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Abstract 

 

In this paper we introduce and study some spaces of Orlicz arithmetic convergence sequences with respect to matrix 

transformation and lacunary sequence. We make an effort to examine some algebraic and topological properties of these sequence 

spaces. Some inclusion relation between these sequence spaces have been established. 
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1. Introduction 
 

Ruckle (2012) introduced the idea of arithmetic 

convergence. A sequence  kxx   is said to be arithmetically 

convergent, if for each 0  there is an integer l  such that we 

have ||
, lkk xx    for every integer k , where lk,  de-

notes the greatest common divisor of two integers k  and l . The 

sequence space of all arithmetic convergent sequences is 

denoted by 𝒜C.  Subsequently, the arithmetic convergence has 

been discussed in (Yaying & Hazarika, 2017a, 2017b). 

Let ℕ, ℝ, and ℂ be the sets of natural, real, and 

complex numbers, respectively. We write 

 

𝑤 = {𝑥 = (𝑥 k ) kx: ℝ or ℂ}  

 

as the space of all real or complex sequences. An increasing 

non-negative integer sequence
 )( rk  with 00 k  and 

,1  rr kk  as r  is known as a lacunary sequence. 

The intervals determined by 𝜃 will be denoted by 

].,( 1 rrr kkI   We write 
1 rrr kkh  and 

rq  denotes the ratio 

1r

r

h

h . The space of lacunary strongly convergent sequence was 

defined by Freedman, Sember, and Raphael (1978) as follows: 

 

The space 
N  is a BK-space with the norm 





rIk

k

rr

x
h

x .||
1

sup||||
 

The concept of lacunary convergence has been stu-

died by many authors. Some of them are Çolak, Tripathy, and 

Et  (2006), Kara  and  İlkhan  (2016),  Raj  and   Pandoh   (2016), 
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Savaş and Patterson (2007), Tripathy and Baruah (2010), Tripathy and Dutta (2012), Tripathy and Et (2005), Tripathy, Hazarika, 

and Choudhary (2012), Tripathy and Mahanta (2004). Freedman, Sember, and Raphael (1978) also introduced the concept of 

lacunary refinement. A lacunary refinement of a lacunary sequence 𝜃 is a lacunary sequence 𝜃 ′ =( '

rk ) satisfying )()( '

rr kk  . For 

more details about sequence spaces see (Et, Lee, & Tripathy, 2006; Raj & Kilicman, 2015; Raj & Sharma, 2016). 

Let )( kjaA  be an infinite matrix of real or complex numbers 
kja , where jk, ∈ ℕ. We write the A  transform of 

)( kxx   as Ax  and ))(( xAAx k  if 





1

)(
j

jkjk xaxA  converges for each  𝑘 ∈ ℕ.  

A function     ,0,0:M  is said to be an Orlicz function, if it is convex, continuous and non-decreasing with 

    0,00  xMM  for 0x  and   xM  as x . An Orlicz function M  is said to satisfy ∆2-condition for all values of 

u , if there exists 0R  such that     .0,2  uuRMuM  

The idea of Orlicz function was used by Lindenstrauss and Tzafriri (1971) to define the following sequence space: 
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known as Orlicz sequence space. The space 
M  is a Banach space with the norm 
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An Orlicz function M  can always be represented in the following integral form 
 

                      ,)()(
0


x

dttx   

where 𝜇 is known as the kernel of ,M  is right differentiable for t   0,  𝜇(0) = 0, 𝜇(t)>0, 𝜇 is non-decreasing and 𝜇(t)→ ∞, 𝑡 → ∞.  

A sequence  kMM   of Orlicz functions is called a Musielak-Orlicz function (Maligranda, 1989; Musielak, 1983). The 

complementary function of a Musielak-Orlicz function is denoted by 𝑁 = 𝑁𝑘  and is defined by  

 

𝑁𝑘(𝜐) = sup{|𝜐|𝑢 − 𝑀𝑘(𝑢): 𝑢 > 0} , 𝑘 = 1, 2, … . 

 
 

Let )( kpp   be a positive sequence with sup 
kp  = 𝐻, 𝐶 = max (1, 2𝐻−1 ). Then for all 

kk ba , ∈ ℂ  for all 𝑘 ∈ ℕ, we have 

 

kk ba |
kp| )|||(| kk p

k

p

k baC 
.                                      (1.1)   

      
Let  kMM   be a Musielak-Orlicz function, )( kpp   be a bounded sequence of positive real numbers and )( kuu   a sequence 

of positive real numbers. Let )( kjaA  be an infinite matrix of real or complex numbers 
kja , where jk, ∈ ℕ. In the present paper 

we define the Orlicz arithmetic sequences using matrix transformations and lacunary sequence as follows: 
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[𝒜C
1

, AMpu ,,, ] = .

0someforas

0
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The arithmetic convergent sequence space  [𝒜C, AMpu ,,, ] is defined  

[𝒜C, AMpu ,,, ]=  
,

| ( ) |
( ) : lim 0,for someinteger and 0 .
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The main aim of the paper is to introduce the sequence spaces [𝒜C  , AMpu ,,, ] and [𝒜C
1

, AMpu ,,, ]. We shall 

investigate some algebraic properties, topological properties and inclusion relation between these sequence spaces. 

