
SHORT COMMUNICATION

UNIQUAC activity coefficient model and modified Redlich- Kwong EOS for the vapor liquid equilibrium systems of carbon dioxide-water

**Lupong Kaewsichan¹, Katawut Keowkrai²
and Nurak Grisdanurak³**

Abstract

Kaewsichan, L., Keowkrai, K. and Grisdanurak, N.

**UNIQUAC activity coefficient model and modified Redlich- Kwong EOS
for the vapor liquid equilibrium systems of carbon dioxide-water**

Songklanakarin J. Sci. Technol., 2004, 26(6) : 907-916

The UNIQUAC activity coefficient model and fugacity coefficient model of modified Redlich-Kwong predicted vapor-liquid equilibrium between carbon dioxide and water efficiently. The activity coefficient model needed the energy interaction parameters between molecules of carbon dioxide and water. Those parameters can be obtained by non-linear regression method of the experimental data of the vapor-liquid equilibria of carbon dioxide and water (Lide, 1992). The fugacity coefficient model of modified Redlich-Kwong needed only some physical properties of carbon dioxide and water without any interaction parameters. The experimental data had ranges of temperature and partial pressure of carbon dioxide between 10 to 100°C and 5 to 1,200 kPa, respectively. The parameters for the activity coefficient model are temperature dependent but are not concentration dependent. The regression results gave good agreements with the experimental data in which the mean absolute error (MAE) between experiment and calculated partial pressure of carbon dioxide was 2.72% and the mean absolute standard deviation (MAD) of that error was 1.35%. Comparing the effects of activity coefficients and fugacity coefficients, we found that the non-ideality in vapor phase was more influential than the non-ideality in liquid phase.

Key words : carbon dioxide, UNIQUAC, modified Redlich-Kwong, VLE

¹Ph.D.(Chemical Engineering), Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla 90112 Thailand ²M.E.(Chemical Engineering), Process Engineer, Thai Bridgestone Co., Ltd. Bangna-Trad Rd. Muang, Chonburi, 20000 Thailand ³Ph.D.(Chemical Engineering), Assoc. Prof., Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Klong Luang, Pathum Thani, 12121 Thailand.

Corresponding e-mail: lupong.k@psu.ac.th

Received, 20 April 2004 Accepted, 12 June 2004

บทคัดย่อ

ลือพงศ์ แก้วศรีจันทร์¹ คทาวุธ เงี่ยวงิริ² และ นุรักษ์ กฤณภานุรักษ์³
แบบจำลองสัมประสิทธิ์เอกสารตัวตี่ UNIQUAC และสมการสถานะแบบขยายของ Redlich-Kwong
สำหรับสมดุลแก๊ส-ของเหลวของระบบคาร์บอนไดออกไซด์-น้ำ
ว. สงขลาฯ คริบันทร์ วทก. 2547 26(6) : 907-916

แบบจำลองสัมประสิทธิ์เอกติวิตี UNIQUAC และแบบจำลองสัมประสิทธิ์ฟิวการชิดีแบบขยายของ Redlich-Kwong ให้ผลการทำนายที่ดีต่อระบบสมดุลวัฏจักรแก๊ส-ของเหลวของระบบคาร์บอนไดออกไซด์-น้ำ แบบจำลองสัมประสิทธิ์เอกติวิตี ในบทความนิ่นต้องการค่าพารามิเตอร์ของพลังงานอันตรกิริยะระหว่างโน้ມและกูลของคาร์บอนไดออกไซด์ และโน้ມและกูลของน้ำ การคำนวณค่าพารามิเตอร์ของพลังงานอันตรกิริยะเหล่านั้นจะใช้วิธีการลดด้อยไม่เชิงเส้นกับข้อมูลจากการทดลองของสมดุลวัฏจักรของระบบคาร์บอนไดออกไซด์-น้ำ (Lide, 1992) ในขณะที่แบบจำลองสัมประสิทธิ์ฟิวการชิดีในบทความนิ่น ต้องการเฉพาะสมบัติทางกายภาพของแก๊สทั้งสองโดยไม่ต้องการพารามิเตอร์อื่น ๆ จากการทำทดลอง ช่วงของอุณหภูมิและช่วงของความดันของข้อมูลจากการทดลองมีค่าเท่ากับ $10-100^{\circ}\text{C}$ และ $5-1,200 \text{ kPa}$ ตามลำดับ ค่าพลังงานอันตรกิริยะในแบบจำลองสัมประสิทธิ์เอกติวิตีเป็นค่าที่ขึ้นกับอุณหภูมิแต่ไม่ขึ้นกับความเข้มข้น เมื่อนำค่าพารามิเตอร์ที่ได้จากการทำทดลองไม่เชิงเส้นในการคำนวณค่าความดันย่อยของคาร์บอนไดออกไซด์ ผลปรากฏว่าได้ค่าความคลาดเคลื่อนสัมบูรณ์เฉลี่ย (MAE) ของผลต่างระหว่างความดันย่อยจากการทดลองและจากการคำนวณเท่ากับ 2.72% และค่าเบี่ยงเบนมาตรฐานสัมบูรณ์เฉลี่ยของความคลาดเคลื่อนเท่ากับ 1.35% เมื่อเปรียบเทียบระหว่างค่าของสัมประสิทธิ์เอกติวิตีและค่าสัมประสิทธิ์ฟิวการชิดีของทั้งระบบ พนวจระดับของความเบี่ยงเบนไปจากสภาวะอุดมคิดของสารละลายในวัฏจักรแก๊สเมื่อสูงกว่าของสารละลายในวัฏจักรของเหลว

