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Abstract

In this paper we introduce and study some spaces of Orlicz arithmetic convergence sequences with respect to matrix

transformation and lacunary sequence. We make an effort to examine some algebraic and topological properties of these sequence

spaces. Some inclusion relation between these sequence spaces have been established.
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1. Introduction

Ruckle (2012) introduced the idea of arithmetic

convergence. A sequence x = (Xk) is said to be arithmetically

convergent, if for each &> 0 there is an integer | such that we

have | x, _X<k b | <& for every integer k, where (k,l) de-

notes the greatest common divisor of two integers k and | . The
sequence space of all arithmetic convergent sequences is
denoted by AC. Subsequently, the arithmetic convergence has
been discussed in (Yaying & Hazarika, 2017a, 2017b).

Let N, R, and Cbe the sets of natural, real, and

complex numbers, respectively. We write

w={x=(x,): X €RorC}

=Corresponding author
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as the space of all real or complex sequences. An increasing
non-negative integer sequence g=(k,) with k, =0 and
Kk, —k,_, —> oo, 8 r —>o0 is known as a lacunary sequence.
The intervals determined by & will be denoted by
I, =(k, .k 1 We write h =k, —k,_, and q, denotes the ratio

_h, . The space of lacunary strongly convergent sequence was
hr—l

defined by Freedman, Sember, and Raphael (1978) as follows:

N, ={x:(xk):lim1 > I% —L|=0forsome L}

hr k—l,
The space N, is a BK-space with the norm
1
Ixl=sup o= 3 1%, |
r r kel,

The concept of lacunary convergence has been stu-
died by many authors. Some of them are Colak, Tripathy, and
Et (2006), Kara and Ilkhan (2016), Raj and Pandoh (2016),
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Savas and Patterson (2007), Tripathy and Baruah (2010), Tripathy and Dutta (2012), Tripathy and Et (2005), Tripathy, Hazarika,
and Choudhary (2012), Tripathy and Mahanta (2004). Freedman, Sember, and Raphael (1978) also introduced the concept of

lacunary refinement. A lacunary refinement of a lacunary sequence 6 is a lacunary sequence 6" =( k; ) satisfying (k ) c (k;) - For

more details about sequence spaces see (Et, Lee, & Tripathy, 2006; Raj & Kilicman, 2015; Raj & Sharma, 2016).

Let A= (akj) be an infinite matrix of real or complex numbers ay where k, j € N. We write the A transform of
X = (xk) as Ax and Ax = (A () if A, (X) :iak_x_ converges for each k € N.
477
j=1

A function p :[0,00) > [0,0) is said to be an Orlicz function, if it is convex, continuous and non-decreasing with
M(o)ZO, M(x)>0 for x>0 and M(X)—)oo as X = 00. An Orlicz function M is said to satisfy A>-condition for all values of

u, if there exists R >0 such that M(2u)< RM (u),u >0.

The idea of Orlicz function was used by Lindenstrauss and Tzafriri (1971) to define the following sequence space:

P

L Z{XGWZiM[XkJ<OO,fOI’ some p>0}
k=1

known as Orlicz sequence space. The space ¢,, is a Banach space with the norm

x—inf{p>0::le[):;]S1}'

An Orlicz function M can always be represented in the following integral form

M (9= [ e,

where p is known as the kernel of M, is right differentiable for t 2 0, u(0)=0, u(t)>0, u is non-decreasing and p(t)— o, t — oo.
A sequence M :(Mk) of Orlicz functions is called a Musielak-Orlicz function (Maligranda, 1989; Musielak, 1983). The

complementary function of a Musielak-Orlicz function is denoted by N = N, and is defined by
N, () = supf{|v|lu — Mp(w):u >0}, k=1,2,....
Let p=(p,) be apositive sequence with sup p, = H, € = max(l, 2H=13 Then for all a,,b, € C forall k € N, we have

P
|ak+bk| ‘ <C(a,|™ +|b, ka)‘ (1.1)

Let M = (Mk) be a Musielak-Orlicz function, p = (py) be a bounded sequence of positive real numbers and | = (u,) asequence
of positive real numbers. Let A= (a,;) be an infinite matrix of real or complex numbers a where k, j € N. In the present paper

we define the Orlicz arithmetic sequences using matrix transformations and lacunary sequence as follows:

