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Abstract 
 

In this article, we first investigate the exponential Lebesgue-Nagell equation as shown in the title. Eventually, we can 

establish a necessary and sufficient criterion for having an integer solution to such an equation under the conditions that 𝑝 ≡
3 (mod 4) and 𝑛 ≡ 1 (mod 4).  The unique factorization in the ring of Gaussian integers, the existence of primitive divisors of the 

Lehmer sequences, and also the MAGMA program are the essentials applied in this work. 
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1. Introduction  
 

 Let 𝐶  be a nonzero integer and 𝑛  be an integer 

greater than 2. The Diophantine equation 

 

𝑥2 + 𝐶 = 𝑦𝑛 (1) 

                                                               

is the so-called generalized Ramanujan-Nagell equation. There 

is a very broad literature on studying such an equation, which 

always has finitely many positive integer solutions (Landau & 

Ostrowski, 1920) .  The explorations on finding an integer 

solution to this equation can be studied more in ( Bureaud, 

Mignotte & Siksek, 2006; Cohn, 1993), and these contain early 

results in the case when 𝐶 is a fixed integer. Many authors have 

been interested over the year in the case  𝐶 = 𝑝𝑚 when 𝑝 is a 

fixed prime number (Arif & Muriefah, 1997, 1998, 1999, 2006) 

or even a general prime number ( Arif & Muriefah, 2002; 

B𝑒́rczes & Pink, 2008; Le, 2003; Lin Zhu, 2011; Xiaowei, 

2013). More generally, the case of 𝐶 consisting of a product of 

 
prime powers 𝑝𝑚, where 𝑝 belongs to some fixed finite set of 

primes, has recently been investigated by several 

mathematicians ( Luca, 2002; Luca & Togbc 𝑒́ , 2008, 2009; 

Pink, 2007; Pink & R𝑎́bai, 2011; Soydan & Tzanakis, 2016; 

Lin Zhu, Le, & Soydan, 2015). 

           Our interest in this paper focuses on equation (1)  in 

the case 𝐶 = 𝑝𝑚  when 𝑝 is a prime number and 𝑚 is a natural 

number.  This specific equation type is known as the 

exponential Lebesgue- Nagell equation.  Now, we will divide 

our discussion about some results concerning our considered 

equation into 2 cases, namely for 𝑚 being odd or even:  

Case A:  Let 𝑚 = 2𝑘 + 1 , where 𝑘  is a positive 

integer, 𝑝 be odd such that 𝑝 ≢ 7 (mod 8 ), and 𝑛 > 3  be an 

odd integer with gcd(𝑛, ℎ) = 1, where ℎ is the class number of 

the number field ℚ(√−𝑝). Arif and Abu Muriefah 

demonstrated in Arif and Muriefah ( 1998)  that the equation 

𝑥2 + 3𝑚 = 𝑦𝑛  has the unique positive integral solution given 

by 𝑛 = 3, 𝑚 =  5 +  6𝑁, 𝑥 =  10 × 33𝑁 , 𝑦 =  7 ×
  32𝑁 when  𝑁 is one- third of the highest power of  3  which 

divides 𝑥.    In 2002, they also proved that the equation  𝑥2 +
𝑝2𝑘+1 = 𝑦𝑛 , where gcd(𝑝, 𝑥) = 1 and  𝑛 ≥ 5  is not a 

multiple of 3 , has exactly two families of solutions given by 



302 P. Wongsason et al. / Songklanakarin J. Sci. Technol. 45 (2), 301-307, 2023 

 

𝑝 =  19, 𝑛 =  5, 𝑘 =  5𝑀, 𝑥 =  22434 × 195𝑀, 𝑦 =  55 ×  192𝑀 and 

    𝑝 =  341, 𝑛 =  5, 𝑘 =  5𝑀, 𝑥 =  2759646 × 3415𝑀, 𝑦 =  377 ×  192𝑀  
when  𝑀 is one - fifth of the highest power of  𝑝  which divides 𝑥. This work can be found in (Arif & Muriefah, 2002).  In addition, 

all the integer solutions to the equation 𝑥2 + 𝑞𝑚 = 𝑦3  consist of exactly one solution (𝑞, 𝑘, 𝑥, 𝑦)  =  (11, 1, 9324, 443) due to 

(Lin Zhu, 2011). 

