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Negative binomial maximum likelihood regression models are commonly used to analyze overdis-
persed Poisson data. There are various forms of the negative binomial model with different mean-variance
relationships, however, the most generally used are those with linear, denoted by NB1 and quadratic relation-
ships, represented by NB2. In literature, NB1 model is commonly approximated by quasi-likelihood approach.
This paper discusses the possible use of the Newton-Raphson algorithm to obtain maximum likelihood
estimates of the linear mean-variance negative binomial (NB1) regression model and of the overdispersion
parameter. Description of constructing a half-normal plot with a simulated envelope for checking the adequacy
of a selected NB1 model is also discussed. These procedures are applied to analyze data of a number of
embryos from an orange tissue culture experiment. The experimental design is a completely randomized
block design with 3 sugars: maltose, lactose and galactose at dose levels of 18, 37, 75, 110 and 150 uM. The
analysis shows that the NB1 regression model with a cubic response function over the dose levels is consistent
with the data.
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NB1 for analysis of orange tissue culture data
Jansakul, N. and Hinde, J.P.

Negative binomial (NB) models are very
widely used for analyzing overdispersed Poisson
counts as all important statistical inferences can be
carried out more easily and conveniently than for
other types of compound Poisson models (Lawless,
1987). Applications using the NB distribution can
be found in many areas, for instance, economics
(Hausman et al., 1984), political science (King,
1988 and King, 1989), psychology (Gardner et al.,
1995) and biostatistics (Alexander et al., 2000).
The NB model can be considered as arising from
a two-stage model assuming the counts to come
from a Poisson distribution with varying mean.
Taking the Poisson mean as a gamma distributed
random variable leads to the NB model and we can
obtain various forms of mean-variance relationship,
in particular both linear and quadratic, depending
on assumptions about the gamma mixing dis-

tribution parameters. The linear mean-variance
NB model is obtained by allowing the gamma
shape parameter to vary across observations and
keeping the scale parameter constant, whereas
the quadratic form arises from taking the shape
parameter as constant and letting the scale vary.
These two variance function models can lead to
different models for the mean and also different
forms of some associated statistics. Here we will
denote the NB model with the linear variance by
NB1 and the quadratic variance one by NB2. The
NB2 model is a generalized linear model (glm)
(Hinde and Demetrio, 1998) when the shape
parameter is known. The parameter estimates for
the NB2 model can be easily obtained using a full
Newton-Raphson method, for example as is in
Lawless (1987), or an iterative glm fitting pro-
cedure as in Hinde (1996).
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This paper concentrates on the maximum
likelihood fitting of NB1 models and their
application to a real data set. The paper begins
in Section 1 with a short review of Poisson re-
gression and overdispersion. Section 2 describes
NB1 models and parameter estimation using a
Newton-Raphson procedure. Methods of selecting
an appropriate model are described in Section 3.
To check the adequacy of a selected model, we
propose the use of a half-normal plot with a
simulated envelope. Details of the construction of
this plot are given in Section 4. In Section 5, we
consider the application of the NB1 model to a set
of orange tissue-culture data. The paper concludes
with a brief discussion.

1. Poisson regression and Overdispersion

The random variables Y, i =1, 2, ..., n,
represent counts with means u, and x, = (x , x,,
- xl_p)T is an associated vector of covariates, with
x,, typically equal 1 to include the usual constant
term in the model. The standard Poisson regres-
sion model assumes that ¥ ~ Pois(u), and is a
generalized linear model with variance function

Var(Y)) = Var(u) =1, (1)

The p. are typically modelled through the canoni-
cal log link function by

n =log(u)=x B,

where B is a p vector of unknown parameters. The
maximum likelihood estimate of Bis easily obtained
using iteratively reweighted least squares (IRLS)
and the asymptotic covariance matrix Cov(p) is

(X"WX)"', where W is an nxn diagonal matrix

«th

with i diagonal element Wi = ,LAL,., the iterative

weight used in the IRLS procedure, see Dobson
(1990).