Py
[AC,.u, p,M,Al= {X=(Xk)1"mhlzu{'\/|k[m(x)wﬂ =0, for someinteger | and p >0
r—o p

r kel,

and
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o 1 | A =% ]
x=(x,):there exist an integer | such that=>» u,|M, | — " —0
[ﬂcal’uv prMiA]: ( k) g qé k[ k[ p '

asq— cofor some p >0

For Py =1

X) — X
[AC ,,u,M,Al= {x:(xk):limhlZukMk[MJzo,forsomeintegerl and p>0}
r—o0 p

r kel

The arithmetic convergent sequence space [AC,u, p,M, A] is defined
_ IA) =%, N _
[AC,u, p,M,Al= x=(xk):llmuk M, | ————— =0, forsomeinteger! and p>0+.
—0 p

The main aim of the paper is to introduce the sequence spaces [AC , ,u, p,M,A] and [AC o Uy p,M,Al. We shall

investigate some algebraic properties, topological properties and inclusion relation between these sequence spaces.
2. Main Results

Theorem 2.1. Let M = M) be a Musielak-Orlicz function, p=(p,) be a bounded sequence of positive real numbers and
u = (u, ) be any sequence of positive real numbers. Then the space [AC , ,u, p,M, A] is linear over the complex field C.
Proof. Let x = (x,) and y =(y,) € [AC,.u, p,M, A]. Then for an integer |

1 I |Ak(x)_x<kl>| i
lim — ulM,| ———~— =0
r—mhré k_ k( P

and

lim iZuk Mk{m(y)_ywwl]} =0.

= r kel, p

Let 7 and 5 be two scalars in C, then there exist integers Ay and Bn such that | y |< Ay and | p|< B, Therefore

1
2

r kel,

<A hi ZU{M{lAk(x)p—X<k,|> |ﬂ ‘8 hi zu{mk['“y)‘y<kv'> ﬂ

r kel, r kel, p

{M (M(x)mAk(y)—(mk,w +ny<k,.>>|ﬂ”“
‘ p

= A +7AY) = XKy + Wiy
Therefore, [AC , ,u, p,M, Al is a linear space.

Theorem 2.2. Let M = (Mk)be a Musielak-Orlicz function, p=(p,) be a bounded sequence of positive real numbers and

u = (u,) beany sequence of positive real numbers. Then, we have
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[AC,u,p,M, Al S [AC ,,u,p,M, Al

Proof. Let x =(x,) e [AC,u, p,M, A]- Then there is an integer | such that

Uy Mk(| A((X)_X<k’l> |J " <g, for £>0.
el

Thus, we have

1 | A=, N
hrkezl;u{Mk(p H

1] [ Ac(X) =Xy | " | AX) =Xy | &
hlzw sl A0 >N

<%m@=&

Therefore, x =(x,) €[AC4.,u, p,M, Al

Theorem 2.3. Let M = M) be a Musielak-Orlicz function, p=(p,) be a bounded sequence of positive real numbers and
u = (u,) be any sequence of positive real numbers. Then, [AC , ,u, p,M, A] is a topological space paranormed by
1A =x, N
X) =X
g(x) =inf { pP/H :[;ZU{M{MH J <1,for some p> 0+,
F kel, %
where H = max(L sup, p,)-
Proof. (i) Clearly g(x) >0, for x =(x,) € [AC 4 ,u, p,M, Al. Since M, (0) =0, we get g(0)=0.
(i) g(x) =9(x).

(i) Let x = (X, ), ¥ = (Y) € [AC 4 ,u, p,M, A], then there exist p,, p, >0 such that

1 IAG) =X, N <1
v Zu{M{p ]:l

r kel 1
and
P
iZuk M, A =Yun 1| <1
hr kel, P

Let p=p + p,, then by Minkowski’s inequality, we have

ifzm{M{“ﬂ“%*mﬂ+de—wwﬂﬂ

P

o )1 |AC)=x,) N [*
$[p1+p2j h I<EZI,UK|:MK[ P

r kel,
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p )1 OBETE
+(P1+sz h, k;u{Mk[ o

and thus
g(x+y)
=inf (p1+p2)pk/H :[I;LZuk|:Mk[|(Ak(x)_x<k'l>);(Ak(y)_y<kv'>)|J:| J <1
<g(x)+g(y).

(iv) Finally, we show that scalar multiplication is continuous. Let ¢ be any complex number, then

/H

) it {hz[M[wle »

r kel, P

r kel, S

= inf (|a|S)pk/H {;}LZU{M{' AK(X)—X<|<,|> |J J <1l

where . p Hence [AC ;,u, p,M, A] is a paranormed space.
la|

Theorem 2.4. Let 0 < P, <0, forall k and let (a./ pk)be bounded. Then
[AC 4 ,u,q,M,Alc[AC 4 ,u, p,M, Al

Proof. Let x = (x,) €[AC,,u,q,M,A] and

6 |y [|Ak<x)—X<k,.> |] *
‘ p

and v, = p, /q, forall k eN. Then O<v, <1forall keN.Take 0<v <y, for k eN.

