Songklanakarin J. Sci. Technol.
30 (2), 221-225, Mar. - Apr. 2008

Songklanakarin Journal
of Science and Technology

http://www.sjst.psu.ac.th

Original Article

Compressive modulus of adhesive bonded rubber block

Charoenyut Dechwayukul' and Wiriya Thongruang'*

! Department of Mechanical Engineering, Faculty of Engineering,
Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand.

Received 1 November 2007; Accepted 30 April 2008

Abstract

The present study examined the effect of a thin adhesive layer on the modulus of an elastic rubber block bonded
between two plates. The plates were assumed to be rigid, both in extension and flexure, and subjected to vertical compress-
ion loading. The Gent’s approach was used to obtain the analytic deformations of the rubber and adhesive. The analytic
deformations were then validated with the finite element model. There was a good agreement between both methods. The
modulus of the bonded rubber block, defined as effective modulus, was then studied. The effective modulus was increased
by the factor (1+ (a/2t)*( 6G h/G t+1 )"), which is composed of the shape factor of the rubber block (a/2t, ratio of the bonded
and unbonded areas), and the shear stiffness factor (G /G t, ratio of modulus and thickness of rubber and adhesive). The
effective modulus does not depend on either factors, when the shear stiffness of the joint is high or G /G t >10.

Keywords: bonded rubber block, plates, mechanical properties, analytical modeling, finite element analysis

1. Introduction

An elastic rubber block is widely used as an engineer-
ing component for load bearing (Gent 1992). Generally, the
rubber block is bonded to steel plates and is assumed to have
perfect bonding and to be rigid in extension and flexure to
provide vertical stiffness. When the elastic rubber block is
compressed due to load carrying, the rubber expands later-
ally. When lateral expansion is restricted, the vertical stiff-
ness of the bonded rubber block is increased and the rubber
is assumed to be incompressible (Koh and Lim, 2001). The
surface interaction varies depending on the shear stiffness of
the adhesive layer, which alters the stiffness of the elastic
rubber block. An understanding of the effect of shear
modulus and the thickness of the adhesive layer bonding
between the two surfaces will facilitate the design of a more
suitable adhesive.

The Gent’s approach (Gent and Meinecke, 1970) is
used to determine the compressive stiffness of a rubber block
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bonded to rigid plates (Tsai and Lee, 1998). This approach
assumes that a) the rubber is in the horizontal plane, remains
planar and the vertical lines become parabolic, b) the normal
stress components in all directions are equal to the pressure,
and c) rubber with a Poisson’s ratio exactly equal to 0.5 is
assumed to be incompressible. This method is generally
accepted to determine the vertical stiffness of a bonded
rubber block. The stiffness derived using this method has
been verified and there is a good agreement when compared
with a finite element analysis.

In this paper, we propose to use the Gent’s approach
to study the effect of a thin adhesive layer on the deforma-
tions, pressure, stress, and vertical stiffness of an elastic
bonded rubber block. The Gent’s approach was used to
determine the analytic solutions of the displacements. The
deformations of the rubber and adhesive were also validated
by finite element analysis. To present the effect of the thin
adhesive layer in the finite element analysis, the spring
elements were modeled by the thin adhesive layer analysis
(TALA) method (Dechwayukul et al., 2003).
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2. Analytic Methods
2.1 Rubber block bonded with thin adhesive layer

We consider an infinite strip of the rubber block in a
rectangular Cartesian coordinate x-z as shown in Figure 1.
The rubber layer has a width of a and a thickness of ¢. The
bottom and top of the rubber layer are bonded to rigid and
stiff plates by a thin adhesive that has a width of a and a
thickness of s. The materials are assumed to be isotropic and
linear elastic. In this study, it is assumed that the adhesive
layer is thin compared to the thickness of rubber. The ratio
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Figure 1. Thin rubber block bonded with thin adhesive layers