¹ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อำเภอหาดใหญ่ จังหวัดสงขลา 90112 ²บริษัทบริดจ์สโตน (ประเทศไทย) จำกัด ถนนบางนา-ตราด อำเภอเมือง จังหวัดชลบุรี 20000 ³ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยธรรมศาสตร์ อำเภอคลองหลวง จังหวัดปทุมธานี 12121

Chemisorption of CO_2 by amine aqueous solutions in gas purification process is very important in petrochemical industries (Kohl and Nielsen, 1997). The process is conducted due to CO_2 reduced heating value of natural gases or may damage downstream industrial plants. Prior to reaching a complicated system of chemisorption, the less sophisticated physisorption systems of CO_2 in water should be investigated. The binary system of CO_2 -water was important to study first because the system would give the basic appearance of the solubility of CO_2 in water. Consequently, the complicated model of $\text{CO}_2 +$ water + amine system needed the sub-model of $\text{CO}_2 +$ water to be accomplished. In this study, we selected UNIQUAC activity coefficient model for the sub-model of the $\text{CO}_2 +$ water + amine system. The UNIQUAC model is suitable for these systems

since it accounts for the molecular volume and surface area properties of all chemical species in the system.

This study investigated UNIQUAC interaction parameters for the binary system of CO_2 -water. Those parameters can be obtained by a nonlinear regression method from the experimental data. The parameters were dependent on temperature but were not dependent on concentration. Importantly, the interaction parameters of CO_2 +water systems could be used in the ternary system of CO_2 -water-amine without any re-adjustment.

Assumption of the Models

The fluid phase equilibrium system of CO_2 + water was found by equations to be related to partial pressure (P_i) and vapor mole fraction (y_i) as follows:

$$P_1 = \frac{x_1 \gamma_1^* H_{12}}{\phi_1} \quad P_2 = \frac{x_2 \gamma_2 P_2^s}{\phi_2} \quad (1)$$

$$y_1 = \frac{x_1 \gamma_1^* H_{12}}{\phi_1 P} \quad y_2 = \frac{x_2 \gamma_2 P_2^s}{\phi_2 P} \quad (2)$$

Note that, according to Dalton's law, the total pressure of the system (P) can be written as: $P = P_1 + P_2$

Where subscripts 1 and 2 refer to CO_2 and water respectively

P_i is a partial pressure of component i

γ_i is an activity coefficient of component i

ϕ_i is a fugacity coefficient of component i

y_i is a mole fraction in vapor phase of component i

x_i is a mole fraction in liquid phase of component i

H_{12} is the Henry's constant of solubility of solute 1 in solvent 2

P_2^s is the vapor pressure of water

Superscript * is an unsymmetric convention of activity coefficient. The Henry's constant of CO_2 as a function of temperature and vapor pressure of pure water in water as functions of temperature are shown in Table 1.

Activity coefficients calculated from the UNIQUAC model were developed by excess Gibbs free energy equation (Abrams *et al.*, 1975)

$$\frac{g^E}{RT} = \frac{g^E(\text{Combinatorial})}{RT} + \frac{g^E(\text{Residual})}{RT} \quad (3)$$

where g^E is the excess Gibbs free energy and R is the gas constant. For a binary system, activity coefficients are derived by differentiation of the total excess Gibbs function with respect to mole fraction of different species. The contribution to the activity coefficient of CO_2 was given by unsymmetrical UNIQUAC equation and that of H_2O was given by symmetric UNIQUAC equation

(Prausnitz *et al.*, 1999).

In these two cases, the use of a standard state as a pure solvent is often called symmetrical normalization. On the other hand, if the infinite dilution standard state is used for the solute, it is obvious that the unsymmetrical normalization would apply to the solute. Those two normalizations can be expressed as follows:

Symmetric: $\gamma_i \rightarrow 1$, as $x_i \rightarrow 1$

Unsymmetric: $\gamma_i \rightarrow 1$, as $x_i \rightarrow 0$

The unsymmetrical normalization is given by the following:

$$\gamma_i^* = \frac{\gamma_i}{\gamma_1^\infty} \quad (4)$$

$$\text{where } \gamma_1^\infty = \lim_{x_1 \rightarrow 0} \gamma_1 \quad (5)$$

Therefore, the activity coefficients of CO_2 and water were obtained as (Sander *et al.*, 1986):