Case B: Let  𝑚 = 2𝑘, where 𝑘 is a positive integer. B𝑒́rczes and Pink showed in B𝑒́rczes and Pink (2008) that all integer 

solutions to the equation  𝑥2 + 𝑝2𝑘 = 𝑦𝑛 are  

 

     (𝑥, 𝑦, 𝑝, 𝑛, 𝑘) = (11,5,2,3,1), (46,13,3,3,2), (524,65,7,3,1), (2,5,11,3,1), 
(278, 5, 29, 7, 1), (38, 5, 41, 5, 1), (52, 17, 47, 3, 1), (1405096, 12545, 97, 3, 1), 

where i)  𝑥, 𝑦, 𝑛, 𝑘  are unknown integers satisfying  𝑥 ≥ 5 𝑦 > 1 , 𝑛 ≥ 3  is a prime and 𝑘 ≥ 0 with gcd(𝑥, 𝑦) = 1, and ii)  2 <
𝑝 < 100. Observe that the equation 𝑥2 + 𝑝2 = 𝑦𝑛 has no integer solution  (𝑥, 𝑦, 𝑝, 𝑛) when 𝑛 is a prime with 𝑝 ≡ 3 (mod 4) and 

𝑛 ≡ 1 (mod 4) such that 2 < 𝑝 < 100. 
         Being motivated by the works of B𝑒́rczes and Pink as mentioned above in the particular case 𝑘 = 1 led us to assert the 

conjecture that the equation  𝑥2 + 𝑝2 = 𝑦𝑛  would have no integer solution when 𝑝 ≡ 3 (mod 4) and 𝑛 ≡ 1 (mod 4).  Eventually, 

it turned out that we were able to obtain the following main result. 

 

Theorem 1.  Let  𝑝 and 𝑛  be a prime number and a natural number greater than 1 satisfying 𝑝 ≡ 3 (mod 4) and  𝑛 ≡ 1 (mod 4), 
respectively. Then the Diophantine equation 𝑥2 + 𝑝2 = 𝑦𝑛  has an integer solution (𝑥, 𝑦) if and only if 

 

                                           −𝑝 = ∑ (
𝑛
2𝑘
) (−1)𝑛−𝑘−1𝑏2𝑘

𝑛−1

2

𝑘=0                                                        (2) 

 

for some even positive integer 𝑏 such that 𝑏2 < ⌈
(
𝑛
𝑛−3

)

(
𝑛
𝑛−1

)
⌉. 

            The important tools used to prove this main result are the unique factorization in the ring of Gaussian integers, the 

existence of primitive divisors of the Lehmer sequences, and the MAGMA program at some points.  Indeed, we have explicitly 

illustrated in ( Jaidee & Saosoong, 2022)  that the equation 𝑥2 + 𝑝2 = 𝑦5  has no integer solution for any prime  𝑝 with  𝑝 ≡
3 (mod 4), without applying the second tool. 

 

2. Preliminaries 
             

In order to complete our main result, let us first give the necessary and sufficient condition for having an integer solution 

of the Fermat-type equation with signatures (2,2, 𝑛) as follows:  

 

Theorem 2. Let 𝑛 be an integer greater than  1.  Then the equation 𝑥2 + 𝑦2 = 𝑧𝑛 with gcd(𝑥, 𝑦) = 1 has an integer solution if and 

only if the equation 

 

                                                            𝑥 + 𝑦𝑖 = 𝑢(𝑎 + 𝑏𝑖)𝑛                                                                    (3) 
has an integer solution (𝑥, 𝑦, 𝑎, 𝑏)  for some  𝑢 ∈ {±𝑖, ±1}. 

To prove Theorem 2, we need Lemma 1 and Lemma 2 below.  The first lemma is easily proven by applying the unique 

factorization in the ring of Gaussian integers.  In fact, this lemma is true for any unique factorization domain and also for its 

advanced analogue in the unique prime ideal factorization appearing in the book written by Alaca and Kenneth (2004).  

 

Lemma 1. Let 𝑛 be any natural number and 𝛼, 𝛽 and  𝛾 be nonzero and nonunit Gaussian integers such that 𝛽  and 𝛾 are coprime. 