For an appropriate well fitting model, we
would expect that the residual deviance (minus
twice the difference between the log-likelihood of

the maximal model and an estimated model) and
the Pearson chi-square defined by x* = i(y,. -0/

would be approximately equal to the degrees
of freedom (df). If the residual deviance and X’
statistic exceed the df, the Poisson regression model
may not be adequate, either through some system-
atic lack of fit, or because the strong assumption
from the Poisson model that Var(u) = u. is in-
appropriate; in this case the data are described as
overdispersed. If the residual deviance is less than
its df, it implies that there is underdispersion in the
counts, i.e. the observed variance is less than the
nominal Poisson variance. However, in practice,
underdispersion is less common, (McCullagh and
Nelder, 1989).

In general, when there is overdispersion
and we fail to take it into account, it can lead to
misinterpretation of the fitted model (Cox, 1983)
since the overdispersion produces:

1) smaller standard errors of the para-
meter estimates than the true values. Therefore we
may incorrectly choose explanatory variables for
the model that are not required;

2) too large a reduction of deviance
associated with model selection tests. This again
leads to selecting overly complex models.

To take account of overdispersion, there
are a number of different models and associated
parameter estimation methods that have been pro-
posed in literature, for example, Lawless (1987),
Piegorsch (1990); Hinde and Demetrio (1998),
Adamidis (1999) and Thurston et al. (2000). These
models are extensions of the standard Poisson
regression and give a more general form of Poisson
variance function. However, associated parameter
estimation methods are discussed mostly for NB2
regression since this model is related to a glm.

2. Linear Mean-Variance NB Models

IfY,i=1,2,..., n,are now negative binomial
distributed counts with mean 4, and dispersion
parameter o a general form of the probability
mass function (p.m.f.) of Y, ~ NB(u, o) is given
by
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T'(y+o u. o
O, - 'ulik ) /J’, > ¥ =0,L..,a>0
yi!F(oc ‘Ul_ ) (1+a‘uik))i+a i

fOnu,0) = )

0, otherwise

with E(Y) = u and Var(Y) = u (1 + Oc,ul_k). Here o is assumed to be a constant. The index k identifies

various forms of the NB distribution, but two well-known models are given by k =0 and 1. For k =0
we have a linear-variance NB regression, or NB1 model, with Var(Y) = u (1+0o) (this is often approxi-
mated by fitting the constant overdispersion quasi-likelihood (QL) model with Var(Y) = ¢u, where
¢ is a constant). Taking k=1 gives the more usual quadratic-variance NB, or NB2 model, with
Var(Y) = u(1+ou). As o — 0, the NB model reduces to the Poisson model. For both models, we assume

some specific regression model for the mean, i.e. log(u) = xlTﬂ

2.1 Maximum Likelihood Estimation for the NB1 Distribution
Taking k£ = 0 in (2), the p.m.f. of Y. ~ NB1 (u, o) is specified by

i

Fy+a'pn) o

T e Y, =0.L.,a>0
FOa) =4 W@ ) (14 ay™ ™
1 1 (3)
0, otherwise
For observed values y , y,, ..., y , the NB1 log-likeli-hood, ¢ = /(u, ), is given by
n ‘Lli ~
l= ;{yl_ loga—(yi +E)log(1 +a)+dlg(y, a llul_)—logyi!}, @)

where dlg(y, a) = log I'(y+a) - log I'(a).

The NB1 is not a standard glm-type exponential family distribution, even when the overdis-
persion parameter ¢ is known, and standard glm fitting methods will not apply. So here we consider a
general Newton-Raphson iterative scheme. The first and second derivatives with respect to the under-
lying parameters are

ol . . log(1+ ) .
IF = TN e ) - =1 2 p 5)
J

AT DTN - B S el 2
m__g o g(y[’a /J{)—T-OC K, tg(yl_,a ‘ui) ‘u[xijxik’ I k=L 2, ....p, (6)

ol bo |-y »
Do =" X\ Mo+ )+ pdde(y,. o) e, (7)

y — I o .
— - W dtg(y, o lu,.)]},

(1+o'yY 1+

a* fu-y _
7= 2{205 S[W_“f log(1+ o)+ p.ddg(y , o lui)]+ oﬁ‘[

®)
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't -2 -1 -1 -1 @
PBa= T [log(1+ ) —ddg(y,, 0 ')+ &' mdig(y, o7 'w) -1 |1, (- ©)

where ddg(y,a) and dtg(y,a) denote the differences
of the di-gamma and tri-gamma functions. These
are defined by

8
ddg ra) = —-(dlg(y,a))= Hy+a)—B(a)