$$\ln \gamma_1^{*C} = \ln \frac{\phi_1}{x_1} - \frac{\phi_1}{x_1} - \ln \frac{r_1}{r_2} + \frac{r_1}{r_2} - \frac{z}{2} q_1 \left(\ln \frac{\phi_1}{\theta_1} - \frac{\phi_1}{\theta_1} - \ln \frac{r_1 q_2}{r_2 q_1} + \frac{r_1 q_2}{r_2 q_1} \right) \quad (6)$$

$$\ln \gamma_1^{*R} = q_1 \left(-\ln(\theta_1 + \theta_2 \Psi_{21}) - \frac{\theta_1}{\theta_1 + \theta_2 \Psi_{21}} \right) - \frac{\theta_2 \Psi_{12}}{\theta_1 \Psi_{12} + \theta_2} + \ln \Psi_{21} + \Psi_{21} \quad (7)$$

$$\ln \gamma_2^C = \ln \frac{\phi_2}{x_2} + 1 - \frac{\phi_2}{x_2} - \frac{Z}{2} q_2 \left(\ln \frac{\phi_2}{\theta_2} + 1 - \frac{\phi_2}{\theta_2} \right) \quad (8)$$

$$\ln \gamma_2^R = q_2 \left(1 - \ln(\theta_1 \Psi_{12} + \theta_2) - \frac{\theta_1 \Psi_{21}}{\theta_1 + \theta_2 \Psi_{21}} - \frac{\theta_2}{\theta_1 \Psi_{12} + \theta_2} \right) \quad (9)$$

where z is coordination number equal to 10. (Prausnitz *et al.*, 1999)

The activity coefficients of the both unsymmetric and symmetric conventions are shown below:

$$\ln \gamma_1^* = \ln \gamma_1^{*C} + \ln \gamma_1^{*R} \quad (10)$$

$$\ln \gamma_2^* = \ln \gamma_2^C + \ln \gamma_2^R \quad (11)$$

Table 1. Henry's constant of CO₂ in water (H₁₂) and vapor pressure of water (P₂^s)

	Expression	Range	Source
H ₁₂	$\ln H_{12} = 192.876 - \frac{9624.41}{T} - 28.7488 \ln(T) + 1.44074 \times 10^{-2}T$	273-473 K	Kamps <i>et al.</i> , 2001
P ₂ ^s	$\ln P_2^s = 72.55 - 7206.7T - 7.1385 \ln(T) + 4.04 \times 10^{-6}T^2$	273-650 K	Posey and Rochelle, 1997

Other variables used in UNIQUAC equations can be written as:

$$\phi_1 = \frac{x_1 r_1}{x_1 r_1 + x_2 r_2} \quad \phi_2 = \frac{x_2 r_2}{x_1 r_1 + x_2 r_2} \quad (12)$$

$$\theta_1 = \frac{x_1 q_1}{x_1 q_1 + x_2 q_2} \quad \theta_2 = \frac{x_2 q_2}{x_1 q_1 + x_2 q_2} \quad (13)$$

where r_i and q_i are volume parameters and surface area parameters of pure components (Bondi, 1968). In this research r_i and q_i were evaluated from van der Waals group parameters and are shown in Table 2 as follows:

Interaction energy parameters Ψ_{12} and Ψ_{21} related to internal energy, u_{ij} , were estimated by non-linear regression method. The relationship between these parameters and internal energies were shown as follows:

$$\Psi_{12} = \exp\left(-\frac{u_{12} - u_{22}}{RT}\right) = \exp\left(-\frac{\tau_{12}}{RT}\right) \quad (14)$$

$$\Psi_{21} = \exp\left(-\frac{u_{21} - u_{11}}{RT}\right) = \exp\left(-\frac{\tau_{21}}{RT}\right) \quad (15)$$

Where R is equal to 8.31451 J·mol⁻¹·K⁻¹. According to equations 14 and 15, it is obvious

that $\Psi_{12} = \Psi_{21} = 1.0$. In this work, the parameters τ_{12} and τ_{21} were set to be dependent on temperature. Therefore, τ_{12} and τ_{21} were related to temperature by means of independent parameters (β 's) as follows:

$$\tau_{12} = \beta_1 + \frac{\beta_2}{T} \quad (16)$$

$$\tau_{21} = \beta_3 + \frac{\beta_4}{T} \quad (17)$$

Besides activity coefficient calculation, we can estimate fugacity coefficients of CO₂ and water in vapor phase. Since the systems were not agreeable with ideal gas behavior, the fugacities were required to represent the gas behavior. Fugacity coefficient model in this work was presented by the modified Redlich-Kwong Equation of State (Soave, 1972):

$$P = \frac{RT}{v-b} - \frac{a/T^{0.5}}{v(v+b)} \quad (18)$$

Then fugacity coefficients were calculated by:

$$\ln \phi_i = \int_{\infty}^v \left[\frac{1}{v} - \frac{1}{RT} \left[\frac{dP}{dn_i} \right]_{T,P,n_j} \right] dv - \ln Z_e \quad (19)$$

Table 2. Volume parameters (r_i), surface area parameters (q_i) and molecular weight of CO₂ and water. (Abrams *et al.*, 1975)