If   𝛼𝑛 = 𝛽 𝛾, then there exist  𝛽1,   𝛾1 and unit elements 𝑢, 𝑣 in Gaussian integers for which  𝛽 = 𝑢𝛽1   and  𝛾 = 𝑣𝛾1   where 𝛽1   and 

𝛾1 are coprime.  

 

Lemma 2. Let 𝑛 be a natural number greater than 2.  If the equation  𝑥2 + 𝑦2 = 𝑧𝑛  has an integer solution (𝑥, 𝑦) with  gcd(𝑥, 𝑦) =
1, then  𝑥 + 𝑦𝑖 and 𝑥 − 𝑦𝑖  are coprime. 

The proof of Lemma 2 may be found in Andreescu, Andrica, and Cucurezeanu (2010).  Instead of being arbitrary integer 

𝑦 in the necessary condition stated in Theorem 2, we can choose 𝑦 as a fixed prime 𝑝  such that 𝑝 ≡ 3 (mod 4)  in order to apply 

Theorem 2 specifically as illustrated in the following lemma. Its proof may be seen in Jaidee and Wannalookkhee (2020). 

 

Lemma 3.  Let 𝑛 be a natural number greater than  2, and 𝑝 be a prime number such that  𝑝 ≡ 3 (mod 4).  If the equation  𝑥2 +
𝑝2 = 𝑦𝑛 has an integer solution (𝑥, 𝑦), then  gcd(𝑥, 𝑝) = 1. 

            Let 𝛼 and 𝛽 be algebraic integers for which (𝛼 + 𝛽)2 and  𝛼𝛽 are nonzero coprime rational integers, and  
𝛼

𝛽
  is not a root 

of unity.  For each natural number  𝑛 ,  we call  
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𝑢̃𝑛 = 𝑢̃𝑛(𝛼, β) =

{
 
 

 
 (𝛼

𝑛 − 𝛽𝑛)

𝛼 − 𝛽
    if  𝑛 is odd,

 
(𝛼𝑛 − 𝛽𝑛)

𝛼2 − 𝛽2
    if  𝑛  is even

 

the Lehmer sequences.  A rational prime  𝑝 is a primitive divisor of 𝑢̃𝑛 if 𝑝 divides 𝑢̃𝑛 but does not divide   (𝛼𝑛 − 𝛽𝑛)2𝑢̃1⋯𝑢̃𝑛−1.  

For instance, if 𝛼 =
1+√5

2
  and  𝛽 =

1−√5

2
,  then  the term 𝑢̃𝑛 is the Fibonacci number 𝐹𝑛  for any natural number 𝑛.  These numbers 

are formed to be the Fibonacci sequence listed as A00045 in the On-Line Encyclopedia of Integer Sequences (OEIS)  (Sloane, 

2022) begins with 

 

𝐹0 = 0, 𝐹1 = 1,𝐹2 = 1,𝐹3 = 2,  𝐹4 = 3,𝐹5 = 5,𝐹6 = 8,𝐹7 = 13, 𝐹8 = 21, 𝐹9 = 34,…. 
Clearly,  𝐹1, 𝐹2, 𝐹5 and 𝐹6 have no primitive divisors, but 𝐹3, 𝐹4, 𝐹7, 𝐹8 and 𝐹9  have a primitive divisor.  The following two 

theorems taken from (Bureaud, Mignotte, & Siksek, 2006) will play an important key role in the next section. 

 

Theorem 3. For every integer 𝑛 > 30,  𝑢̃𝑛(𝛼, β) has a primitive divisor. 

 

Theorem 4. Let 𝑛 satisfy 6 < 𝑛 ≤ 30 and 𝑛 ≠ 8, 10, 12. Then all 𝑢̃𝑛(𝛼, β) having no primitive divisors are of the form  

 

(𝛼, β) = (
√𝑎 − √𝑏

2
,
√𝑎 + √𝑏

2
), 

where (𝑎, 𝑏, 𝑛) are given as follows: 

 
(7,1,−7), (7,1,−19), (7,3, −5), (7,5, −7), (7,13,−3), (7,14,−22), (9,5,−3), (9,7,−1), (9,7,−5),  
(13,1,−7), (14,3,−13), (14,5,−3), (14,7,−1), (14,7,−5), (14,19,−1), (14,22,−14), (15,7,−1),  

 (15,10,−2), (18,1,−7), (18,3,−5), (18,5,−7), (24,3,−5), (24,5,−3), (26,7,−1), (30,1,−7), (30,2,10). 
 