Define sequences (y, ) and (z, ) as follows:
For d, >1, lety, =d,and z, =0 and for d,_ <1, let y, =0 and z,_=d,.Then clearly,
forall k N, we have

de =Y +7, A =y +7k

Now it follows that Y <y, <d, and z;’k < z:_ Therefore,

1 w1
qukdk “h Zuk (yll:k +Z|‘</k)

r kel, T kel,

267
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Ly ugr =L yy K +2¢

r kel r kel,

——Zukd +h Duz.

r kel, r kel,

Now for each k,

v 1-v
1
Zukzk Z ukzk — Uy
r kel, kel, h hr
1/v\V 1/1-v

a[ETAIRER (Y
i zwa)

Eyun <k sud|Eyu

r kel, r kel r kel

1-v

and hence

Therefore, x = (x,) € [AC 4 ,u, p,M, Al

Theorem 2.5. (i) If 0 <inf p, < p, <1 forall k €N, then

[CACH’ui leiA]g[CAanu,M,A].

(ihIf1< p, <supp, =H <o forall k N, then
[AC 4, u,M,AIC[AC 4 ,u,p,M, Al

Proof. (i) Let x = (X, ) € [AC 4 ,u, p,M, Al, then

. |A@%qu”
I _— =0.
rILTl Zuk|: [ P :|

r kel

Since 0 <inf P <p, <1, implies

,[A® X | |aar&m|”

Thus, ImZu{ [IAk(X)WH =0. Hence, [AC4,u,p,M,A]C[AC,,u,M,A]
P

r kel

(i Let 1< Py <SUp Py and X = (xk) €[AC 4 ,u,M, A], then for each p>0, we have

i |A1<(X)_X<k,|> |J
I — || =0.
i ZW{[ , }

r kel
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For given conditions we have

lim rg:u{ [lpy(X);XM |H Ilmhlrglu{MkpAK(X)/;X<k'l> lﬂ =0.

Therefore, x = (x, ) € [AC 4 ,u, p,M, Al.Hence, [AC , ,u,M,A]S[AC,,u, p,M, Al

Theorem 2.6. If 0 <inf p, <sup p, =H <o, forall k e N, then
[AC,,u, p,M,Al=[AC, ,u,M, Al

Proof. We omit the details because it is easy to prove.

Theorem 2.7. Let Q<inf py=h<p, <supp,=H<ow and M =(M,), M’:(M;)be two Musielak Orlicz functions

satisfying A, -condition, then we have
[AC 4, u, p,M",AlC[AC4,u, p,M oM’ Al

Proof. Suppose x = (X, ) € [AC,,u, p,M’, Al, then

A =X |
lim = >y, | M| ——— 01—,
i L (200 )

Now choose B with 0<p<1 and g >0 such that M, (w) < gfor oO<w< g

Let , _ Mr{l A<(X)_X<kv'> q for all k € N, then we have
k k p

Zu k[z ] Zuk M [zk] P +7 Zu M [Z ])pk

r kel, r kel, r kel,

<P 22
Therefore,
1
quk(Mk[zk])pk S['Vlk(l)]H ZU M [Z ]
"t i b
[M (2) H 1 zu pk. (2.1)
r kel,
3<p

Since (M ) are convex and non-decreasing and for 2, > Bz, < k o145k k we have

M, (z,) <M, [1+i;j< M, (2) + (Zékj

andas M = (M, ) satisfies A, condition, so we have

M LrZom, 2 TM2TMk2.
(2 <5 1 2+ i @ 7 @)
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Thus,
1 M. 2))" )1 22
zuk<Mk[zk]>pksme[Tk”j Ly u 2P @2
hr l;ilr/? IB hr l;e<l,p

From (2.1) and (2.2), we have x =(x,) € [AC 4 ,u, p, M o M’, A]. This completes the proof.

Theorem 2.8. Let 0 <h=inf P =P, <Sup p, =H <o, Then for Musielak-Orlicz function M = (M, )which satisfies A, -
condition, we have
[AC 4., u, p,AlC[AC 4 ,u,p,M, Al

Proof. We omit it because it is easy to prove.

