N/A
(10,5,2.0) 15 0.00 19.62 2780.94 N/A
(12,3,0.5) 14 0.48 39.54 1379.84 N/A
(12,3,1.0) 15 0.00 38.13 1471.08 N/A
(12,3,1.5) 15 0.00 30.63 5503.93 N/A
(12,3,2.0) 15 0.00 32.07 4902.84 N/A
(12,5,0.5) 15 0.00 27.40 9684.52 N/A
(12,5,1.0) 15 0.00 26.89 10973.95 N/A
(12,5,1.5) 15 0.00 29.06 10565.61 N/A
(12,5,2.0) 13 0.41 27.40 19352.21 N/A

*Note that the deviation percentage value demonstrates the percentage of difference between the solution obtained from the MA and

the optimal solutions yielded from ILP and B&B.
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From the study result, the MA yields optimal
solution for 355 out of 360 problems. The treatments of (10, 5,
0.5), (10, 5, 1.0) ,and (12, 3, 0.5) provide the optimal solution
for 14 out of 15 replications and the treatment of (12, 5, 2.0)
found the optimal solution for 13 out of 15 replications. On
average, the maximum deviation percentage, occurring in the
treatment of (12, 3, 0.5), is 0.48 percent. The maximum
computational time of the MA and the Branch and Bound
method are 39.54 and 19,352.21 seconds, respectively. It is
obvious that when the problem size is getting larger, the
computational time of Branch and Bound increases
dramatically. This result emphasizes that the MA heuristic is
appropriate to be applied to those medium and large size

problems.

7. Conclusions

The research addresses the flow shop scheduling
problem with jobs having different due windows under the
just in time philosophy. The objective is to minimize total
cost composing of setup, earliness, and tardiness costs. The
mathematical model is developed to represent the problem.
The Memetic Algorithm with the insertion of optimal timing
algorithm has been created to determine the good solution in a
reasonable amount of time. According to the method
proposed, the function of evolutionary procedure is to search
for the good production sequences. The optimal timing
algorithm is, then, applied to determine the optimal schedule
of each production sequence. For performance evaluation, the
solutions obtained from MA heuristic is compared with the
optimal solutions yielded from the Branch and Bound
method. From the study result of 360 problems, the MA
heuristic provides the optimal solutions for 355 problems. On
average, the maximum computational time of the MA and the
Branch and Bound are 39.54 and 19,352.21 seconds,
respectively. This result emphasizes the benefit of applying

MA heuristic to solve the problem of medium and large sizes.
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