The proof of Theorem 1. 

Before showing the proof of Theorem 1, the following facts will be needed. 

 

Theorem 5. There are no natural numbers  𝑎 > 1 and 𝑏 such that 𝑎 ≢ 𝑏 (mod 2 ) and gcd(𝑎, 𝑏) = 1 satisfying the equation 

 

                                                    1 = ∑(
𝑛
2𝑘
) (𝑎)𝑛−2𝑘−1(−𝑏2)𝑘                                                                (4)

𝑛−1
2

𝑘=0

 

for any natural number  𝑛 > 1 with 𝑛 ≡ 1 (mod 4). 
 

Proof.   Suppose that there exist natural numbers 𝑎 > 1, 𝑏   and 𝑛  such that  𝑎 ≢ 𝑏 (mod 2 ) with gcd(𝑎, 𝑏) = 1, and  𝑛 ≡
1 (mod 4) satisfying the equation (4).  Let  𝛼 = 𝑎 + 𝑏𝑖  and 𝛽 = 𝑎 − 𝑏𝑖.  Following the binomial theorem and the equation (4), 

we eventually obtain that 

 

            𝛼𝑛 + 𝛽𝑛 = 2𝑎 = 𝛼 + 𝛽. 

Then we may write 

 

𝛼𝑛 + 𝛽𝑛 = (𝛼 + 𝛽) (
𝛼2𝑛 − 𝛽2𝑛

𝛼2 − 𝛽2
)(

𝛼 − 𝛽

𝛼𝑛 − 𝛽𝑛
). 

Consequently, 

 

                                      (
𝛼2𝑛 − 𝛽2𝑛

𝛼2 − 𝛽2
) = (

𝛼𝑛 − 𝛽𝑛

𝛼 − 𝛽
)                                                                (5) 

Since 𝛼 and 𝛽 are roots of the polynomial equation  𝑋2 − 2𝑎𝑋 + (𝑎2 + 𝑏2) = 0, we have that  𝛼 and 𝛽 are algebraic integers. 

Obviously, (𝛼 + 𝛽)2and 𝛼𝛽 are coprime. We claim that 
𝛼

𝛽
 is not a root of unity. Suppose that it is a root of unity, that is, (

𝛼

𝛽
)𝑚 = 1  

for some natural number 𝑚. Then, it is a root of the polynomial equation   𝑋𝑚 − 1 = 0.  Since we know that  

 

𝑋𝑚 − 1 = ∏ φ𝑑(𝑋)𝑑|𝑚 ,  

there exists a natural number 𝑑0 such that φ𝑑0(𝛼/𝛽) = 0.  Note that φ𝑑(𝑋)  is the  𝑑th cyclotomic polynomial. One can check 

that  
𝛼

𝛽
  is a zero of the polynomial   

𝑝(𝑋) = 𝑋2 −
2(𝑎2−𝑏2)

𝛼𝛽
𝑋 + 1. 
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This implies that the polynomial  φ𝑑0(𝑋) must divide 𝑝(𝑋) as φ𝑑0(𝑋)  is always monic and irreducible.  Indeed,  𝑝(𝑋) cannot be 

divided by all possibilities of φ𝑑0(𝑋), a contradiction.  Hence 
𝛼

𝛽
 is not a root of unity.  Now, we are able to define 𝑢̃𝑛(𝛼, β) as the 

Lehmer sequence.  From (5), we deduce that the Lehmer sequence 𝑢̃2𝑛(𝛼, β)  has no primitive divisors for any natural number 𝑛.  

