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Abstract

In this article, we first investigate the exponential Lebesgue-Nagell equation as shown in the title. Eventually, we can
establish a necessary and sufficient criterion for having an integer solution to such an equation under the conditions that p =
3 (mod 4) andn = 1 (mod 4). The unique factorization in the ring of Gaussian integers, the existence of primitive divisors of the
Lehmer sequences, and also the MAGMA program are the essentials applied in this work.
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1. Introduction

Let C be a nonzero integer and n be an integer
greater than 2. The Diophantine equation

x*+C=y" )

is the so-called generalized Ramanujan-Nagell equation. There
is a very broad literature on studying such an equation, which
always has finitely many positive integer solutions ( Landau &
Ostrowski, 1920) . The explorations on finding an integer
solution to this equation can be studied more in ( Bureaud,
Mignotte & Siksek, 2006; Cohn, 1993), and these contain early
results in the case when C is a fixed integer. Many authors have
been interested over the year in the case C = p™ whenp is a
fixed prime number (Arif & Muriefah, 1997, 1998, 1999, 2006)
or even a general prime number (Arif & Muriefah, 2002;
Bérczes & Pink, 2008; Le, 2003; Lin Zhu, 2011; Xiaowei,
2013). More generally, the case of C consisting of a product of
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prime powers p™, where p belongs to some fixed finite set of
primes, has recently been investigated by several
mathematicians (Luca, 2002; Luca & Togbcé, 2008, 2009;
Pink, 2007; Pink & Rabai, 2011; Soydan & Tzanakis, 2016;
Lin Zhu, Le, & Soydan, 2015).

Our interest in this paper focuses on equation (1) in
the case C = p™ when p is a prime number and m is a natural
number. This specific equation type is known as the
exponential Lebesgue-Nagell equation. Now, we will divide
our discussion about some results concerning our considered
equation into 2 cases, namely for m being odd or even:

Case A: Let m =2k + 1, where k is a positive
integer, p be odd such thatp # 7 (mod 8 ), andn > 3 be an
odd integer with gcd(n, #) = 1, where 4 is the class number of
the number field Q(,/—p). Arif and Abu Muriefah
demonstrated in Arif and Muriefah (1998) that the equation
x2 4+ 3™ = y™ has the unique positive integral solution given
by n=3m=5+6N,x =10 x 33, y =7 x

32N when N is one-third of the highest power of 3 which
divides x. In 2002, they also proved that the equation x? +
p?*+1 = y™ where gcd(p,x) =1 and n =5 is not a
multiple of 3, has exactly two families of solutions given by
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p = 19,n = 5,k = 5M,x = 22434 x 19°M,y = 55 x 192M and
= 341,n = 5,k = 5M,x = 2759646 x 341°M,y = 377 x 192M
when M is one - fifth of the hlghest power of p which divides x. This work can be found in (Arif & Muriefah, 2002). In addition,
all the integer solutions to the equation x2 + g™ = y® consist of exactly one solution (g, k,x,y) = (11,1,9324,443) due to
(Lin Zhu, 2011).
Case B: Let m = 2k, where k is a positive integer. Bérczes and Pink showed in Bérczes and Pink (2008) that all integer
solutions to the equation x? + p?¥ = y™ are

(x,y,p,n k) = (11,5,2,3,1),(46,13,3,3,2),(524,65,7,3,1),(2,5,11,3,1),
(278,5,29,7,1),(38,5,41,5,1),(52,17,47,3,1), (1405096, 12545,97, 3, 1),
where i) x,y,n,k are unknown integers satisfying x =5y >1,n >3 isaprime and k = 0 with gcd(x,y) = 1, and ii) 2 <
p < 100. Observe that the equation x2 + p2 = y™ has no integer solution (x,y,p,n) when n is a prime with p = 3 (mod 4) and
=1 (mod 4) such that 2 < p < 100.

Being motivated by the works of Bérczes and Pink as mentioned above in the particular case k = 1 led us to assert the
conjecture that the equation x2 + p? = y™ would have no integer solution when p = 3 (mod 4) and n = 1 (mod 4). Eventually,
it turned out that we were able to obtain the following main result.

Theorem 1. Let p and n be a prime number and a natural number greater than 1 satisfying p = 3 (mod 4) and n = 1 (mod 4),
respectively. Then the Diophantine equation x? + p? = y™ has an integer solution (x, y) if and only if

n-1

=0 =220 (5p) (FDTE1b2 @

(nr—ll) .