The lower plate is constrained in all directions. The
upper plate is constrained in the x-direction and subjected to
uniform vertical compressive load F; thus then it is free to
translate only in the -z direction with the small displacement
of A. In this case, the assumptions from Gent’s approach are
used, and it is also assumed that there is no normal strain in
the vertical direction for the adhesive layer, because the
adhesive is very thin and stiff throughout the thickness. Thus,
the displacement functions of the rubber in the z-direction
can be denoted as w (z) when —#/2 < z < /2. Also, the dis-
placement functions of the adhesive in the z-direction can be
denoted as w (z), when /2 < z < t/2+h and -(1/2+h) < 7 <
-t/2. The displacement conditions in the vertical direction
are;

w(1/2) = w (1/2) = w (/2+h) = -A (1)
W (-1/2) = w (-1/2) = w («(1/2+ h) ) = 0 )

The displacement functions in the lateral direction
(x-direction) are u (x, z) for the rubber and u (x, z) for the
adhesive. At arbitrary x, we can illustrate the deformations in
the lateral direction as shown in Figure 2. It is assumed that
there is perfect bonding between the thin adhesive layer and
the plates, and the thickness of the adhesive layers is thin;
thus, u (x, z) is linear at #/2 < z < (#/2+h) and «(#/2+h) < z
< -1/2. The u (x, z) is parabolic at -#/2 < z < 1/2.
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Considering only z > 0, because of the symmetrical
geometry of the displacement in the x-direction, and to
satisfy those conditions, the displacement functions are:

uxnz»=%i”%;+h—z) 3)
u, (x,2) =, (X)(1 - 4(§>2> +11,(X) @)

Because of the incompressibility of the rubber layer, the sum
of the normal strains in the x and z directions is zero:

ou,(x,2) N ow, (z) _

ox 0z
Substitute (4) into (5), then integrate and apply the condi-
tions (1) and (2);

0 &)

_ Ou,(x) 413_ _6ua0(x) A
W (2) = Oox (3t2 ¢ ox ¢ 2 ©)
and,
Ou,,(x) 2t 0Ou,(x)
A= W) Ay Ot
ox (3) ox @

Because w (z) is independent of x, the terms of du_(x)/dx
and du (x)/dx are constant in (6) and (7). To determine
these terms, it is necessary to consider the equilibrium of
forces in the x-direction for the adhesive and rubber layers.
The state of stress dominant in the rubber layer is pressure
(p) and shear stress (7). Now it is assumed that there is only
shear stress (7 ) in the thin adhesive layer. Considering the
equilibrium of a long strip at any x through -#/2 to #/2, it is
known that;

U, (x)
r,=-G,—— ®)
h
& _07 _. (azu,(x,z) azwr(z)) )
ox 0z ' 0’z 0x0z
z = (12+h) Ualx, /2+h) =0
Adhesive layer
z=12 UalX, U2) = (X, 1/2) = Ugp(X)

Rubberlayer - — () s w(x, 0) = tpp(x) + ugp(x,
Yy z

UalX, ~1/2) = Utp(x, ~1/2) = Ugo(X)

z=-t2

Adhesive layer

z =-(/2+h) Ua(x, -(t/2+h)) =0

Figure 2. The deformation of the rubber and adhesive layers in the
x-direction
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o*w (2)
0x07

t/2 2
J' G (5 u,(x,z)+

/2 ' 82z )dZ=_J.dT (10)

By substituting (4), (6), and (8) into (10), where G, and G,

are the shear modulus of the adhesive and rubber, respect-
ively, we found that;

uao(x):4u (11)
Substitute (11) into (7);
Ou,y(x) A 2 G 4
———=(—)(=+4—-—
Ox (Z)(3 G, t) (12)
8uu0(x) G, h A 2 . ﬁ),l
ox G, t (13)
Substitute (12) and (13) into (6)'
gGh,4z Gh,4Ghz7]
G, 1
(14)

To determine u (x, z) and u (x, z), we have to deter-
mine u (x) and u (x) by integrating (12) and (13) and apply-
ing the conditions of uao(O) =u(0) = 0. These give;

*—*)] (15)

a (1

-1

(16)

Considering Equations (14) to (16), in the case of perfect
bonding, we can assume that the shear modulus of the
adhesive (G ) is high compared to the shear modulus of the
rubber (G ). Then, those equations are simplified to

Al 3.z 1
W,(Z)—A[Z(t) 2(t) 2] (17)
u,(x,2)=0 (18)

3 x 7.