Applying Theorem 3 and Theorem 4 together with the condition  𝑛 ≡ 1 (mod 4),  we eventually find that  𝑢̃2𝑛(𝛼, β)  has a 

primitive divisor for any natural number 𝑛 excluding 𝑛 = 5.  This leads to a contradiction.  It remains to focus on the case 𝑛 = 5 

only.  By (4), we have  𝑎4 − 10𝑎2𝑏2+5𝑏4 = 1.  By applying the ThueSolve function in MAGMA (Bosma, Cannon, & Playoust, 

1997) , we know that (𝑥, y) = (±1, 0) are only integer solutions of the Thue equation  𝑥4 − 10𝑥2𝑦2+5𝑦4 = 1.  Again, we have a 

contradiction. Hence, we have completed the proof of the theorem. 

 

Lemma 4. Let 𝑛 be a natural number greater than 1 with 𝑛 ≡ 1 (mod 4). Then 

 

                                                 ∑ (
𝑛
2𝑘
) (−1)𝑛−𝑘−1𝑏2𝑘  ≥ 0                                                             (6)

𝑛−1
2

𝑘=0

 

for any even positive integer 𝑏 such that 𝑏2 ≥ ⌈
(
𝑛
𝑛−3

)

(
𝑛
𝑛−1

)
⌉. 

 

Proof. Let 𝑏 be an even positive integer such that   𝑏2 ≥ ⌈
(
𝑛
𝑛−3

)

(
𝑛
𝑛−1

)
⌉.  Rearranging the summation in (6), we obtain that 

 

1 + (
𝑛
4
) 𝑏4 + (

𝑛
8
) 𝑏8 +⋯+ 𝑛𝑏𝑛−1 − [(

𝑛
2
) 𝑏2 + (

𝑛
6
) 𝑏6 +⋯+ (

𝑛
𝑛 − 3

)𝑏𝑛−3] 

        > (
𝑛
4
) 𝑏2(𝑏2 − ⌈

(
𝑛
2
)

(
𝑛
4
)
⌉) + (

𝑛
8
) 𝑏6 (𝑏2 − ⌈

(
𝑛
6
)

(
𝑛
8
)
⌉) +⋯+ 𝑛𝑏𝑛−3 (𝑏2 − ⌈

(
𝑛

𝑛 − 3
)

(
𝑛

𝑛 − 1
)
⌉) ≥ 0 

Now, we are ready to prove Theorem 1. 

 

Proof.  Let 𝑝  and 𝑛  be a prime number and a natural number greater than 1 satisfying 𝑝 ≡ 3 (mod 4)  and  𝑛 ≡ 1 (mod 4), 
respectively. For the necessary condition, let us assume that the equation 𝑥2 + 𝑝2 = 𝑦𝑛 has an integral solution (𝑥, 𝑦), and suppose 

that the equation (2) is not true for any even positive integer 𝑏 such that  𝑏2 < ⌈
(
𝑛
𝑛−3

)

(
𝑛
𝑛−1

)
⌉.  Applying Lemma 3 and Theorem 2 together 

with the fact that 𝑢 = 𝑢𝑛 for any  𝑢 ∈ {±𝑖, ±1}, we eventually obtain that  𝑝 + 𝑥𝑖 = (𝑎 + 𝑏𝑖)𝑛 for some 𝑎, 𝑏 ∈ ℤ.   Observe that 

𝑝 − 𝑥𝑖 = (𝑎 − 𝑏𝑖)𝑛  and recall that gcd(𝑥, 𝑝) = 1 and 𝑦 is odd. Then we have 

𝑦𝑛 = 𝑥2 + 𝑝2 = (𝑝 + 𝑥𝑖)(𝑝 − 𝑥𝑖) = (𝑎2 + 𝑏2)𝑛, 
which implies that 𝑦 = 𝑎2 + 𝑏2.   If   𝑎 ≡ 𝑏 (mod 2 ), then we have that 𝑦 is even, which is a contradiction.  So, 𝑎 and 𝑏 have an 

opposite parity. Now, we consider 

 

 𝑝 + 𝑥𝑖 =

(

 ∑(
𝑛
2𝑘
) (−1)𝑘𝑎𝑛−2𝑘𝑏2𝑘  

𝑛−1
2

𝑘=0
)

 +

(

 ∑(
𝑛

2𝑘 + 1
) (−1)𝑘𝑎𝑛−1−2𝑘𝑏2𝑘+1 

𝑛−1
2

𝑘=0
)

 𝑖.  

