
ORIGINAL ARTICLE

Phytoremediation of carbofuran residues in soil

Mullika Teerakun¹, Alissara Reungsang^{2,4}, and Wanpen Virojanakud^{3,4}

Abstract

Teerakun, M., Reungsang, A., and Virojanakud, W.

Phytoremediation of carbofuran in soil

Songklanakarin J. Sci. Technol., 2004, 26(Suppl. 1) : 171-176

In this study, the ability of plants to clean up carbofuran residues in rice field soil was examined. Plants were grown in 8 inches diameter plastic pots filled with soils containing 5 mg/kg carbofuran. Phytoremediated samples were analyzed for carbofuran concentration. The results showed that carbofuran was rapidly degraded under planted soil and non-planted soil with half-lives ranging from 2-7 days. These facts suggest that phytoremediation could accelerate the degradation of carbofuran residues in soil and carbofuran was not persistent in the soil environment.

Key words : cabofuran, phytoremediation, plant

¹M.Sc. student in Biotechnology, ²Ph.D. (Water Resources), Asst. Prof., Department of Biotechnology, Faculty of Technology, Khon Kaen University, ³Ph.D. (Environmental Health Engineering), Assoc. Prof., Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, ⁴National Research Center for Environmental and Hazardous Waste Management; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002 Thailand.

Corresponding e-mail: alissara@kku.ac.th

Received, 18 March 2004 Accepted, 10 May 2004

บทคัดย่อ

มัลลิกา รีระกุล¹ อธิครา เรืองแสง^{2,4} และ วันเพ็ญ วิโรจนกุญ^{3,4}
การนำบัดสารารวบฟูรานในดินโดยใช้พืช

ว.สหลานครินทร์ วทท. 2547 26(ฉบับพิเศษ 1) : 171-176

งานวิจัยนี้ได้ทำการศึกษาความสามารถของพืชในการนำบัดสารารวบฟูรานที่ตกค้างในดินจากนาข้าว โดยได้ทำการปลูกพืชลงในดินจากนาข้าวที่ผ่านสารารวบฟูรานที่ความเข้มข้น 5 มก/กг ดิน ในระยะเวลาที่มีขั้นตอนสืบต่อกัน ศูนย์กลาง 8 นิ้ว จากนั้นนำตัวอย่างดินที่ผ่านการนำบัดด้วยพืชมาทำการวิเคราะห์หาความเข้มข้นของสารารวบฟูราน ที่ถูกย่อยสลายไป ผลการศึกษาพบว่า สารารวบฟูรานสามารถถูกย่อยสลายได้อย่างรวดเร็วในดินที่มีการปลูกและไม่มีการปลูกพืช โดยมีค่าร่องวิตออยู่ในช่วง 2 ถึง 7 วัน ซึ่งแสดงให้เห็นได้ว่าพืชสามารถเร่งการย่อยสลายสารารวบฟูรานที่ตกค้างในดินได้เร็วขึ้น นอกจากนี้ยังแสดงว่าสารารวบฟูรานไม่มีความคงทนในสิ่งแวดล้อม

^{1,2} ภาควิชาเคมีโนโลยีชีวภาพ คณะเทคโนโลยี มหาวิทยาลัยขอนแก่น ³ ภาควิชาเคมีกรรมสิ่งแวดล้อม คณะเคมีกรรมศาสตร์ มหาวิทยาลัยขอนแก่น ⁴ ศูนย์วิจัยแห่งชาติด้านการจัดการสิ่งแวดล้อม และของเสียอันตราย (ศูนย์เครื่อข่าย มหาวิทยาลัยขอนแก่น); ศูนย์วิจัยด้านการจัดการสิ่งแวดล้อมและสารอันตราย มหาวิทยาลัยขอนแก่น อำเภอเมือง จังหวัดขอนแก่น 40002

Carbofuran (2,3-dihydro-2,2-dimethyl-benzofuranyl-N-methylcarbamate) is a phenyl-carbamate pesticide widely used in rice growing to prevent and eliminate pests such as *Nilaparvata lugens* Stal, mainly rice insects which cause widespread damage to rice culture (Rajagopal *et al.*, 1984). From the carbofuran characteristic report of WHO, 2003, carbofuran is a moderately persistent pesticide in the environment. Its half-life is between 26 and 110 days depending on pH, soil type, temperature, moisture content and microbial population. It has very low ability to be adsorbed, thus it can be easily leached into groundwater. In general, carbofuran can be degraded by the chemical hydrolysis and biological degradation process. The carbofuran degradation can take place more rapidly in alkaline condition.