Z(a+t) ,y>0

where ¥ is the di-gamma function, and

2

d
57 dle.a) = Cy+a)-C(a)
a

dtg (y,a)

0, y=0

y-l )
2(a+1)7",y>0,
t=0

where { is the tri-gamma function.
Let s(B,&) be the vector of score
functions defined by

ol
s;(B.0)| _| 9B
sa(ﬁ,a) or |

da
and let I(B,&) be the (p+1) X (p+1) observed
information matrix, which we partition as

L(B.o) I (B.c)
—_| B8 B
I(ﬁ’a)_[%ﬁ(ﬂ’“) Iw(ﬁ"”]’ (10)

v

S(ﬁ,a){

where 1, = “ BB is the pxp symmetric matrix,
o larand [ =1 = o
= oy S ascalarand [ =l =5 is

a 1 x (p+1) matrix.
Writing 8 and o/ as the estimates at
th

the m" iteration, the standard Newton-Raphson
iterative scheme gives

B ﬁ(m) [ I(m)] b
o™ || g ’ 1
where I and s are I(f,) and s(S,0) evaluated
at f= " and o= " The iteration (11) must be
carried out until convergence, which can be
assessed using a stopping rule such as

(m+l)_a(m)|<e or |€(m+l)_€(m) <c

o

The procedure requires good initial values, which
can be obtained as follows:
- B fit a standard Poisson regression

model to obtain B and initial estimates of the

fitted values f1"".

- o equate the Pearson X statistic from
the Poisson fit to its expected value under the NB 1
model, to give

~(0)\2
Pz % -1,
i ‘LLi

this is simply based on the quasi-likelihood
estimate of the overdispersion parameter from the
constant overdispersion Poisson model.

o =(n-

The asymptotic variance of § and & are

the diagonal elements of I"'( 3, &), and are auto-
matically provided at the final iteration. This
iterative procedure is simply implemented in any
computer software that can handle matrices, such
as, Splus and the free software R (R Development
Core Team, 2003)

3. Selecting an Appropriate Model

Testing the Poisson assumption against the
NBI1 alternative corresponds to testing

H:a=0

against H :a>0.
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The commonly used test statistics, the
likelihood ratio test (LRT) or residual deviance,
normally used in the context of statistical model-
ing, defined by —2{/()—((d,&)}, where /(1)
and /(fi,&) are maximized likelihood estimates
under the Poisson and NB1 model, respectively,

&2
and the Wald test specified by m, are both
applicable here. Some care is required as the null
hypothesis is on the boundary of the parameter
space (e.g. the null distribution of the LRT is not

the usual }Clz distribution), and also the alternative

hypothesis is one-sided as we are only testing for
overdespersion.

Selecting an appropriate model among all
possible NB1 regression models is straight-forward
using the standard likelihood criteria, for example,
Akaike information criterion (AIC) (Akaike, 1973)
or Baysian information criterion (BIC) given in
Schwarz (1978). These criteria simply require the
maximized log-likelihood value from the NBI
distribution fit and are defined as:

AIC = -2 /+2(number of fitted parameters),

BIC =-2 /+log(n) X (number of fitted

parameters).
The fitted model with smallest value of AIC or of
BIC is preferable. In addition, both AIC and BIC
are also applicable for selecting between non-
nested models (Lindsey, 1997, pp.208-209) where
we will illustrate the use of these criteria to select
between NB1 and NB2 model.

4. Model Checking
A model diagnostic technique that has been
found to be useful for checking the adequacy of

2u log(l+ o)
a b

fitted models is the use of half-normal plots with
a simulated envelope. This technique was first
proposed by (Atkinson, 1985). He applied the plot
to check model adequacy using Pearson residuals
or Cook’s statistics in normal regression. The
technique was further developed for glms using
(standardized) Pearson residuals and (standardized)
deviance residuals by Williams (1987). Williams
claimed that the plot could detect both outliers
and overdispersion in both Poisson and binomial
regression models.