Component	r_i	q_i	MW.
CO ₂ (1)	1.3	1.12	44
H ₂ O (2)	0.92	1.40	18

Table 3. Critical temperatures (T_{ci}), critical pressures (P_{ci}) and dimensionless factors (α_i) of CO₂ and water. (Prausnitz *et al.*, 1999)

Component	T_{ci} (K)	P_{ci} (bar)	α_i
CO ₂ (1)	304.1	73.8	1.30
H ₂ O (2)	647.3	221.2	1.354

$$\ln \varphi_i = \frac{b_i}{b} (z_e - 1) - \ln (z_e - B) - \frac{A}{B} \left(2 \frac{a_i^{0.5}}{a^{0.5}} - \frac{b_i}{b} \right) \ln \left(1 + \frac{B}{Z_e} \right) \quad (20)$$

Many variables to calculate fugacity coefficients in equation (20) were obtained by:

$$A = 0.42747 \frac{P}{T^2} \sum_{i=1}^n \left(y_i \frac{T_{ci} \alpha_i^{0.5}}{P_{ci}^{0.5}} \right)^2 \quad (21)$$

$$B = 0.08664 \frac{P}{T} \sum_{i=1}^n y_i \frac{T_{ci}}{P_{ci}} \quad (22)$$

$$\frac{a_i^{0.5}}{a^{0.5}} = \frac{\alpha_i^{0.5} T_{ci} / P_{ci}^{0.5}}{\sum_{i=1}^n y_i \alpha_i^{0.5} T_{ci} / P_{ci}^{0.5}} \quad (23)$$

$$\frac{b_i}{b} = \frac{T_{ci} / P_{ci}}{\sum_{i=1}^n y_i T_{ci} / P_{ci}} \quad (24)$$

The compressibility factor (z_e), used in equation (20) and (21), was obtained by solving in one of three real roots in equation (25). The largest root of equation (25) was the solution of z_e .

$$Z_e^3 - Z_e^2 + Z_e (A - B - B^2) - AB = 0 \quad (25)$$

The specific properties of each component are critical temperature (T_{ci}), critical pressure (P_{ci}) and dimensionless factor (α_i) that were shown in Table 3.

Estimation of Parameters

The experimental data CO_2 -water system (Lide, 1992) were the relationship between partial pressure and concentration of CO_2 at the temperature ranges of 10 to 100°C. The total number of data was 90.

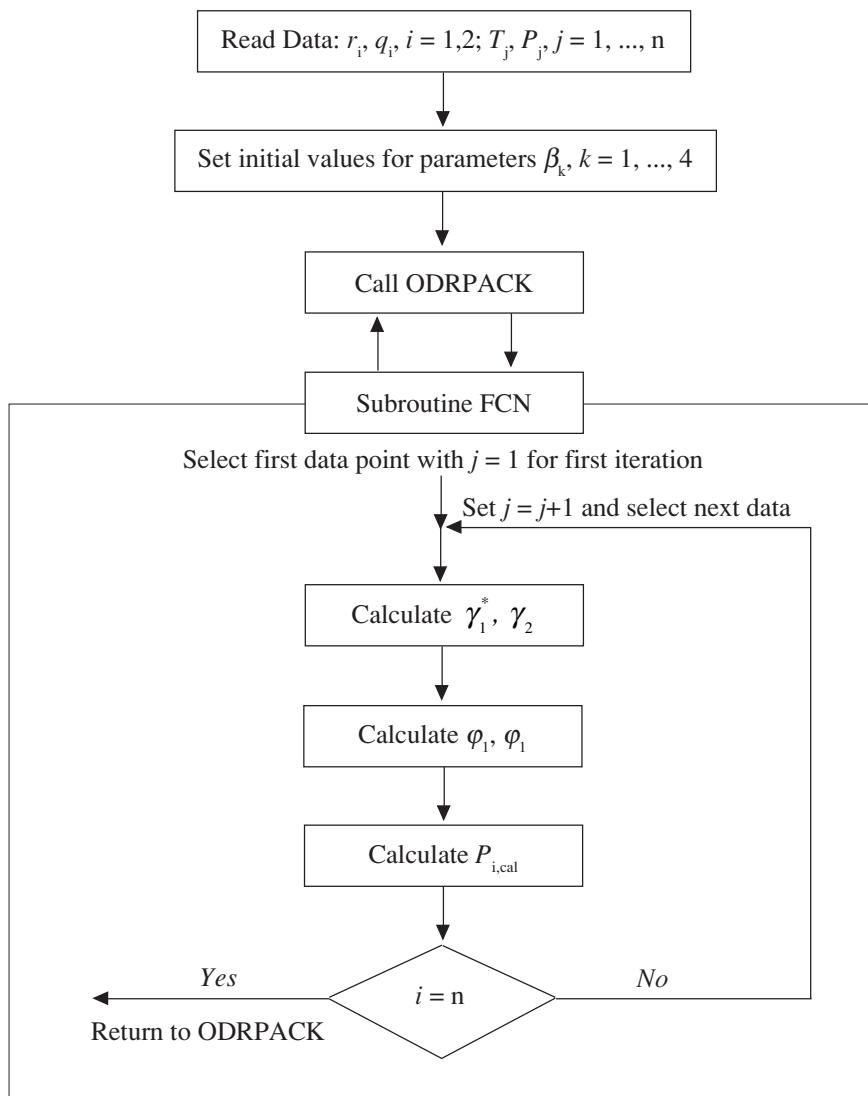
The evaluation of parameters τ_{12} and τ_{21} in equation (16) and (17) were obtained by non-linear regression method that was set mole fraction as independent variable and partial pressure as dependent variable. The regression used least square method to obtain τ_{12} and τ_{21} by the following equation:

$$\text{Least Square} = \sum_{i=1}^n \left(x_i^{cal} - x_i^{exp} \right)^2 + \sum_{i=1}^n \left(P_i^{cal} - P_i^{exp} \right)^2 \quad (26)$$

where i was a data number, x was mole fraction of CO_2 in liquid phase, n was the total number of data, P_i was partial pressure of CO_2 , superscript, cal was mole fraction or partial pressure of CO_2 from calculation and superscript, exp was mole fraction or partial pressure of CO_2 from experiments. Least square calculation can be used by Fortran 77 with subroutine ODRPACK (Boggs et al., 1992a,b) to determine β_1 , β_2 , β_3 and β_4 in equation (16) and (17) respectively. The simulation flow chart is illustrated in Figure 1.

Calculation Results and Discussion

The regression results of independent parameters β_1 , β_2 , β_3 and β_4 in equation (16) and (17) can be written again as:


$$\tau_{12} = \beta_1 + \frac{\beta_2}{T} \quad \text{and} \quad \tau_{21} = \beta_3 + \frac{\beta_4}{T}$$

The obtained values of β_1 , β_2 , β_3 and β_4 are listed as follows (Katawut, 2002):

$$\begin{aligned} \beta_1 &= 708.96173 \text{ J/mol}, \beta_2 = 319.76499 \times 10^3 \text{ J}\cdot\text{K/mol} \\ \beta_3 &= -4597.4706 \text{ J/mol}, \beta_4 = 1670.9929 \times 10^3 \text{ J}\cdot\text{K/mol} \end{aligned}$$

Substituting β_1 , β_2 , β_3 and β_4 into the UNIQUAC equation, one would obtain activity coefficients of all species in the systems. The calculation of mean absolute error (MAE) for all experimental data of carbon dioxide partial pressure and mean absolute standard deviation of the errors (MAD) gave 2.72% and 1.35% respectively. Appendix 1 and Appendix 2 show the comparison of partial vapor pressure of CO_2 obtained from the model with their experimental values. Furthermore, Appendix 1 also illustrates the calculation results of activity and fugacity coefficients.

Use of the model is widely applicable due to the wide ranges of temperature and pressure. The model should apply the whole system of CO_2 aqueous solutions. Moreover, the model should be a good basis for the other systems of solubilities of CO_2 such as the solubilities of CO_2 in sucrose solutions, the solubilities of CO_2 in beverage industries and the solubilities of CO_2 in scrubbers

Figure 1. Flow chart of the non-linear regression to determine the energy interaction parameters (β_k).

of natural gas plants.

Conclusions

The use of UNIQUAC activity coefficient model and the modified Redlich-Kwong EOS can predict the VLE system of CO_2 aqueous solutions satisfactorily. The calculation was applied to wide ranges of temperature and CO_2 pressure. The experimental data were obtained from the well-

known chemical engineers' handbook (Lide, 1992) whereas the shape and size parameters of the UNIQUAC model were obtained from the original work of the model (Abrams and Prausnitz, 1975). The non-linear regression subroutine, ODRPACK, to obtain energy interaction parameters was well-known free software from the National Institute of Standards and Technology (Boggs *et al.*, 1992a,b). The use of the activity coefficient model and fugacity coefficient model provided satisfactory

low mean absolute error and low mean absolute deviation of CO_2 partial pressure from the experimental data. Future work related to these results should address other systems of CO_2 solubilities which are based on aqueous solutions such as in the beverage industry or in electrolyte solutions.

Acknowledgements

The authors would like to thank the graduate school of Khon Kaen University for supporting grants and to the Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, for providing software and place during doing this work.

References

Abrams, D.S. and Prausnitz, J.M. 1975. Statistical Thermodynamics of Liquid Mixture. *AIChE J.*, 21: 116-128.

Boggs, P.T., Byrd, R.H., Rogers, J.E. and Schnabel, R.B. 1992a. User's Reference Guide for ODRPACK Version 2.01 Software for Weighted Orthogonal Distance Regression, U.S. Department of Commerce, National Institute of Standards and Technology.

Boggs, P., Byrd, R.H., Rogers, J.E. and Schnabel, R.B. 1992b, <http://www.netlib/netlib/odrpack>.

Bondi, A. 1968. Physical Properties of Molecular Crystals, Liquids and Glasses, Wiley, New York.