Then, we have 

𝑝 =  𝑎∑(
𝑛
2𝑘
) (−1)𝑘𝑎𝑛−2𝑘−1𝑏2𝑘 ,

𝑛−1
2

𝑘=0

 

which implies that 𝑎 = ±1 or 𝑎 = ±𝑝.   If  𝑎 = 1, then  𝑏 must be even.   

Since 𝑛 ≡ 1 (mod 4), it follows that 

 

𝑝 = 1 − (
𝑛
2
) 𝑏2 + (

𝑛
4
) 𝑏4 −⋯+  𝑛𝑏𝑛−1 ≡ 1(mod 4), 

which is a contradiction. If   𝑎 = −1, then we have that 

 

−𝑝 =  ∑(
𝑛
2𝑘
) (−1)𝑛−𝑘−1𝑏2𝑘 ,

𝑛−1
2

𝑘=0

 

which is impossible by reference to Lemma 4 together with the assumption. If   𝑎 = −𝑝, then 𝑏 must be even.  As 𝑛 ≡ 1 (mod 4) 
and   gcd(4, 𝑝) = 1, we eventually obtain that 
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−1 = 𝑝𝑛−1 − (
𝑛
2
) 𝑝𝑛−3𝑏2 + (

𝑛
4
) 𝑝𝑛−5𝑏4 −⋯+  𝑛𝑏𝑛−1 ≡ 1(mod 4), 

which is a contradiction. Applying Theorem 5 to the other case leads us to get a contradiction as well. For the sufficient condition, 

suppose that there exists an even positive integer  𝑏0 for which   𝑏0
2 < ⌈

(
𝑛
𝑛−3

)

(
𝑛
𝑛−1

)
⌉   and 

 

𝑝 =  −∑ (
𝑛
2𝑘
) (−1)𝑛−𝑘−1𝑎𝑛−2𝑘𝑏0

2𝑘 .  

𝑛−1
2

𝑘=0

 

Then we choose 

 

𝑥0 =  −∑(
𝑛

2𝑘 + 1
) (−1)𝑛−𝑘−1𝑏0

2𝑘+1.  

𝑛−1
2

𝑘=0

 

It is not hard to see that (𝑝, 𝑥0, −1, 𝑏0)  satisfies equation (3)  in Theorem 2 for some  𝑢 ∈ {±𝑖, ±1}.   Hence, we have completed 

the proof. 

 

3. Concluding Discussion        
          

According to Tables 1 and 2 below together with applying Theorem 1, we conclude that for any prime 𝑝 with 𝑝 ≡
3 (mod 4)  and a natural number 1 < 𝑛 ≤ 49  with 𝑛 ≡ 1 (mod 4) , the Diophantine equation 𝑥2 + 𝑝2 = 𝑦𝑛   has no integer 

solution (𝑥, 𝑦).  For each fixed natural number 1 < 𝑛 ≤ 49 with 𝑛 ≡ 1 (mod 4), this result generalizes the works of B𝑒́rczes and 

Pink mentioned in the case B for only the particular case 𝑘 = 1 and 𝑝 ≡ 3 (mod 4). There are infinitely many primes of the form 

4𝑘 + 3, listed as A002145 in the On-Line Encyclopedia of Integer Sequences (OEIS) (Sloane, 2022). We, moreover, conjecture 

that our considered equation has no integer solution for any natural number 𝑛 > 1  with  𝑛 ≡ 1 (mod 4)  and for any prime 𝑝  with   

𝑝 ≡ 3 (mod 4). 
 
Table 1. The values of the sum in (2) 

 

𝑛 𝑏 Values of the sum in (2) Remark 

    