A report showed that only 1% of insecticide sprayed would go to insect pest and 99% would be a residue in the environment (Kadsomboon, 2003). One of methods that can remediate pesticide residue in soil is phytoremediation. This method uses green plants to clean up contaminants in the environment (Ag-West Biotech Inc., 1999). Plants remediate organic contaminants via three mechanisms: direct uptake of contaminants

and subsequent accumulation of nonphytotoxic metabolites into plant tissue, release of exudates and enzymes that stimulate microbial activity and biochemical transformations, and enhancement of mineralization in the rhizosphere (the root-soil interface), which is attributable to mycorrhizal fungi and the microbial consortia (Schnoor *et al.*, 1995). Phytoremediation is an aesthetically pleasing mechanism that can reduce remedial costs, restore habitat, and clean up contamination in place rather than entombing it in place or transporting the problem to another site (Zynda, 2001). Phytoremediation had been successfully used to clean up the radio nucleotides, pesticides and heavy metals (Anu *et al.*, 2001; Entry *et al.*, 1993; Gao *et al.*, 2000; Schnabel and White, 2000; Wilson *et al.*, 2000; Burken and Schnoor, 1996). Some pesticides which have been cleaned up by plants are DDT (Gao *et al.*, 2000) and simazine (Wilson *et al.*, 2000). However, there is no report on using plants to remediate carbofuran residue in rice field soil. Research on the selection of types of plants to degrade carbofuran residues in rice field soil deserves attention. Therefore this study was conducted to select the plants that possess ability to degrade carbofuran residues in rice field soil.

Materials and Methods

Carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranol methyl carbamate), 98% purity, was purchased from Sigma-Aldrich, USA.

Soil physicochemical properties

Soil samples were taken from 0-30 cm depth of rice field in Ban Non-Reung, A. Muang, Khon Kaen Province, Thailand. Physicochemical properties including organic matter, pH and soil texture were measured. Organic matter and soil texture were analyzed by the Soil and Plant Testing Laboratory, Faculty of Agriculture, Khon Kaen University. Soil pH was measured in water : soil (1:2.5).

Plants

Morning glory (*Ipomoea aquatica*), cat tail (*Typha angustifolia* Linn.), bulrush (*Cyperus* spp.), soybean (*Glycine max* Merr.), groundnut (*Arachis hypogaea* L.), mung bean (*Phaseolus aureus* Roxb.), sunflower (*Helianthus annuus* L.), tomato (*Lycopersicon esculentum* Mill), aubergin (*Solanum xanthocarpum* Schrad.&Wendl.), egg-plant (*Solanum melongena* L.), Chinese-kale (*Brassica* spp.), and cabbage (*Brassica* spp.) were used to examine phytoremediation ability. These 12 plants were chosen because of their short life cycle which makes them suitable for planting after rice harvest. It was hoped that these plants could remediate carbofuran residues in rice soil and after the remediation was finished these plants would be edible.

Plants cultivation

Plants were grown in 8-inches diameter plastic pots filled with rice field soil containing carbofuran at a concentration of 5 mg/kg soil. All the pots were watered everyday during the experiment and were randomized on the greenhouse bench and re-randomized every two weeks. Control was non-planted pots containing soil with carbofuran at concentration at 5 mg/kg soil.

Degradation of carbofuran

Pots were sacrificed at day 0, 7, 14, 21, 35 and 70. Soils were extracted with methanol (1:1 wt/vol) and shaken at 200 rpm for one hour. After one hour, soils suspensions were filtered through Whatman Paper No. 1 using a vacuum pump. The filtrate was collected. This step was repeated three times. The filtrate were combined and analyzed for carbofuran concentration by Shimadzu 10-A HPLC with UV detector. The chromatography column (150 mm x 4.6 mm) Lunar C-18 um (Phenomenex, USA) was used. Percent recovery of the extraction method was greater than 95 %.