Kamps, P-S., Balaban, A., Kuranov, G., Smirnova, N.A. and Maurer, G. 2001. Solubility of Single Gases Carbon Dioxide and Hydrogen Sulfide in Aqueous Solutions of N-Methyldiethanolamine at Temperatures from 313 to 393 K and Pressure up to 7.6 Mpa: New Experimental Data and Model Extension. *Ind. Eng. Chem. Res.*, 40(2): 696-706.

Katawut, K., 2002. Prediction of Fluid Phase Equilibrium of Water-Monoethanolamine (And Carbon Dioxide-Water-Methyldiethanolamine System) by UNIQUAC and Electrolyte UNIQUAC Model. Master Thesis, Khon Kaen University, Khon Kaen.

Kohl, A. and Nielsen, R. 1997. Gas Purification, 5th ed. Gulf Publishing Company, Houston.

Lide, D.R. 1992. *Handbook of Chemistry and Physics*, 73rd ed. CRC Press, Florida.

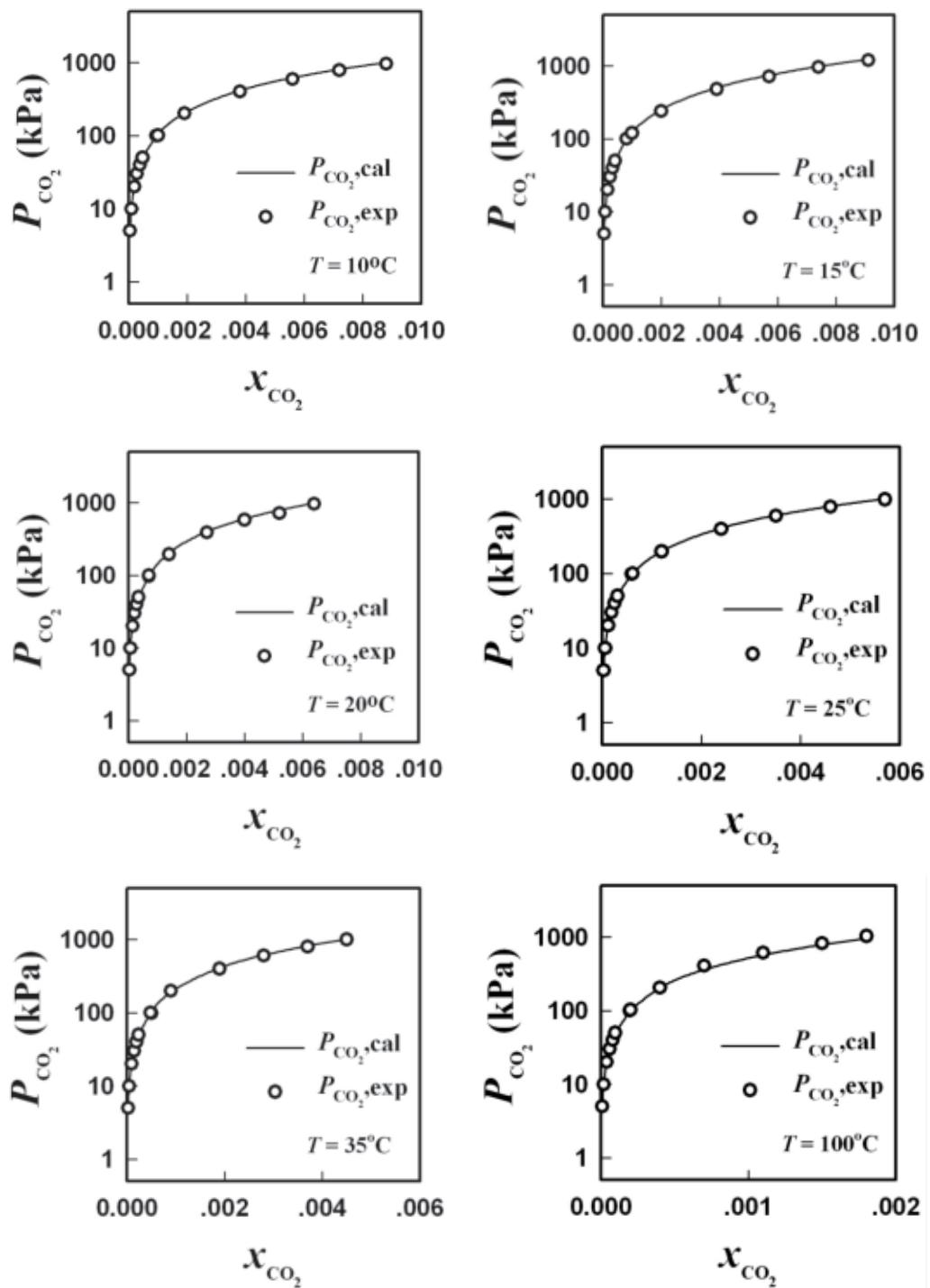
Posey, M.L. and Rochelle, G.T. 1997. A Thermodynamic Model of Methyldiethanolamine- CO_2 - H_2S -Water. *Ind. Eng. Chem.*, 36(9): 3944-3953.