= A[=(5)1—4(=
u,(x,2z) [2(t)( (t) )] (19)

Considering Equations (14) to (16), in the case of lubrica-
tion, we can assume that the shear modulus of the adhesive
(G ) is zero. Those give;
Z 1
w,(2) = A[—(;) - 5] (20)

u,(x,x(t/2+h))=0; u,(x,xt/2)=u,(x) 21)

u,(x) = A(;) (22)

For the case of lubrication between the rubber and
plates, we found that u (x, z) is independent of z or can be

defined as u (x). The adhesive displacement u (x, z) becomes
zero at z = £(#/2+h) and equal to u (x) at z = /2.

2.2 Validation of analytic solutions

The analytic solutions shown in Equations (14)-(16)
were validated by the Finite Element Method (FEM). The
commercial finite element code ABAQUS (ABAQUS 1998)
was used for the validation. The FEM model was composed
of two parts as shown in Figure 1. The rubber layer with the
shape factor of a/2t = 5 is created in half width, because of
the symmetry. It is meshed into a 2-D plane strain (CPESH;
8-node bi-quadratic, hybrid with linear pressure). In the finite
element model, the rubber layer is assumed linear-elastic
material and the Poisson’s ratio is very close to 0.5. The thin
adhesive layers bonding between the plates and rubber are
created with a thickness ratio of 4/t = 0.1. To represent the
restriction of the thin adhesive layer, the TALA method is
used. This method uses spring elements to simulate the
modulus and thickness of the thin adhesive layer in terms of
stiffness. In this study, the shear modulus ratio of the rubber
and adhesive G/G_ = 0.5 was used. At the upper plate, the
rubber block is compressed with a uniform vertical displace-
ment of -A/t = 0.001.

2.3 Derivation of the modulus of the bonded rubber block

The compression force of the bonded rubber block is
given by the sum of F, and F, (Banks et al., 2002). F, is the
homogeneous compression force, which is obtained when
the rubber block is compressed between fully lubricated
surfaces. F, is the force required to keep points at the
original position in the planes of the bonding surface due to
shear deformation. To derive F , it is assumed that the defor-
mation of the rubber in the long strip is zero or plane strain
(Timoshenko and Goodier, 1987). Equation (22) and Hook’s
law are applied and used when the Poisson’s ratio (n) of the
rubber is 0.5 and the modulus of the rubber is E =3G, for
an isotropic and incompressible material.

ou v
g, =—=——W+Do
=5 E,( )o. (23)
4
Fi=oA=-_E“A 24)

To derive F,, the pressure is obtained from an equivalent
condition as shown in Equation (9) and applied with a
boundary condition of pressure at the edges of the rubber at
zero or p(+a/2)=0. It is found that:

W( )[( )’ (2t)
6 G,t

px)=— 25)

The p(x) is positive when the rubber is under compression.
Using the same principle, we can determine the shear stress
in the rubber layer;
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. =2G, A _x .z

T, = 1 Grh (t)(t)(l) (26)
—+—)
6 Gt

Thus,

al2 3 G

F= | p(x)dxz—a—gﬁA 7
—al2 t (—=+1)

The compressive force is given by the sum of Equations (24)
and (27)

6G,h
Gt

a

EV

F=F +F,=4= +1)7'](28)

a a.,
LA+ (=
AL

Equation (28) can be written into the effective modulus (E )
of the bonded rubber block:

6G. h
r +1—]
G )]

r a

E 4 a
0271 72
3[ +(2t)(

E (29)

3. Results and Discussion
3.1 Validation of the analytic solutions

The displacement functions as shown in Equations 14
to 16 were validated using finite element analysis. Figure 3
presents the vertical displacement through the thickness of
the rubber layer at x=0. The displacement is normalized by
A, shown in the y-axis, and the vertical position is normal-
ized by ¢, shown in the x-axis. The maximum vertical dis-
placement is at the upper plate (at z/t=0.5), where the
rubber block is compressed, and the displacement becomes
zero at the lower plate, where the block is constrained. At
the mid-plane (at z/t = 0), the vertical displacement is half
the maximum of the vertical displacement. The plot in Fig-
ure 3 shows that there is good agreement between FEM and
the analytic solutions for vertical displacement.