 

2. Main Results 

 

Theorem 2.1. Let )( kMM   be a Musielak-Orlicz function, )( kpp   be a bounded sequence of positive real numbers and 

)( kuu  be any sequence of positive real numbers. Then the space [𝒜C , AMpu ,,, ] is linear over the complex field ℂ. 

Proof. Let )( kxx   and )( kyy    [𝒜C  , AMpu ,,, ].  Then for an integer l  
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Let    and   be two scalars in ℂ, then there exist integers 
A  and 

B  such that 
 A||  and 

 B|| . Therefore 
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Therefore, [𝒜C  , AMpu ,,, ] is a linear space. 

 

Theorem 2.2. Let )( kMM  be a Musielak-Orlicz function, )( kpp   be a bounded sequence of positive real numbers and 

)( kuu   be any sequence of positive real numbers. Then, we have 
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 [𝒜C, AMpu ,,, ]  [𝒜C  , AMpu ,,, ]. 

 

Proof.  Let  )( kxx  [𝒜C, AMpu ,,, ]. Then there is an integer l  such that 
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Therefore,  )( kxx [𝒜C  , AMpu ,,, ]. 

 

Theorem 2.3. Let )( kMM   be a Musielak-Orlicz function, )( kpp   be a bounded sequence of positive real numbers and 

)( kuu   be any sequence of positive real numbers. Then, [𝒜C , AMpu ,,, ] is a topological space paranormed by 
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Let ,21    then by Minkowski’s inequality, we have 
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(iv) Finally, we show that scalar multiplication is continuous. Let   be any complex number, then 
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 Hence [𝒜C  , AMpu ,,, ] is a paranormed space. 
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Therefore,  )( kxx  [𝒜C  , AMpu ,,, ]. 

 

Theorem 2.5. (i)  If 1inf0  kk pp  for all k ℕ, then 

              [𝒜C  , AMpu ,,, ] [𝒜C  , AMu ,, ]. 

 

        (ii) If  Hpp kk sup1  for all k ℕ, then 

              [𝒜C  , AMu ,, ] [𝒜C , AMpu ,,, ]. 
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 Hence, [𝒜C , AMpu ,,, ] [𝒜C , AMu ,, ]. 

 

(ii) Let 
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For given conditions we have 
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Therefore,  )( kxx  [𝒜C  , AMpu ,,, ].Hence, [𝒜C  , AMu ,, ] [𝒜C  , AMpu ,,, ]. 

 

Theorem 2.6. If ,supinf0  Hpp kk
 for all k  ℕ, then 

[𝒜C  , AMpu ,,, ][𝒜C , AMu ,, ]. 

Proof. We omit the details because it is easy to prove. 

 

Theorem 2.7. Let  Hpphp kkk supinf0  and )(),( kk MMMM  be two Musielak Orlicz functions 
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Therefore, 
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Thus, 
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From (2.1) and (2.2), we have  )( kxx  [𝒜C  , AMMpu ,,,  ]. This completes the proof. 

 

Theorem 2.8. Let .supinf0  Hppph kkk
 Then for Musielak-Orlicz function )( kMM  which satisfies 

2 -

condition, we have 

[𝒜C  , Apu ,, ] [𝒜C  , AMpu ,,, ]. 

Proof. We omit it because it is easy to prove. 

 

Theorem 2.9. Let )( kMM   and )( kMM   be two Musielak-Orlicz functions. Then we have 
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This completes the proof. 

 
 

 

Theorem 2.10. Let )( kMM   be a Musielak-Orlicz function, )( kpp  be a bounded sequence of positive real numbers and 

)( kuu   be  any sequence of positive real numbers. Then, [𝒜C   , AMpu ,,, ] [𝒜C , AMpu ,,, ], where    is  the lacunary 



K. Raj & A. Choudhary / Songklanakarin J. Sci. Technol. 42 (2), 263-273, 2020   271 

 

refinement of a lacunary sequence .  
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Hence, )( kx [𝒜C  , AMpu ,,, ]. 

 

Theorem 2.11. Let )( kMM   be a Musielak-Orlicz function, )( kpp  be a bounded sequence of positive real numbers and 

)( kuu   be any sequence of positive real numbers. Then the space [𝒜C
1

, AMpu ,,, ] is closed under addition and scalar 

multiplication.  

Since the proof can be established using standard techniques, it is omitted. 
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Hence,  )( kxx [𝒜C  , AMpu ,,, ]. 

 

Theorem 2.13. Let )( kMM   be a Musielak-Orlicz function, )( kpp   be a bounded sequence of positive real numbers and 

)( kuu   be any sequence of positive real numbers. If ,suplim rq  then [𝒜C , AMpu ,,, ]  [𝒜C
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From here we conclude that  )( kxx   [𝒜C
1

, AMpu ,,, ]. 

 

Theorem 2.14. Let )( kMM   be a Musielak-Orlicz function, )( kpp   be a bounded sequence of positive real numbers and 

)( kuu 
 
be any sequence of positive real numbers. If rqinflim ,suplim rq  then [𝒜C , AMpu ,,, ] = [𝒜C

1
, AMpu ,,, ]. 

Proof. The proof is easy and follows from Theorem 2.12 and Theorem 2.13. 
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