Even though the NB1 regression model is
not a glm, we can define its complete p.m.f. and
hence the log-likelihood function. The associated
(standardized) Pearson residual, or the standard-
1zed studentized residual, for the NB1 model can
be obtained by using the general definition,

(y—,LAt)/\/\Alar(Y) (Lawless, 1987). Denoting the
standardized Pearson residual for an NB1 fit by

r,.» the i" component is

A

Yi_‘ui

CNrer

NB1 deviance residuals cannot be obtained simply
based on the usual deviance expression for glms:
2{0, o y) - £(y, o ; y)}, as some of the
individual components can be negative. Nelder
(1991) pointed out that the log-likelihood (4) does
not have the property that its mode occurs at u =y

1
unless y = 0. He used yl_+§ as the approximate

mode of ¢ and then approximated the deviance
component for y by

y,=0

i

1 log(1+ @) L Lo
22XV Ayl | T dlg(y, o ) —dlg(y, o (v, +5) s Y, >0
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However, our exploration (will be reported else-

where) found that ¥+ 7 is not an adequate approxi-

mation of the mode. The investigations indicated

that there is no simple form for the mode of 7, but
o o

317y <c< are

values such as y+c, where

[ 2/1 log(1+ &)
a7

Following the general procedure for con-
structing half-normal plots with a simulated
envelope given in Vieira et al. (2000), a plot for
checking a selected NB1 model using (standard-
ized) deviance residuals can be obtained as
follows:

- Fit a NB1 model to obtain /1,0 and

calculate the ordered absolute values of deviance
residuals s

- Simulate nineteen samples for the res-
ponse variable under the fitted model, by first

generating €, ; where €y~ F(&_]ﬁl_, D, j=12,..,

19, i=1, 2, ..., n, calculating €, =¢, . X&ﬁi_l then
simulating Y ~ Pois(fie,) to give ¥, ~NBI({,, &).
i.e. 19 datasets based on the fitted model.

- Refit the model, using the same explan-

atory variables, to each sample and calculate the
ordered absolute values of the deviance residuals,

ToarJ =1 2,..,19,i=1,2, .., n
- For each i calculate the minimum,

. .
maximum and the mean of the T o

- Plot these values and the observed r,
against the half-normal scores (expected order

1 1
statistics); @' {(i+n— §) /(2n+ 7)}, where @ is

the normal cumulative density function (Demetrio
and Hinde, 1997).

likely to be close to giving the mode, and for large

o
V=5 works well. Using this simple form gives

the deviance residuals 7, =sgn(y, —/,L’.)\jﬁi for
the NB1 model, where

y.=0

1

Al A | &
Lo ) —dlg(y,o (Y,- +7)}’3’i > 0.

If the selected model is adequate, the
observed r,  should lie within the simulated
envelope.

Demetrio and Hinde (1997) gave a GLIM
macro to construct such plots with special em-
phasis on overdispersed models (i.e. constant
overdispersion Poisson and NB2 models for extra
Poisson variation). These are easily adapted for
the NB1 deviance residuals as all that is required
are two functions, one to calculate the NBI1
deviance residuals and the other to simulate from
an NB1 distribution; these are easily implemented
in software such as R.

5. Application: An Orange Tissue-culture
Experiment

The orange variety Valencia was used in a
tissue-culture experiment conducted in Brazil to
study the effect of six carbohydrate sources
(maltose, glucose, galactose, lactose, sucrose and
glycerol) on the stimulation of somatic embryos
from callus cultures. The response variable is the
number of embryos observed after approximately
four weeks. The experiment was a completely
randomized block design with the above six sugars
at dose levels of 18, 37, 75, 110 and 150 uM for
the first five and 6, 12, 24, 36, and 50 uM for the
glycerol, and 5 replicates of each treatment, see
Tomaz et al. (2001), for further details of the
experiment and histological analysis. The main
interest was in the dose-response relationship for
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the sugars (maltose, galactose and lactose) that
produced large numbers of embryos. The number
of embryos produced is highly variable, see Figure
1, with marked differences between the three
sugars. Table 1 presents the mean and variance of
the number of embryos, classified by sugars and
dose levels (excluding 1 missing value). Most of
the sample overdispersion index values (relative
to a baseline Poisson distribution) exceed 3, and
give strong evidence of overdispersion. In their
analysis Tomaz et al. (2001) used a quadratic
response function over the dose levels and a simple
constant overdispersion Poisson model fitted by
quasi-likelihood to take account of overdispersion.
Here we use this data set to illustrate the use of
maximum likelihood estimation for the NBI1
distribution.

