
Original Article

Compressive modulus of adhesive bonded rubber block
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Abstract

The present study examined the effect of a thin adhesive layer on the modulus of an elastic rubber block bonded

between two plates. The plates were assumed to be rigid, both in extension and flexure, and subjected to vertical compress-

ion loading. The Gent’s approach was used to obtain the analytic deformations of the rubber and adhesive. The analytic

deformations were then validated with the finite element model. There was a good agreement between both methods. The

modulus of the bonded rubber block, defined as effective modulus, was then studied. The effective modulus was increased

by the factor (1+ (a/2t)
2
(6G

r
h/G

a
t+1)

-1
), which is composed of the shape factor of the rubber block (a/2t, ratio of the bonded

and unbonded areas), and the shear stiffness factor (G
r
h/G

a
t, ratio of modulus and thickness of rubber and adhesive). The

effective modulus does not depend on either factors, when the shear stiffness of the joint is high or G
r
h/G

a
t >10.
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1. Introduction

An elastic rubber block is widely used as an engineer-

ing component for load bearing (Gent 1992). Generally, the

rubber block is bonded to steel plates and is assumed to have

perfect bonding and to be rigid in extension and flexure to

provide vertical stiffness. When the elastic rubber block is

compressed due to load carrying, the rubber expands later-

ally. When lateral expansion is restricted, the vertical stiff-

ness of the bonded rubber block is increased and the rubber

is assumed to be incompressible (Koh and Lim, 2001). The

surface interaction varies depending on the shear stiffness of

the adhesive layer, which alters the stiffness of the elastic

rubber  block.  An  understanding  of  the  effect  of  shear

modulus  and  the  thickness  of  the  adhesive  layer  bonding

between the two surfaces will facilitate the design of a more

suitable adhesive.

The Gent’s approach (Gent and Meinecke, 1970) is

used to determine the compressive stiffness of a rubber block

bonded to rigid plates (Tsai and Lee, 1998). This approach

assumes that a) the rubber is in the horizontal plane, remains

planar and the vertical lines become parabolic, b) the normal

stress components in all directions are equal to the pressure,

and c) rubber with a Poisson’s ratio exactly equal to 0.5 is

assumed  to  be  incompressible.  This  method  is  generally

accepted  to  determine  the  vertical  stiffness  of  a  bonded

rubber block. The stiffness derived using this method has

been verified and there is a good agreement when compared

with a finite element analysis.

In this paper, we propose to use the Gent’s approach

to study the effect of a thin adhesive layer on the deforma-

tions,  pressure,  stress,  and  vertical  stiffness  of  an  elastic

bonded  rubber  block.  The  Gent’s  approach  was  used  to

determine the analytic solutions of the displacements. The

deformations of the rubber and adhesive were also validated

by finite element analysis. To present the effect of the thin

adhesive  layer  in  the  finite  element  analysis,  the  spring

elements were modeled by the thin adhesive layer analysis

(TALA) method (Dechwayukul  et al., 2003).
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2. Analytic Methods

2.1  Rubber block bonded with thin adhesive layer

We consider an infinite strip of the rubber block in a

rectangular Cartesian coordinate x-z as shown in Figure 1.

The rubber layer has a width of a and a thickness of t. The

bottom and top of the rubber layer are bonded to rigid and

stiff plates by a thin adhesive that has a width of a and a

thickness of h. The materials are assumed to be isotropic and

linear elastic.  In this study, it is assumed that the adhesive

layer is thin compared to the thickness of rubber. The ratio

of h/t is about 0 to 0.1 .

Considering only z > 0, because of the symmetrical

geometry  of  the  displacement  in  the  x-direction,  and  to

satisfy those conditions, the displacement functions are:
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Because of the incompressibility of the rubber layer, the sum

of the normal strains in the x and z directions is zero:
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Substitute (4) into (5), then integrate and apply the condi-

tions (1) and (2);
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Because w
r
(z) is independent of x, the terms of ∂u

r0
(x)/∂x

and ∂u
a0

(x)/∂x are constant in (6) and (7). To determine

these terms, it is necessary to consider the equilibrium of

forces in the x-direction for the adhesive and rubber layers.

The state of stress dominant in the rubber layer is pressure

(p) and shear stress (τ
r
). Now it is assumed that there is only

shear stress (τ
a
) in the thin adhesive layer. Considering the

equilibrium of a long strip at any x through -t/2 to t/2, it is

known that;
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Figure 1. Thin rubber block bonded with thin adhesive layers