Theorem 2.9. Let M = M) and M’ = (M) be two Musielak-Orlicz functions. Then we have
[AC 5, u,p,M,AlN [AC 4 ,u, p,M’,Alc[AC 4 ,u,p,M+M', Al

Proof. Let x =(x,) € [AC,,u, p,M,AlN [AC,,u, p,M’, A], then

!iﬂlhi ZU{M{' AL~ X Iﬂ —0

r kel, p
and
Pk
X)—X
IimiZuk M/ TAG) Xy | =0.
r—oe hr kel, p

Also by using (1.1) we have

( +M,)[|Mx)—x<k,.>|J i
k k P
<C l:l\/lk[lpk()()_x“'w'ﬂpk+C{M,{|A<(X)_X<k'l> |J:|pk .
P p

Now multiplying both sides of the above inequality by 1 " and applying z we get
e

r kel,
1 , | A<(X)_X<k,l> | >
R

< rc]:zuk|:Mk[| Ak(X)_LkD |j:| + hgzuk

kel, P r kel

Ml{l A =Xy |] "
P

This completes the proof.

Theorem 2.10. Let M = (M, ) be a Musielak-Orlicz function, p=(p, ) be a bounded sequence of positive real numbers and

u = (u,) be any sequence of positive real numbers. Then, [AC , ,u, p,M,A] S [AC,,u, p,M, A], where ¢ is the lacunary
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refinement of a lacunary sequence ¢.
Proof. Leteach | of @ contains the point (krc)fg) of ¢, such that
Ky <keg <kep <o <Keg =K
So r,5(r)=1as k, c(k,)-

Suppose ( )m be the sequence of interval (I ) ordered by increasing right end points. Since (x, ) € [AC 4.,u, p,M, Al then

for each £ >0,

1 | AC) =Xy |] "
eIZCI: |: { P :| N

and h;t = k;t _k;t_l in view of k< (k,). Now for each &0,

Z{ {|Ak(x);x<k,.>|ﬂ By hl I;u{Mk(lAk(x)p—x<k,.>|ﬂ <

Hence, (x,) €[AC 4 .u, p,M,Al

Theorem 2.11. Let M =(M, ) be a Musielak-Orlicz function, p=(p,)be a bounded sequence of positive real numbers and

u=(u,) be any sequence of positive real numbers. Then the space [AC o+ Uy p,M,A] is closed under addition and scalar

multiplication.

Since the proof can be established using standard techniques, it is omitted.

Theorem 2.12. Let M = (M, ) be a Musielak-Orlicz function, p=(p,) be a bounded sequence of positive real numbers and
u = (u,) be any sequence of positive real numbers. If lim inf g, >1, then [AC o U P, M,Alc[AC,,u, p,M, Al

Proof. Suppose [im inf g, >1 and x:(xk)e[cﬂc o+ Us p,M,A]. Then there exists o >0, such that

Q=

ﬁ I+a for sufficiently large r. Then
h,

i [ (1A% | "
Ek:1UK ‘ P

v

3\_‘|—\

Cana

o 1 |A1<(X)_Xk,ll " .
o m;uk[Mk(p |
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Hence, X: (Xk) e[c’ch lUy piMiA]

Theorem 2.13. Let M = M,) be a Musielak-Orlicz function, p=(p,) be a bounded sequence of positive real numbers and

u = (u, ) be any sequence of positive real numbers. If lim sup g, <o, then [AC 45 ,u, p,M,A]C [AC o UM Al

Proof. Suppose lim sup g, <o, then there exists N > 0 such that g, <N for every .
For x = (xk) €[AC »,u,p,M,Aland ¢> 0, there exists P such that for every r > P,

_1 |A G —x) N]" <.
#(0) hZu{M{pH

r kel,

For Q>0, #(r)<Q, vr. Let g be an integer with |<r >q= krfl, Then

1 |AG) %, )" < 1 IA) =%, N]"
D i Ly
=%i2uk {Mkp A) =X ﬂ

r-1 kel P
J

+ 1 - Jg Zuk I:Mk(l A<(X)p_x<k,|> |ﬂ

<%i2 { [|Ak(x>—x<k,.>|ﬂ"*

r-1 j=lk P

L (el k)

r-1

ST el k)

r- r-1

1

k [sup¢ k ]+,5N <ll(—PQ+eN.

r-1

From here we conclude that x = (%) e [AC o U P M, Al

Theorem 2.14. Let M =(M,) be a Musielak-Orlicz function, p=(p,) be a bounded sequence of positive real numbers and

u=(u,) be any sequence of positive real numbers. If [im inf g, < limsupq, <oo, then [AC , ,u, p,M,A]=[AC o U P, M, Al
Proof. The proof is easy and follows from Theorem 2.12 and Theorem 2.13.
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