Carbofuran concentrations were fitted to a modified first-order kinetic model; $C = C_0 e^{-kt} + Y_a$, where C is the mean concentration of carbofuran as a function of time in days (mg/kg), C_0 is the initial Carbofuran concentration (mg/kg), k was the rate constant (/day, t was time (days), and Y_a was an asymptotic estimate of the concentration of carbofuran that degrades very slowly over time (residual carbofuran) (mg/kg). Average initial carbofuran concentration (at Day 0) was 4.81 mg/kg. The mean concentrations used in the regression were weighted with inverse of the variance squared, S^{-2} . This method compensated for the non-constant variance and helped to improve estimation of parameters.

Sorption

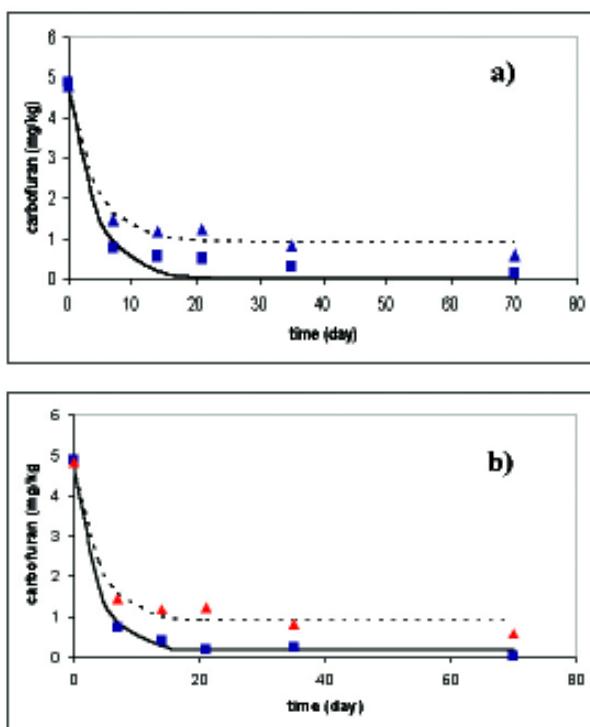
Adsorption isotherm was determined by conducting a batch equilibrium experiment at carbofuran concentrations of 0.1, 1.0, 5.0, 10.0 and 20.0 μ g/mL. All solutions were prepared in 0.01 M CaCl_2 . A total of 3-g of air-dried soil was put into 15 ml glass tubes and mixed with 9 ml of 0.01 M CaCl_2 solution containing carbofuran. Tubes were shaken on a horizontal shaker for 48 hours at 90 cycles per minute. After centrifugation at 5,000 x g, supernatant was analyzed for carbofuran concentration using HPLC.

Results

Soil physicochemical properties

Physicochemical properties of soil samples are shown in Table 1. Soil was classified as loam. Carbofuran residues in soil before planting were under detectable limit (< 0.01 mg/L).

Degradation of carbofuran in soil


Degradation of carbofuran in planted and non-planted soils were described by a modified first-order kinetic model (Figure 1). The coefficients of determination, r^2 , ranged between 0.89-0.99 and indicated good fit of the data to the first-order kinetic model (Table 2). Carbofuran was rapidly degraded under planted soil and non-planted soil (control) (Table 2) with the half-lives ranging from 2 days to 7 days suggesting carbofuran was not persistent in the environment and phytoremediation is a promising technique to degrade carbofuran in soil. Other researchers found a longer half-life of carbofuran, for example 7-259 days (WHO, 1996) and 30-120 days (Kamrin, 1997), than that found in this study. Variations of half-life depended on soil conditions i.e., pH, soil type, temperature, moisture content and microbial population (WHO, 2003). Carbofuran in soil was degraded by chemical hydrolysis and biodegradation. Previous studies demonstrated that the degradation of xenobiotics is greater in the presence of plant roots than in their absence (Hsu and Bartha, 1979; Sandmann and Loos, 1984; Walton and Anderson, 1990; Boyle and Shann, 1995). The rice field where soil samples were taken had a history of carbofuran use, therefore this may have been responsible for the rapid degradation of carbofuran in non-planted soil. Other researchers (Barriuso and Houot, 1996; Ostrofsky *et al.*, 1997; Jayachandran *et al.*, 1998) found evidence of microbial adaptation and growth in soil resulting from repeated pesticide (atrazine) exposure.

Sorption of carbofuran to soil.