The lower plate is constrained in all directions. The

upper plate is constrained in the x-direction and subjected to

uniform vertical compressive load F; thus then it is free to

translate only in the -z direction with the small displacement

of ∆. In this case, the assumptions from Gent’s approach are

used, and it is also assumed that there is no normal strain in

the  vertical  direction  for  the  adhesive  layer,  because  the

adhesive is very thin and stiff throughout the thickness. Thus,

the displacement functions of the rubber in the z-direction

can be denoted as w
r
(z)  when – t/2 < z < t/2. Also, the dis-

placement functions of the adhesive in the z-direction can be

denoted as w
a
(z), when t/2 < z < t/2+h and -(t/2+h) < z <

-t/2. The displacement conditions in the vertical direction

are;

w
r
(t/2) = w

a
(t/2) = w

a
(t/2+h) = -∆ (1)

w
r
(-t/2) = w

a
(-t/2) = w

a
(-(t/2+ h) ) = 0 (2)

The displacement functions in the lateral direction

(x-direction) are u
r
(x, z) for the rubber and u

a
(x, z) for the

adhesive. At arbitrary x, we can illustrate the deformations in

the lateral direction as shown in Figure 2. It is assumed that

there is perfect bonding between the thin adhesive layer and

the plates, and the thickness of the adhesive layers is thin;

thus, u
a
(x, z) is linear at t/2 < z < (t/2+h) and –(t/2+h) < z

< -t/2. The u
r
(x, z) is parabolic at -t/2 < z < t/2.

Figure 2. The deformation of the rubber and adhesive layers in the

x-direction
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By substituting (4), (6), and (8) into (10), where G
a
 and G

r

are the shear modulus of the adhesive and rubber, respect-

ively, we found that;
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Substitute (11) into (7);
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Substitute (12) and (13) into (6);
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To determine u
r
(x, z) and u

a
(x, z), we have to deter-

mine u
a0

(x) and u
r0

(x) by integrating (12) and (13) and apply-

ing the conditions of u
a0

(0) = u
r0

(0) = 0. These give;
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Considering Equations (14) to (16), in the case of perfect

bonding,  we  can  assume  that  the  shear  modulus  of  the

adhesive (G
a
) is high compared to the shear modulus of the

rubber (G
r
). Then, those equations are simplified to
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Considering Equations (14) to (16), in the case of lubrica-

tion, we can assume that the shear modulus of the adhesive

(G
a
) is zero. Those give;
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For the case of lubrication between the rubber and

plates, we found that u
r
(x, z) is independent of z or can be

defined as u
r
(x). The adhesive displacement u

a
(x, z) becomes

zero at z = ±(t/2+h) and equal to u
r
(x) at z = ±t/2.

2.2  Validation of analytic solutions

The analytic solutions shown in Equations (14)-(16)

were validated by the Finite Element Method (FEM). The

commercial finite element code ABAQUS (ABAQUS 1998)

was used for the validation. The FEM model was composed

of two parts as shown in Figure 1. The rubber layer with the

shape factor of a/2t = 5 is created in half width, because of

the symmetry. It is meshed into a 2-D plane strain (CPE8H;

8-node bi-quadratic, hybrid with linear pressure). In the finite

element model, the rubber layer is assumed linear-elastic

material and the Poisson’s ratio is very close to 0.5. The thin

adhesive layers bonding between the plates and rubber are

created with a thickness ratio of h/t = 0.1. To represent the

restriction of the thin adhesive layer, the TALA method is

used.  This  method  uses  spring  elements  to  simulate  the

modulus and thickness of the thin adhesive layer in terms of

stiffness. In this study, the shear modulus ratio of the rubber

and adhesive G
r
/G

a
 = 0.5 was used. At the upper plate, the

rubber block is compressed with a uniform vertical displace-

ment of -∆/t = 0.001.

2.3  Derivation of the modulus of the bonded rubber block

The compression force of the bonded rubber block is

given by the sum of F
1
 and F

2
 (Banks et al., 2002). F

1
 is the

homogeneous compression force, which is obtained when

the  rubber  block  is  compressed  between  fully  lubricated

surfaces.  F
2
  is  the  force  required  to  keep  points  at  the

original position in the planes of the bonding surface due to

shear deformation. To derive F
1
, it is assumed that the defor-

mation of the rubber in the long strip is zero or plane strain

(Timoshenko and Goodier, 1987). Equation (22) and Hook’s

law are applied and used when the Poisson’s ratio (n) of the

rubber is 0.5 and the modulus of the rubber is E
r
=3G

r
 for

an isotropic and incompressible material.
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To derive F
2
, the pressure is obtained from an equivalent

condition  as  shown  in  Equation  (9)  and  applied  with  a

boundary condition of pressure at the edges of the rubber at

zero or  p(±a/2)=0. It is found that:
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The p(x) is positive when the rubber is under compression.