5 all even ≥40 positive 

9 2 -1199 composite 

13 2 
4 

-8839 
-4291039 

prime ≡ 1 (mod 4) 
composite 

17 2 

4 

6 

873121 

-24553864319 

7005476875681 

positive 

composite 

positive 
21 2 

4 

6 

-6699319 

-7547952442399 

-9382001116577399 

composite 

composite 

composite 
25 2 

4 

6 
8 

-451910159 

-379677384665279 

-33413277960843515279 
1500111128083892163841 

composite 

composite 

composite 
composite 

29 2 

4 
6 

8 

10 

10513816601 

508156418079387041 
-54656126356697865345959 

-86830731409525073357567359 

28714774144970063639717469401 

positive 

positive 
composite 

composite 

positive 

33 2 

4 

6 
8 

10 

12 

135250416961 

195337401466191394561 

-55544682746808341439157439 
-671582932652885722310459458559 

-173156776127815926903091558852799 

178179625643608687570320730917646081 

positive 

positive 

composite 
composite 

composite 

positive 
37 2 

4 

6 
8 

10 

12 
14 

-8464641213079 

20456911077705143997281 

-17653223669804406176810517719 
-3437192033013175861274046101509759 

-6243764616905212012976446882123616599 

631477325821592776208040048198094984801 
135174135846655757423281431224261441223268 

composite 

positive 

composite 
composite 

composite 

positive 
positive 
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Table 2. The values of the sum in (2) 

 

𝑛 𝑏 Values of the sum in (2) Remark 

    

41 2 

4 
6 

8 

10 
12 

14 

16 

33973466382481 

-9727649740836715098004799 
65933408587323941845688405725201 

-13536412949968925749002920977371720959 

-99376498767324043660260758523750875381999 
-53665717085918221112725250796920790368950079 

23525696254572342402118496445124787158685773201 

13932512484569015094869100053411051281882786483201 

positive 

composite 
positive 

composite 

composite 
composite 

positive 

positive 
45 2 

4 

6 
8 

10 

12 
14 

16 

4814772228819641 

-4840884886670433593354451679 

175633012692018657955115709876643321 
-39165376532163420253440671987199758092159 

-1218748280038458927839876515654580684070148999 

-2412142537849669341564627051505411745844937390559 
-283668767912640307359465836370366577155604220340679 

546467594673009682304230256786294510968059831519224321 

positive 

composite 

positive 
composite 

composite 

composite 
composite 

positive 

49 2 
4 

6 

8 
10 

12 

14 
16 

18 

-88640227692525599 
-746301899503456335359674623359 

2561487504687167123255029365909544286 

-49208654712806503603755163905249327148623359 
-1257374684957935908101711595079174190553509735759959 

-72150053530469629308059274221073511792264518509408639 

-565611735929982524628863778424017901863350099446791009 
9168771727839287761217425376646039689426830969756505303041 

14244515680539506494265991915655837682633397745431493110682081 

composite 
composite 

positive 

composite 
composite 

composite 

composite 
positive 

positive 
    

 

Acknowledgements 
 

The authors specially thank the anonymous referees 

for her/his careful reading and valuable suggestions. This 

research was supported by Department of Mathematics, Faculty 

of Science, Khon Kaen University, in fiscal year 2022. 

 

References 
 

Alaca, S., & Williams, S. K. (2004).  Introductory algebraic 

number theory. Cambridge, England: Cambridge 

University Press. 

ndreecu, T., Andrica, D., & Cucurezeanu, I. (2010).  An 

introduction to Diophantine equations (A problem-

based approach).  London, England: Springer. 

Arif, S. A., & Muriefah, F. S. (1997). On the Diophantine 

equation  𝑥2 + 2𝑘 = 𝑦𝑛. International Journal of 

Mathematics and Mathematical Science, 38, 299-

304. 

Arif, S. A., & Muriefah, F. S. (1998). On the Diophantine 

equation  𝑥2 + 3𝑘 = 𝑦𝑛. International Journal of 

Mathematics and Mathematical Science, 38, 619-

620. 

Arif, S. A., & Muriefah, F. S. (1999). On the Diophantine 

equation  𝑥2 + 52𝑘+1 = 𝑦𝑛. Indian Journal of Pure 

and Applied Mathematics, 30, 229-231. 

Arif, S. A., & Muriefah, F. S. (2002). On the Diophantine 

equation 𝑥2 + 𝑞2𝑘+1 = 𝑦𝑛. Journal of Number 

Theory, 95, 95-100. 

Arif, S. A., & Muriefah, F. S. (2006). On the Diophantine 

equation  𝑥2 + 5𝑘 = 𝑦𝑛.Demonstratio Mathematica, 

30, 285-289. 

B𝑒́rczes, A., &  Pink, I. (2008).  On the Diophantine equation 

 𝑥2 + 𝑝2𝑘 = 𝑦𝑛. Archiv der Mathematik, 91, 505-

517. 