Prausnitz, J.M., Lichtenhaler, R.N. and Azevedo, E.G. 1999. *Molecular Thermodynamics of Fluid-Phase Equilibria*. Prentice Hall., New Jersey.

Sander, B., Rasmussen P., and Ferdenslund A., 1986. Calculation of Vapour-Liquid Equilibria in Nitric Acid-Water-Nitrate Salt Systems Using an Extended UNIQUAC Equation. *Chem. Eng. Sci.*, 41(5): 1185-1195.

Soave, G. 1972. Equilibrium Constants from a modified Redlich-Kwong Equation of State. *Chem. Eng. Sci.*, 27(5): 1197-1203.

Appendix 1.


Aqueous solubility data of carbon dioxide at various temperatures (Lide, 1992) including the calculation results of activity coefficients, fugacity coefficients and CO₂ partial vapor pressures.

Data #	T (K)	x_{co_2}	γ_{H_2O}	γ_{co_2}	ϕ_{H_2O}	ϕ_{co_2}	P_{exp} (kPa)	P_{cal} (kPa)
1	283.15	4.80e-05	0.999784	1.000000	0.999533	0.999216	5	5.11
2	283.15	9.60e-05	0.999569	1.000000	0.999152	0.998592	10	10.22
3	283.15	1.91e-04	0.999142	1.000000	0.998401	0.997355	20	20.35
4	283.15	2.87e-04	0.998711	1.000000	0.997641	0.996106	30	30.60
5	283.15	3.82e-04	0.998285	1.000000	0.996889	0.994869	40	40.76
6	283.15	4.77e-04	0.99786	1.000000	0.996137	0.993632	50	50.93
7	283.15	9.50e-04	0.995743	1.000002	0.992385	0.987466	100	101.75
8	283.15	0.001	0.99552	1.000002	0.991988	0.986814	100.97	107.15
9	283.15	0.0019	0.99151	1.000008	0.984821	0.975045	201.07	204.86
10	283.15	0.0038	0.983111	1.000032	0.969564	0.95004	398.81	415.37
11	283.15	0.0056	0.975238	1.000070	0.954931	0.92611	592.52	620.54
12	283.15	0.0072	0.968308	1.000116	0.941754	0.904601	782.11	808.06
13	283.15	0.0088	0.96144	1.000174	0.928394	0.882826	967.02	1000.90
14	288.15	4.10e-05	0.999823	1.000000	0.999517	0.999183	5	5.11
15	288.15	8.20e-05	0.999646	1.000000	0.99915	0.99858	10	10.23
16	288.15	1.64e-04	0.999291	1.000000	0.998418	0.997373	20	20.48
17	288.15	2.45e-04	0.998941	1.000000	0.997694	0.996182	30	30.61
18	288.15	3.27e-04	0.998587	1.000000	0.996961	0.994975	40	40.89
19	288.15	4.09e-04	0.998233	1.000000	0.996228	0.993767	50	51.17
20	288.15	8.14e-04	0.996487	1.000002	0.992601	0.987795	100	102.17
21	288.15	0.001	0.995686	1.000002	0.990932	0.985048	119.67	125.70
22	288.15	0.002	0.991396	1.000009	0.981915	0.970222	239.37	253.43
23	288.15	0.0039	0.98331	1.000033	0.964574	0.941768	479.05	502.15
24	288.15	0.0057	0.975728	1.000070	0.947856	0.914405	717.35	745.76
25	288.15	0.0074	0.968635	1.000118	0.931768	0.888122	954.84	983.81
26	288.15	0.0091	0.961609	1.000179	0.915339	0.861324	1189.77	1230.54
27	293.15	3.50e-05	0.999823	1.000000	0.999517	0.999183	5	5.06
28	293.15	7.10e-05	0.999646	1.000000	0.99915	0.99858	10	10.27
29	293.15	1.41e-04	0.999291	1.000000	0.998418	0.997373	20	20.40
30	293.15	2.12e-04	0.998941	1.000000	0.997694	0.996182	30	30.69
31	293.15	2.83e-04	0.998587	1.000000	0.996961	0.994975	40	40.99
32	293.15	3.53e-04	0.998233	1.000000	0.996228	0.993767	50	51.16
33	293.15	0.0007	0.997082	1.000001	0.992853	0.988183	97.26	101.77
34	293.15	7.04e-04	0.996487	1.000002	0.992601	0.987795	100	102.36
35	293.15	0.0014	0.994176	1.000004	0.985817	0.976589	194.39	204.85
36	293.15	0.0027	0.988807	1.000015	0.972616	0.95487	387.06	399.90
37	293.15	0.004	0.983475	1.000033	0.959221	0.932877	579.57	600.00
38	293.15	0.0052	0.978586	1.000057	0.946666	0.912299	711.7	789.60
39	293.15	0.0064	0.973729	1.000085	0.933905	0.891415	960.1	984.29
40	298.15	3.10e-05	0.999875	1.000000	0.999457	0.999065	5	5.14
41	298.15	6.20e-05	0.99975	1.000000	0.999113	0.998499	10	10.27
42	298.15	1.23e-04	0.999503	1.000000	0.99844	0.997388	20	20.40
43	298.15	1.85e-04	0.999253	1.000000	0.997757	0.996258	30	30.69