Writing u for the vector of the mean numbers
of embryos and taking sugar (S) and DOSE as

factors, fitting the full interaction Poisson regres-
sion model (log() = S * DOSE), the residual
deviance is 298.04 on 29 df (p-value of 0.00, based

on )(229, distribution), which as expected shows

strong evidence of overdispersion. The half-normal
plot, Figure 2(a), also indicates greater variation
than in the Poisson model as all the Poisson
deviance residuals lie above the upper envelope.
Fitting the corresponding NB1 and NB2
model with the full interaction between dose and
sugar gives a likelihood ratio test statistic for
overdispersion of 166.59 and 138.85 on 1 df, res-
pectively. The models certainly fit the data much
better than the Poisson model. This full interaction
model is equivalent to fitting a model with an
interaction between sugar and a quartic polynomial
over the actual dose levels: (log(u) =S * (D + D’ +
D’ + D%). This suggests that we might consider

- bt Maltose
9 - FAS Lactose o
=t E .
- a Galactose X
2 x
" _
o
£ : .
= o=
2 o = X
s &7 3 A N
s
2 3. - A
— L+
o | & .
[Ty ﬁ [+
o
o - & o g g
| I I | I | I I I |
15 30 45 60 75 90 105 120 135 150
Dose levels

Figure 1. Orange (Valencia) tissue culture data: Observed number of embryos classified by

types of sugars and dose levels.
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Table 1. Orange (Valencia) tissue culture data: Mean and variance

(Var) of number of em

bryos classified by sugars and dose

levels.
Sugars Dose levels (uM)
18 37 75 110 150

Maltose Mean 233.00 24533 369.67 407.00 424.33

Var 2368.00 654.33 9952.33 2356.00 506.33

0.1 10.16 2.67 26.92 5.79 1.19
Lactose Mean 47.33 219.33 23933 17433 260.50

Var 22433  1310.33 5854.33 1234.33 2964.50

0.1 4.74 5.97 24.46 7.08 11.38
Galactose Mean 21.67 14.00 18.33 4.00 75.67

Var 185.33 76.00 408.33 13.00 508.30

0. 8.55 5.43 22.28 3.25 6.72

Var
o.i. denotes overdispersion index = -1.
Mean

simplifying the model by fitting lower order poly-
nomials over the dose levels.

Considering NB regression, the best NB2
model is log (1) =S * (D + D* + D’ + D) with the
smallest AIC and BIC values of 466.293 and
494.840, respectively, whereas the best model
fitted based on the NB1 regression is the cubic
response function over the dose levels: log(u) =
S * (D + D’ + D) with AIC and BIC of 439.000
and 462.194 respectively, see Table 2. Using AIC
and BIC to choose between these models suggests

(a) Poisson : Quartic

(b)

that the NB1 log cubic model is preferable. This is
also the model chosen using a QL approach with
constant overdispersion, but the different model
in Tomaz et al. (2001). The corresponding half-
normal plot, Figure 2(b), indicates that the NB1
model is more consistent with the data than the
NB2, shown in Figure 2(c). The selected model
gives a separate cubic dose relationship for each
of the sugar types.

However, the plot of the predicted mean
number of embryos for NB1 of cubic model

- “ _
o _ o™~
@ o
§ o S
g ¥
8 ol il
= o]
% o o
o~ -—
& o] @
o ] o
[=] [=1 T T
00 05 10 15 20 25 00 05

Half-normal scores

Half-normal scores

NB1 : Cubic {c) NB2 : Quartic
o]
«
e
o
o |
(3]
o |
o
I I I 1 =
1.0 15 20 25 00 @5 1.0 15 20 25

Half-normal scores

Figure 2. Orange (Valencia) tissue culture data: Half-normal plots based on Poisson, NB1

and NB2 model.



Songklanakarin J. Sci. Technol.
Vol. 26 No.5 Sep.-Oct. 2004

692

NB1 for analysis of orange tissue culture data
Jansakul, N. and Hinde, J.P.