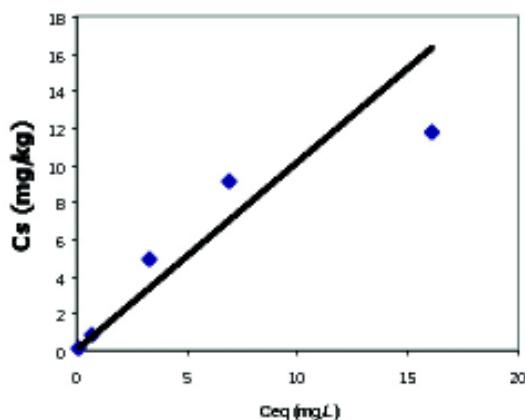
Figure 2 shows the carbofuran sorption isotherm resulting from the Freundlich equation:

Table 1. Physicochemical Properties of Soil

Soil physicochemical properties	values
organic matter content (%)	0.30
pH	4.95
EC (mS/cm)	0.025
sand (%)	42.5
silt (%)	32.5
clay (%)	25.0

Figure 1. Dissipation of carbofuran in a) sunflower and b) soybean soils, (▲ = planted soil; ■ = non-planted soil; solid lines = carbofuran concentrations in planted soil fitted to the first order kinetic model; dashed line = carbofuran concentration in non-planted soil fitted to the first order kinetic model).

$C_s = K_f C_{eq}^{1/n}$, where C_s is the carbofuran concentration in soil (mg/kg soil), C_{eq} is the equilibrium solution concentration of carbofuran (mg/L), K_f is


Table 2. Degradation rate constants (k) and half-lives ($t_{1/2}$) of carbofuran from soils under plants and non-plant.

Plants	k_1 , day $^{-1}$	$t_{1/2}$, days	r^2 *	Y_a **	SSE***
<i>Helianthus annuus</i> L. (sunflower)	0.31	2	0.94	351.55	269.83
<i>Glycine max</i> Merr. (soybean)	0.27	3	0.95	182.89	251.94
<i>Ipomoea aquatica</i> (morning glory)	0.32	2	0.97	288.38	113.05
<i>Lycopersicon esculentum</i> Mill. (tomato)	0.17	4	0.92	862.59	294.29
<i>Phaseolus aureus</i> Roxb. (mung bean)	0.14	5	0.97	187.67	148.88
<i>Brassica</i> spp. (chinese-kale)	0.11	6	0.89	404.67	583.79
<i>Solanum melongena</i> L. (eggplant)	0.13	5	0.94	690.39	251.58
<i>Brassica</i> spp. (cabbage)	0.14	5	0.92	665.55	308.25
<i>Solanum xanthocarpum</i> Schrad.&Wendl. (aubergin)	0.11	6	0.93	408.52	381.82
<i>Arachis hypogaea</i> L. (ground nut)	0.10	7	0.96	245.51	220.08
<i>Typha angustifolia</i> Linn. (cattail)	0.41	2	0.96	269.53	189.30
<i>Cyperus</i> spp. (bulrush)	0.35	2	0.99	127.09	45.64
non-planted soil	0.24	3	0.92	907.46	254.15

* Coefficients of determination for non-linear regressions

***Sum of squares due to error

** Carbofuran concentration that degraded very slowly over time (mg/kg.).

Figure 2. Sorption isotherms of Ban Non-Reung soil at 0-30 cm depth.

an index of the adsorption capacity, and $1/n$ is an empirical constant. K_f values for Ban Non-Reung soil is 1.0 L/kg, $1/n$ was 1.04 and r^2 of the adsorption isotherm was 0.98.

Conclusions

Soils from planted and non-planted (control) showed rapid degradation of carbofuran with

half-lives ranging from 2 to 7 days. These facts suggest that phytoremediation could accelerate the degradation of carbofuran residues in soil and carbofuran was not persistent in soil environment.

Acknowledgements

The authors would like to express our sincere gratitude to National Research Center for Environmental, Hazardous Waste Management and Research Center for Environmental and Hazardous Substance Management-Khon Kaen University and Graduate School-Khon Kaen University for supporting this study. Traveling grant was also supporting by Graduate Collage, Khon Kaen University.

References

- Ag-West Biotech Inc., Phytoremediation: Using plants to clean up pollution [online] 1999 [cited 2002 April 4]. Available from : http://www.agwest.sk.ca/infosource/inf_mar99.pdf.
- Anu, R., Carr, P. and Burkhardt, M. 2001. Plant uptake of uranium: hydroponic and soil system studies, Biol. Fer. Soil, 33(6) : 541-545.