Bilu, Y., Hanrot, G., & Voutier, P. M. (2001).  Existence of 

primitive divisor of Lucas number and Lehmer 

number, with an appendix by M. Mignotte. Journal 

f¨ur die Reine und Angewandte Mathematik, 539, 75-

122. 

Bosma, W.,   Cannon, J., & Playoust, C. (1997). The Magma 

algebra system. I. The user Language.  Journal of 

Symbolic Computation, 24(3-4), 235-265. 

Bureaud, Y., Mignotte, M., & Siksek, S. (2006). Classical and 

modular approaches to exponential Diophantine 

equation II. The Lebesgue-Nagell equation, 

Compositio Mathematica, 19, 31-62. 

Cohn, J. H. E. (1993). On the Diophantine equation   𝑥2 + 𝐶 =
𝑦𝑛 . Acta Arithmetica, 64, 367-381. 

Jaidee, S., & Wannalookkhee, F. (2020). Solvability of the 

Diophantine Equation   𝑥2 + 𝑝2 = 𝑦𝑛 when 𝑝 is a 

Prime. KKU Science Journal, 48(2), 175-182. 

Jaidee, S., & Soasoong, K. (2022). The Fermat-type equation 

with signature (2, 2, n) and Bunyakovsky conjecture, 

Songklanakarin Journal of Science and             

Technology, 44(3), 779-784. 

Jones, G. A., & Mary Jones, J. (1998). Elementary number 

theory.  London: England, Springer.      

 Landua E., & Ostrowski, A. (1920). On the Diophantine 

equation 𝑎𝑦2 + 𝑏𝑦 + 𝑐 = 𝑑𝑥𝑛.roceedings of the 

London Mathematical Society, 19, 76-280. 

 Le M. (2003). On the Diophantine equation   𝑥2 + 𝑝2 = 𝑦𝑛. 

Publicationes Mathematicae Debrecen, 63, 2003, 

67-78. 

  



P. Wongsason et al. / Songklanakarin J. Sci. Technol. 45 (2), 301-307, 2023   307 

 

Lin Zhu, H. (2011).  A note on the Diophantine equation   𝑥2 +
𝑞𝑚 = 𝑦3. Acta Arithmetica, 146, 195-202. 

Luca, F. (2002). On the Diophantine equation 𝑥2 + 2𝑎3𝑏 = 𝑦𝑛 . 
International Journal of Mathematics and 

Mathematical Sciences, 29, 239-244. 

Luca, F., & Togb𝑒́,  A.(2008).  On the Diophantine equation  

 𝑥2 + 2𝑎5𝑏 = 𝑦𝑛. International Journal of Number 

Theory, 6, 973-979. 

Luca, F., & Togb𝑒́, A.(2009).  On the Diophantine equation  

𝑥2 + 2𝑎13𝑏 = 𝑦𝑛. Colloquium Mathematicum, 116, 

139-146. 

Pink, I. (2007).  On the Diophantine equations 𝑥2 +
2𝑎3𝑏5𝑐7𝑑 = 𝑦𝑛. Publicationes Mathematicae 

Debrecen, 70, 149-166. 

Pink, I., & R𝑎́bai, Z. (2011).  On the Diophantine equations  

𝑥2 + 5𝑘17𝑙 = 𝑦𝑛. Communications in Mathematics, 

19, 1-9. 

Sloane, N. J. A. (2022).  The on-line encyclopedia of integer 

sequences. Retrieved from https://oeis.org. 

Soydan, G., & Tzanakis, N. (2016). Complete solution of the 

Diophantine equation  𝑥2 + 5𝑎11𝑏 = 𝑦𝑛. Bulletin of 

the Hellenic Mathematical Society, 60, 125-151. 

Xiaowei, P. (2013). On the Diophantine equation 𝑥2 + 𝑝2𝑚 =
𝑦𝑛. Periodica Mathematica Hungarica, 67, 231-242. 

Zhu H., Le,  M., & Soydan,  G. (2015). On the exponential 

Diophantine equation 𝑥2 + 2𝑎𝑝𝑏 = 𝑦𝑛. Periodica 

Mathematica Hungarica, 70, 233-247. 

 

 

 
 