Using the same principle, we can determine the shear stress

in the rubber layer;
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The compressive force is given by the sum of Equations (24)

and (27)
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Equation (28) can be written into the effective modulus (E
c
)

of the bonded rubber block:
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3. Results and Discussion

3.1  Validation of the analytic solutions

The displacement functions as shown in Equations 14

to 16 were validated using finite element analysis. Figure 3

presents the vertical displacement through the thickness of

the rubber layer at x=0. The displacement is normalized by

∆, shown in the y-axis, and the vertical position is normal-

ized by t, shown in the x-axis. The maximum vertical dis-

placement  is  at  the  upper  plate  (at  z/t = 0.5),  where  the

rubber block is compressed, and the displacement becomes

zero at the lower plate, where the block is constrained. At

the mid-plane (at z/t = 0), the vertical displacement is half

the maximum of the vertical displacement. The plot in Fig-

ure 3 shows that there is good agreement between FEM and

the analytic solutions for vertical displacement.

Figure 4 a) and b) present the lateral displacements in

the rubber layer at the mid-plane and in the adhesive layer

bonding between the upper plate and rubber, respectively.

The lateral displacement is normalized by ∆ shown in the

y-axis, and the vertical position is normalized by t shown in

the x-axis. The lateral displacement increases linearly from

x/t = 0 to the unbonded surface of the rubber block (x/t = 5).

The maximum lateral displacement occurs at the mid-plane

of the rubber block.

The  plots  revealed  that  there  is  agreement  for  the

lateral displacement between the FEM and analytic solutions

at 0 < x/t < 4.5. The discrepancies apparently occur near the

free or unbonded surface (4.5 < x/t < 5), because this point is

close to the free surfaces of the rubber and bonding area,

which is the singularity point.

3.2 Effect  of  thin  adhesive  layer  on  the  bonded  rubber

block

The plots of Equation (29) in Figure 5 show the effect

of  the  adhesive  on  the  effective  modulus  of  the  bonded

Figure 3. FEM and analytical validation of vertical displacement

w
r
(z)/∆ through the thickness of the rubber layer at x = 0

Figure 4. (a) FEM and analytical validation of the lateral displace-

ment u
r
(x,0)/∆ at the mid-plane of the rubber layer at z =

0 and (b) FEM and analytical validation of the lateral

displacement u
a
(x,t/2)/∆  along the thin adhesive layer at

z = t/2
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rubber block. S is the shape factor for the long strip, which is

a/2t (bonded area/free area), and the shear stiffness factor is

G′ = G
r
h/G

a
t (ratio of modulus and thickness of rubber and

adhesive). In this study, G
r
h/G

a
t is varied from 0, which is a

perfect bonding condition, to 1000. The shape factor (S) is

varied from 1 to 10.

4. Discussion and Conclusions

The  shear  modulus  and  thickness  of  the  adhesive

layer are taken into account to analyze the deformations of

the bonded rubber block. The Gent’s approach is used to

determine the analytic displacement solutions. Equations (14)

to  (16)  are  the  deformations  of  the  rubber  and  adhesive,

which were validated by the finite element analysis. There

is  an  agreement  for  the  displacement  between  the  finite

element analysis and analytic solutions. There were small

discrepancies in the lateral deformations of the rubber and

adhesive at the corner of the mating surfaces between the

rubber and bonding area, due to singularity at the corners.

The analytic solutions indicate that the shear stiffness

factor G
r
h/G

a
t, ratio of the modulus, and thickness of the

rubber and adhesive on the same area affect the vertical and

lateral deformations, pressure, and shear in the rubber under

compressive load carrying. The stiffness factor allows for

the bonding surface to resist lateral and vertical deformations

and to alter pressure and shear stress in the rubber. In the

case of a lubricated surface, it is assumed that there is no

adhesive, G
a
=0 or G

r
h/G

a
t→∞. When the rubber is com-

Figure 5. Effect of the adhesive layer ratio (G′) on the effective

modulus (E
c 
/E

r
)  for different  S (shape factor)

pressed, the rubber along the interface area is not constrained

and fully moves in the lateral direction. To maintain constant

volume  due  to  the  incompressibility  of  the  rubber,  the

pressure is then constant, and there is no shear stress in the

rubber.  In  the  case  of  perfect  bonding,  it  is  assumed  that

there is very stiff adhesive, G
a
→∞ or G

r
h/G

a
t=0. When the

rubber is compressed, the rubber near the interface area is

fully constrained in the lateral direction, whereas the rubber

in other areas is not, which then creates shear stress and a

pressure gradient in the rubber.

The modulus of the bonded rubber block defined as

effective modulus (E
c
) is increased by the factor of (1+(a/

2t)
2
(6G

r
h/G

a
t+1)

-1
), which is composed of the shape factor

(a/2t) and the shear stiffness factor (G
r
h/G

a
t). When there is

perfect bonding or G
r
h/G

a
t=0 at the interface, the effective

modulus is highest, because the full constraint at the inter-

face retards the rubber expansion. The effective modulus of

the rubber gradually decreases and converts to a value of

4/3Er, as the interface is more compliant in the lubricated

condition or G
r
h/G

a
t→∞. The shape factor also increases the

effective modulus. The effective modulus depends only on

the shape factor or the adhesive layer when the shear stiff-

ness of the joint is high or G
r
h/G

a
t >10.
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