The important tools used to prove this main result are the unique factorization in the ring of Gaussian integers, the
existence of primitive divisors of the Lehmer sequences, and the MAGMA program at some points. Indeed, we have explicitly
illustrated in (Jaidee & Saosoong, 2022) that the equation x2 + p? = y5 has no integer solution for any prime p with p =
3 (mod 4), without applying the second tool.

for some even positive integer b such that b2 < [

2. Preliminaries

In order to complete our main result, let us first give the necessary and sufficient condition for having an integer solution
of the Fermat-type equation with signatures (2,2,n) as follows:

Theorem 2. Let n be an integer greater than 1. Then the equation x? + y2 = z™ with ged(x, y) = 1 has an integer solution if and
only if the equation

x+yi =u(a+ bi)" 3
has an integer solution (x,y,a,b) forsome u € {+i, +1}.
To prove Theorem 2, we need Lemma 1 and Lemma 2 below. The first lemma is easily proven by applying the unique
factorization in the ring of Gaussian integers. In fact, this lemma is true for any unique factorization domain and also for its
advanced analogue in the unique prime ideal factorization appearing in the book written by Alaca and Kenneth (2004).

Lemma 1. Let n be any natural number and «, # and y be nonzero and nonunit Gaussian integers such that 8 and y are coprime.
If a™ = By, thenthereexist §; y; andunitelements u, v in Gaussian integers for which f = up; and y = vy; where §; and
y; are coprime.

Lemma 2. Let n be a natural number greater than 2. If the equation x2 + y? = z" has an integer solution (x, y) with gecd(x,y) =
1,then x + yi and x — yi are coprime.

The proof of Lemma 2 may be found in Andreescu, Andrica, and Cucurezeanu (2010). Instead of being arbitrary integer
y in the necessary condition stated in Theorem 2, we can choose y as a fixed prime p such that p = 3 (mod 4) in order to apply
Theorem 2 specifically as illustrated in the following lemma. Its proof may be seen in Jaidee and Wannalookkhee (2020).

Lemma 3. Let n be a natural number greater than 2, and p be a prime number such that p = 3 (mod 4). If the equation x? +
p? = y™ has an integer solution (x, y), then gcd(x,p) = 1.
Let a and B be algebraic integers for which (a + £)? and af are nonzero coprime rational integers, and % is not a root

of unity. For each natural number n, we call
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( n_ pn
! % if nis odd,
i, = i,(a,B) =
O NG
TBZ 1I n 1S even
the Lehmer sequences. A rational prime p is a primitive divisor of i, if p divides i, but does not divide (a™ — )%, « fip—1.

For instance, if a = ¥ and B = # then the term i, is the Fibonacci number E, for any natural number n. These numbers

are formed to be the Fibonacci sequence listed as A00045 in the On-Line Encyclopedia of Integer Sequences (OEIS) (Sloane,
2022) begins with

Fo=0,F, =1,F,=1F; =2, F,=3,F; =5,F; = 8,F, = 13,Fg = 21,Fy = 34, ...
Clearly, F,, F,, Fsand Fg have no primitive divisors, but F;, F,, F,, Fgand F, have a primitive divisor. The following two
theorems taken from (Bureaud, Mignotte, & Siksek, 2006) will play an important key role in the next section.

Theorem 3. For every integer n > 30, i, (, B) has a primitive divisor.

Theorem 4. Let n satisfy 6 < n < 30 and n # 8,10, 12. Then all i, («, B) having no primitive divisors are of the form

Va—+b va++vb
@p)=|\———7—)
2 2
where (a, b, n) are given as follows:
(7;11 _7)1 (7;11 _19)1 (713! _5)1 (715! _7)1 (7113! _3), (7,14’, _22), (9,5, _3)' (9,7, _1)1 (9,7, _5)1
(13,1,-7), (14,3, —13), (14,5, —3), (14,7, — 1), (14,7, —5), (14,19, 1), (14,22, —14), (15,7, - 1),
(15,10,—2), (18,1, =7), (18,3, =5), (18,5, =7), (24,3, —5), (24,5, —3), (26,7, 1), (30,1,~7), (30,2,10).

The proof of Theorem 1.
Before showing the proof of Theorem 1, the following facts will be needed.