Table 2. Orange (Valencia) tissue-culture data: Statistics for Poisson and overdispersed

models.
S is a three-level factor for sugar
DOSE is a five-level factor for the dose levels
D is a variate for the dose level
L. Models
Description 24 df AIC BIC
log (1) o
Poisson S*(D+D?>+D*+ D% 0 573.143 29 603.143 629.906
S *(D+D?>+ D% 0 648.715 32 672.715 694.125
S *(D+D? 0 959.656 35 977.656 993.414
S*D 0 1182.815 38 1194.815 1205.520
NB1 S*(D+D*+D*+D%  6.331 406.552 28 438.552 467.099
S *(D+D?+D? 7.772 413.000 31 439.000 462.194
S *(D+D? 15.360  438.385 34 458.385 476.227
S*D 24410 457.234 37 471.234 483.724
NB2 S*(MD+D*+D*+D%  0.060 434.293 28 466.293 494.840
S *(D+D?>+ D% 0.114 451.576 31 477.576 500.771
S *(D+D? 0.244 473.058 34 493.058 510.900
S*D 0.373 487.576 37 501.576 514.066
(13 Deviances df
Constant S*(D+D*+D*+D% 9.717 30.671 28 - -
QL S *(D+D?+D? 9.717 38.448 31 - -
S *(D+D? 9.717 70.446 34 - -
S*D 9.717 93.411 37 - -

S * (D + D? + D* + D% is equivalent to S*DOSE

shown in Figure 3 suggests that the dose response
relationship for maltose and galactose may be
approximately linear or quadratic.

In order to investigate this, we fitted NB1
regression models with cubic, quadratic and linear
functions over the dose levels using the constant
overdispersion estimate (& = 7.77), see Table 3.
The dose levels here are transformed to standard-
ized values, denoted by D, to avoid convergence
problems in the maximum likelihood estimation
procedure. The best NB1 model suggested by AIC
and BIC for each sugar is different; a log-quadratic
model in the dose levels for maltose and galactose
and a log-cubic model for lactose. In addition,
lactose requires a medium level of dose for the
optimum production of embryos, while maltose

and galactose need a high dose level, the corres-
ponding parameter estimates and standard errors
are presented in Table 4.

Conclusion and Discussion

The paper gives a framework for NBI1
regression including estimation, model selection
and use of an approximate deviance residual
function as a model diagnostic. Fitting NB1 models
using a Newton-Raphson iterative procedure is
conveniently performed in any computer software
that can deal with matrices, in particular, R or
SPlus, as the commands for calculating di-gamma
and tri-gamma functions are also available. The
correct asymptotic covariance matrix of the
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Figure 3. Orange (Valencia) tissue culture data: Observed (symbols) and estimated (lines)
values of embryogenic responses

Table 3. Orange (Valencia) tissue-culture data: Statistics for NB1

models with fixed & = 7.77, classified by sugar.

Models
Sugars 270 df AIC BIC
(log(w)
Maltose D+D*D*  157.30 11 166.30  169.13
D+D? 158.44 12 164.44  166.57
D 165.74 13 165.74 167.15
Lactose D+D+D? 14230 10 15030 152.85
D+D? 174.97 11 180.97  182.88
D 184.92 12 188.92  190.19
Galactose D+D*+D° 11241 11 12041  123.24
D+D? 114.70 12 120.70  122.82
D 140.42 13 144.42  145.80
5 B 5 D - D
D denotes a vector of standardized D.; D - — ,i=1,2,...,n,
i ! \Var(D)

where D = n’!

parameter estimates Cov(f,&) is automatically
provided at the final iteration. Moreover, the robust
and empirical covariance matrices can be easily

implemented.

D,

The comparison between NB1 and NB2,
and even QL, models discussed in the application
shows that a more general framework for NB
regression modelling with some ability to choose
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Table 4. Orange (Valencia) tissue-culture data: Parameter
estimates and their standard errors (given in the

parentheses).
Maltose Lactose Galactose
D’ - 0.677 (0.126) -
D’ - -0.639 (0.106)  1.030 (0.226)
D 0.226 (0.040) -0.606 (0.197)  0.050 (0.149)
constant 5.783 (0.043)  5.562(0.086) 1.793 (0.371)
a 7.772(1.941)  7.772(1.941) 7.772 (1.941)

between different variance functions can be useful.
A more detailed study of this is being undertaken
and will be reported elsewhere.
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AIC

BIC
Cov(x,y)
Glms
IRLS

QL

NB

NB1
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Appendix

Lists of Notations

: Akaike information criterion

: Baysian information criterion

: Covariance matrix of x and y

: generalized linear models

: Iteratively reweighted least squares

: Quasi likelihood

: Negative binomial models

: Linear mean-variance negative binomial models

: Quadratic mean-variance Negative binomial models