Barriuso, E. and Houot, S. 1996. Rapid mineralization of the s-triazine ring of atrazine in soils in relation to soil management, *Soil Biol. Biochem.*, 28 : 1341-1348.

Boyle, J.J. and Shann, J.R. 1995. Biodegradation of phenol, 2,4-DCP, 2,4-D, and 2,4,5-T in field-collected rhizosphere and nonrhizosphere soils, *J. Environ. Qual.*, 24 : 782-785.

Burken, J.G. and Schnoor, J.L. 1996. Phytoremediation: plant uptake of atrazine and role of root exudates, *J. Environ. Eng.*, 122(11) : 958-963.

Entry, J.A., Rygiewicz, P.T. and Emmingham, W.H. 1993. Accumulation of cesium-137 and strontium-90 in ponderosa pine and monterey pine seedlings, *J. Environ. Qual.*, 22 : 742-746.

Gao, J., Garrison, A.W., Hoehamer, C., Mazur, C.S. and Wolfe, N.L. 2000. Uptake and phytotransformation of o,p'-DDT and p,p'-DDT by axenically cultivated aquatic plants, *J. Agric. Food Chem.*, 48(12) : 6121-6127.

Hsu, T.S. and Bartha, R. 1979. Accelerated mineralization of two organophosphate insecticides in the rhizosphere, *Appl. Environ. Microbiol.*, 37 : 36-41.

Jayachandran, K., Stolpe, N.B., Moorman, T.B. and Shea, P.J. 1998. Application of 14-C-most-probable-number technique to enumerate atrazine-degrading microorganisms in soil, *Soil Biol. Biochem.*, 30 : 523-529.

Kamrin, M.A. 1997. Pesticide profiles: toxicity environmental impact and fate. Boca Raton: Lewis Publishers, New York, p 676.

Katsomboon, P. Sickness of Thais from pesticide [online] 2003 [cited 2004 Jan. 9]. Available from : http://www.hpp-hai.or.th/article/agriculture/Agri007_thaillcauseagri.pdf.

Ostrofsky, E.B., Traina, S.J. and Tuovinen, O.H. 1997. Variation in atrazine mineralization rates in relation to agricultural management practice, *J. Environ. Qual.*, 26 : 647-657.

Rajagopal, B.S., Rao, V.R., Nagendrappa, G. and Sethunathan, N. 1984. Metabolism of carbaryl and carbofuran by soil-enrichment and bacterial culture, *Can. J. Microbiol.*, 30 : 1458-1466.

Sandmann, E.R.I.C. and Loos, M.A. 1984. Enumeration of 24-D degrading microorganisms in soils and crop plant rhizosphere using indicator media; high populations associated with sugarcane (*Saccharum officinarum*), *Chemosphere*, 13 : 1073-1084.

Schnabel, W.E. and White, D.M. 2000. Surfactant addition enhances the hyphal uptake of PCBs and aldrin by mycorrhizal fungi in liquid culture, *Inter. J. Phyto.*, 2(3) : 233-242.

Schnoor, J.L., Licht, L.A., McCutcheon, S.C., Wolfe, N.L. and Carreira, L.H. 1995. Phytoremediation of organic and nutrient contaminants, *Environ. Science Technol.*, 29(7) : 318-323.

Walton, B.T. and Anderson, T.A. 1990. Microbial degradation of trichloroethylene in the rhizosphere: Potential application to biological remediation of waste sites, *Appl. Environ. Microbiol.*, 56 : 1012-1016.

WHO. 1996. Guidelines for drinking-water quality, 2nd ed. Vol 2. Health criteria and other supporting information. Geneva, World Health Organization.

WHO. Guidelines for drinking-water quality, 3rd ed. [online] 2003 [cited 2004 May 1]. Available from: http://www.who.int/docstore/water_sanitation_health/GDWQ/draftchemicals/carbofuran2003.pdf

Wilson, P.C., Whitwell, T. and Klaine, S.J. 2000. Metalaxyl and simazine toxicity to and uptake by *Typha latifolia*, *Arch. Environ. Contam. Toxicol.*, 39 (3) : 282-288.

Zynda, T., Phytoremediation [online] 2001 [cited 2002 April 4]. Available from: <http://www.enviro-tools.or/factsheets/phytoremediation.pdf>