Theorem 5. There are no natural numbers a > 1 and b such that a # b (mod 2 ) and gcd(a, b) = 1 satisfying the equation

n-1
2
1= Z (an) (a)n—Zk—l(_bZ)k (4_)
k=0
for any natural number n > 1 with n = 1 (mod 4).

Proof. Suppose that there exist natural numbers a > 1, b and n such that a # b (mod 2) with gcd(a,b) =1,and n =
1 (mod 4) satisfying the equation (4). Let « = a+ bi and 8 = a — bi. Following the binomial theorem and the equation (4),
we eventually obtain that

a"+ " =2a=a+p.
Then we may write

a"+ﬁ"=(a+ﬁ)<a2n_ﬂ2n>( «—p )

QZ_BZ an_Bn

(in _ ﬁZn a — ﬂn
2_pz |7 _ )
a’—p a-p
Since a and S are roots of the polynomial equation X2 —2aX + (a? + b%) = 0, we have that « and 8 are algebraic integers.
Obviously, (a + B)?and af are coprime. We claim that% is not a root of unity. Suppose that it is a root of unity, that is, (%)m =1

Consequently,

for some natural number m. Then, it is a root of the polynomial equation X™ — 1 = 0. Since we know that

Xm—1= Hdlm‘pd(x)v
there exists a natural number d, such that @q,(a/f) = 0. Note that @4 (X) is the dt™ cyclotomic polynomial. One can check
that % is a zero of the polynomial

vz _ 2(a?-b?)
pX)=X e X+ 1
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This implies that the polynomial ¢4, (X) must divide p(X) as @q,(X) is always monic and irreducible. Indeed, p(X) cannot be
divided by all possibilities of ¢4, (X), a contradiction. Hence % is not a root of unity. Now, we are able to define i, («, B) as the
Lehmer sequence. From (5), we deduce that the Lehmer sequence i, (, B) has no primitive divisors for any natural number n.
Applying Theorem 3 and Theorem 4 together with the condition n =1 (mod 4), we eventually find that ,,(a,B) has a
primitive divisor for any natural number n excluding n = 5. This leads to a contradiction. It remains to focus on the case n = 5
only. By (4), we have a* — 10a?b?+5b* = 1. By applying the ThueSolve function in MAGMA (Bosma, Cannon, & Playoust,
1997), we know that (x,y) = (&1, 0) are only integer solutions of the Thue equation x* — 10x2y?+5y* = 1. Again, we have a
contradiction. Hence, we have completed the proof of the theorem.

Lemma 4. Let n be a natural number greater than 1 with n = 1 (mod 4). Then

n-1

N|

( n ) (_1)n—k—1b2k >0 (6)

=0

for any even positive integer b such that b? > [

(n-3)

(nms)

)5t (o [ (54 (o)
>(Z)b2 b2 — Q +(n)b6 b2 — Q ot b3 b2 — M >0

(a) (&) G2l

Now, we are ready to prove Theorem 1.

Proof. Let p and n be a prime number and a natural number greater than 1 satisfying p = 3 (mod 4) and n = 1 (mod 4),
respectively. For the necessary condition, let us assume that the equation x? + p? = y™ has an integral solution (x, y), and suppose
n
(n—3)
(1)
with the fact that u = u™ forany u € {£i, +13}, we eventually obtain that p + xi = (a + bi)™ for some a,b € Z. Observe that

p —xi = (a — bi)" and recall that gcd(x,p) = 1 and y is odd. Then we have

y*=x?+p?=(p+xi)(p —xi) = (a® + b*)",
which implies that y = a® + b2. If a = b (mod 2 ), then we have that y is even, which is a contradiction. So, a and b have an
opposite parity. Now, we consider

Proof. Let b be an even positive integer such that b% > [ } Rearranging the summation in (6), we obtain that

that the equation (2) is not true for any even positive integer b such that b? < [ l Applying Lemma 3 and Theorem 2 together

n—
2

1 \
k ,n—1-2k},2k+1 :
2k+1 ( D*a b b

k=0

p+xi=/n_1 1)kqn-2kp2k +/
\Z( ) D / \

Then, we have

Z ( 1)kan—2k—1b2k,

which impliesthata = t1ora=+p. If a =1, then_b must be even.
Since n = 1 (mod 4), it follows that

p=1- (rzl) b% + (Z) b* —---4+ nb™ 1 = 1(mod 4),

which is a contradiction. If a = —1, then we have that

n-1
2
—-p= Z (an) (—1)n_k_1b2k,
k=0
which is impossible by reference to Lemma 4 together with the assumption. If a = —p, then b must be even. Asn = 1 (mod 4)
and gcd(4,p) = 1, we eventually obtain that
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—1=p"1- (721) p"3b% + (Z) p"°b* — -+ nb™ ! = 1(mod 4),
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which is a contradiction. Applying Theorem 5 to the other case leads us to get a contradiction as well. For the sufficient condition,

n
suppose that there exists an even positive integer b, for which by? < [(";%l and