vertical displacement through the thickness of rubber layer
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Figure 3. FEM and analytical validation of vertical displacement
w (z)/A through the thickness of the rubber layer at x = 0
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lateral displacement at the midplane of rubber layer
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Figure 4. (a) FEM and analytical validation of the lateral displace-
ment u (x,0)/A at the mid-plane of the rubber layer at z =
0 and (b) FEM and analytical validation of the lateral
displacement u (x,#/2)/A along the thin adhesive layer at
z=1/2

Figure 4 a) and b) present the lateral displacements in
the rubber layer at the mid-plane and in the adhesive layer
bonding between the upper plate and rubber, respectively.
The lateral displacement is normalized by A shown in the
y-axis, and the vertical position is normalized by 7 shown in
the x-axis. The lateral displacement increases linearly from
x/t = 0 to the unbonded surface of the rubber block (x/f = 5).
The maximum lateral displacement occurs at the mid-plane
of the rubber block.

The plots revealed that there is agreement for the
lateral displacement between the FEM and analytic solutions
at 0 < x/t < 4.5. The discrepancies apparently occur near the
free or unbonded surface (4.5 < x/t < 5), because this point is
close to the free surfaces of the rubber and bonding area,
which is the singularity point.

3.2 Effect of thin adhesive layer on the bonded rubber
block

The plots of Equation (29) in Figure 5 show the effect
of the adhesive on the effective modulus of the bonded
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Figure 5. Effect of the adhesive layer ratio (G’) on the effective
modulus (E /E ) for different S (shape factor)

rubber block. S is the shape factor for the long strip, which is
a/2t (bonded area/free area), and the shear stiffness factor is
G = G 1/G t (ratio of modulus and thickness of rubber and
adhesive). In this study, G #/G t is varied from 0, which is a
perfect bonding condition, to 1000. The shape factor (S) is
varied from 1 to 10.

4. Discussion and Conclusions

The shear modulus and thickness of the adhesive
layer are taken into account to analyze the deformations of
the bonded rubber block. The Gent’s approach is used to
determine the analytic displacement solutions. Equations (14)
to (16) are the deformations of the rubber and adhesive,
which were validated by the finite element analysis. There
is an agreement for the displacement between the finite
element analysis and analytic solutions. There were small
discrepancies in the lateral deformations of the rubber and
adhesive at the corner of the mating surfaces between the
rubber and bonding area, due to singularity at the corners.

The analytic solutions indicate that the shear stiffness
factor G /G t, ratio of the modulus, and thickness of the
rubber and adhesive on the same area affect the vertical and
lateral deformations, pressure, and shear in the rubber under
compressive load carrying. The stiffness factor allows for
the bonding surface to resist lateral and vertical deformations
and to alter pressure and shear stress in the rubber. In the
case of a lubricated surface, it is assumed that there is no
adhesive, G =0 or G /G t—eo. When the rubber is com-
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pressed, the rubber along the interface area is not constrained
and fully moves in the lateral direction. To maintain constant
volume due to the incompressibility of the rubber, the
pressure is then constant, and there is no shear stress in the
rubber. In the case of perfect bonding, it is assumed that
there is very stiff adhesive, G, — or G /G t=0. When the
rubber is compressed, the rubber near the interface area is
fully constrained in the lateral direction, whereas the rubber
in other areas is not, which then creates shear stress and a
pressure gradient in the rubber.

The modulus of the bonded rubber block defined as
effective modulus (E) is increased by the factor of (/+(a/
2t)(6G h/G t+1)"), which is composed of the shape factor
(a/2t) and the shear stiffness factor (G /G r). When there is
perfect bonding or G /G =0 at the interface, the effective
modulus is highest, because the full constraint at the inter-
face retards the rubber expansion. The effective modulus of
the rubber gradually decreases and converts to a value of
4/3Er, as the interface is more compliant in the lubricated
condition or G /G t—ee. The shape factor also increases the
effective modulus. The effective modulus depends only on
the shape factor or the adhesive layer when the shear stiff-
ness of the joint is high or G /G 1 >10.
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