Data #	T (K)	x_{co_2}	γ_{H_2O}	γ_{co_2}	φ_{H_2O}	φ_{co_2}	P_{exp} (kPa)	P_{cal} (kPa)
44	298.15	2.47e-04	0.999003	1.000000	0.997073	0.995128	40	41.01
45	298.15	3.08e-04	0.998756	1.000000	0.9964	0.994016	50	51.17
46	298.15	0.0006	0.997579	1.000001	0.993173	0.988684	98.5	99.96
47	298.15	6.14e-04	0.997523	1.000001	0.993018	0.988428	100	102.31
48	298.15	0.0012	0.995167	1.000003	0.986508	0.977679	196.77	201.15
49	298.15	0.0024	0.990363	1.000011	0.973026	0.955459	394.57	407.38
50	298.15	0.0035	0.985987	1.000025	0.960477	0.934815	590.1	601.25
51	298.15	0.0046	0.981635	1.000043	0.947723	0.913872	787.18	800.14
52	298.15	0.0057	0.977308	1.000066	0.934744	0.892589	984	1004.47
53	308.15	2.40e-05	0.999909	1.000000	0.999355	0.998866	5	5.07
54	308.15	4.80e-05	0.999817	1.000000	0.999037	0.998342	10	10.15
55	308.15	9.70e-05	0.999631	1.000000	0.998393	0.997276	20	20.51
56	308.15	1.45e-04	0.999448	1.000000	0.997764	0.996233	30	30.68
57	308.15	1.93e-04	0.999266	1.000000	0.997135	0.99519	40	40.86
58	308.15	2.42e-04	0.999079	1.000000	0.996493	0.994126	50	51.27
59	308.15	0.0005	0.998099	1.000000	0.993105	0.988509	98.91	106.26
60	308.15	4.81e-04	0.998171	1.000001	0.993355	0.988924	100	102.20
61	308.15	0.0009	0.996581	1.000001	0.987828	0.979764	198.28	192.21
62	308.15	0.0019	0.9928	1.000007	0.97448	0.957682	397.18	410.91
63	308.15	0.0028	0.989414	1.000015	0.962265	0.937512	597.79	612.73
64	308.15	0.0037	0.986042	1.000026	0.949839	0.917027	798.1	819.66
65	308.15	0.0045	0.983058	1.000039	0.938598	0.898523	998.48	1008.23
66	348.15	1.20e-05	0.999962	1.000000	0.998072	0.996377	5	4.89
67	348.15	2.50e-05	0.99992	1.000000	0.997808	0.995941	10	10.20
68	348.15	4.90e-05	0.999844	1.000000	0.997325	0.995141	20	19.99
69	348.15	7.40e-05	0.999764	1.000000	0.996828	0.994314	30	30.21
70	348.15	9.90e-05	0.999683	1.000000	0.996334	0.99349	40	40.43
71	348.15	1.23e-04	0.999607	1.000000	0.995862	0.992701	50	50.26
72	348.15	2.45e-04	0.999218	1.000000	0.993475	0.988699	100	100.33
73	348.15	0.0005	0.998405	1.000000	0.98849	0.980325	211.08	205.74
74	348.15	0.001	0.996813	1.000002	0.978634	0.963774	422.54	415.42
75	348.15	0.0015	0.995224	1.000003	0.968639	0.94701	633.7	629.27
76	348.15	0.0019	0.993956	1.000006	0.960533	0.933428	845.88	803.52
77	348.15	0.0024	0.992374	1.000009	0.950252	0.916221	1058.17	1025.53
78	373.15	1.00e-05	0.99997	1.000000	0.99599	0.992292	5	5.08
79	373.15	2.00e-05	0.999941	1.000000	0.995769	0.991926	10	10.17
80	373.15	3.90e-05	0.999885	1.000000	0.995352	0.991234	20	19.84
81	373.15	5.90e-05	0.999825	1.000000	0.994917	0.990508	30	30.03
82	373.15	7.90e-05	0.999766	1.000000	0.994484	0.989786	40	40.22
83	373.15	9.80e-05	0.99971	1.000000	0.994075	0.989101	50	49.92
84	373.15	1.96e-04	0.99942	1.000000	0.991985	0.985587	100	100.04
85	373.15	0.0002	0.999408	1.000000	0.9919	0.985444	102.37	102.09
86	373.15	0.0004	0.998816	1.000000	0.987673	0.978302	204.45	205.01
87	373.15	0.0007	0.99793	1.000001	0.981331	0.967561	408.86	360.98
88	373.15	0.0011	0.99675	1.000002	0.972809	0.953124	614.31	572.01
89	373.15	0.0015	0.995571	1.000003	0.964186	0.938523	820.92	786.71
90	373.15	0.0018	0.994689	1.000005	0.957644	0.927455	1028.75	950.25

Appendix 2.

Comparison of model predictions with experimental data of CO_2 partial pressures at various temperatures of water- CO_2 system