Then we choose

(n—l

n-1
2

-1
p=— Z (2nk) (=1)n—k-1gn-2kp 2K

k

o

n-1

_ n _4yn—k-13 2k+1
X = Z(2k+1)( DA

k=0

It is not hard to see that (p, xo, —1, by) satisfies equation (3) in Theorem 2 for some u € {+i, +1}. Hence, we have completed

the proof.

3. Concluding Discussion

According to Tables 1 and 2 below together with applying Theorem 1, we conclude that for any prime p withp =
3 (mod 4) and a natural number 1 < n < 49 with n = 1 (mod 4), the Diophantine equation x? + p? = y™ has no integer
solution (x,y). For each fixed natural number 1 < n < 49 with n = 1 (mod 4), this result generalizes the works of Bérczes and
Pink mentioned in the case B for only the particular case k = 1 and p = 3 (mod 4). There are infinitely many primes of the form
4k + 3, listed as A002145 in the On-Line Encyclopedia of Integer Sequences (OEIS) (Sloane, 2022). We, moreover, conjecture
that our considered equation has no integer solution for any natural number n > 1 with n = 1 (mod 4) and for any prime p with

p = 3 (mod 4).

Table 1.  The values of the sum in (2)

n b Values of the sum in (2) Remark
5 all even >40 positive
9 2 -1199 composite
13 2 -8839 prime = 1 (mod 4)
4 -4291039 composite
17 2 873121 positive
4 -24553864319 composite
6 7005476875681 positive
21 2 -6699319 composite
4 -7547952442399 composite
6 -9382001116577399 composite
25 2 -451910159 composite
4 -379677384665279 composite
6 -33413277960843515279 composite
8 1500111128083892163841 composite
29 2 10513816601 positive
4 508156418079387041 positive
6 -54656126356697865345959 composite
8 -86830731409525073357567359 composite
10 28714774144970063639717469401 positive
33 2 135250416961 positive
4 195337401466191394561 positive
6 -55544682746808341439157439 composite
8 -671582932652885722310459458559 composite
10 -173156776127815926903091558852799 composite
12 178179625643608687570320730917646081 positive
37 2 -8464641213079 composite
4 20456911077705143997281 positive
6 -17653223669804406176810517719 composite
8 -3437192033013175861274046101509759 composite
10 -6243764616905212012976446882123616599 composite
12 631477325821592776208040048198094984801 positive
14

135174135846655757423281431224261441223268

positive
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Table 2.  The values of the sum in (2)

n b Values of the sum in (2) Remark

41 2 33973466382481 positive
4 -9727649740836715098004799 composite
6 65933408587323941845688405725201 positive
8 -13536412949968925749002920977371720959 composite
10 -99376498767324043660260758523750875381999 composite
12 -53665717085918221112725250796920790368950079 composite
14 23525696254572342402118496445124787158685773201 positive
16 13932512484569015094869100053411051281882786483201 positive

45 2 4814772228819641 positive
4 -4840884886670433593354451679 composite
6 175633012692018657955115709876643321 positive
8 -39165376532163420253440671987199758092159 composite
10 -1218748280038458927839876515654580684070148999 composite
12 -2412142537849669341564627051505411745844937390559 composite
14 -283668767912640307359465836370366577155604220340679 composite
16 546467594673009682304230256786294510968059831519224321 positive

49 2 -88640227692525599 composite
4 -746301899503456335359674623359 composite
6 2561487504687167123255029365909544286 positive
8 -49208654712806503603755163905249327148623359 composite
10 -1257374684957935908101711595079174190553509735759959 composite
12 -72150053530469629308059274221073511792264518509408639 composite
14 -565611735929982524628863778424017901863350099446791009 composite
16 9168771727839287761217425376646039689426830969756505303041 positive
18 14244515680539506494265991915655837682633397745431493110682081 positive
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