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Abstract 
 

Tropospheric ozone or ground-level ozone, mainly found near ground level, has adverse effects on human health. 

Distribution fitting is useful for predicting the probability, or forecasting the frequency of recurrence, of a phenomenon in a 

specific period of time. This study aimed to find the best fit distribution of ground-level ozone for specific industrial, rural, and 

suburban areas of monitoring locations in Malaysia, which were Kuala Terengganu, Jerantut, and Banting. Secondary data from 

2017 to 2020 used in this study were obtained from the Department of Environment Malaysia (DoE). This study employed eight 

probability distributions namely Weibull, gamma, lognormal, logistic, log-logistic, Birnbaum–Saunders, Nakagami, and inverse 

Gaussian. The method of moments was used to estimate the parameters for each distribution and the best distribution can be used 

for predicting the return period of the concentration. The descriptive statistics analysis showed that ground-level ozone reached 

the highest peak at 1400 and 1500 hours, due to the UV radiation from sunlight, while the lowest concentration reading was at 

0700 hours at all monitoring locations. By comparing the analysis of the eight distributions, Nakagami was found to be the best 

fit distribution to the actual monitoring data for Kuala Terengganu, Jerantut, and Banting stations from 2017 to 2020. As a result, 

this study suggests that the Nakagami distribution be used to predict exceedances and return periods, based on the performance 

indicators. Thus, it can take the place of the typical distributions employed in fitting the distribution of air pollutants, such as the 

lognormal distribution and the gamma distribution. 
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1. Introduction  
 

 Ozone has emerged as a serious pollutant in 

megacities and rapidly growing countries. It has the potential 

to significantly impact human health, vegetation, and climate 

(Zeng et al., 2018). When nitrogen oxides (NOx) react with 

oxygen molecules (O2) in the presence of solar light, they 

produce free oxygen atoms (O), which combine to form ozone 

(O3) (Awang & Ramli, 2017). Several factors influence the O3

 
concentration, including cloud cover, sunlight, NOx, carbon 

monoxide (CO), and volatile organic compounds (VOC) via 

reactions (Latif, Huey, & Juneng, 2012). In addition, 

particulate matter and meteorological variables also affect the 

reading of O3 (Zhou, Cheng, Zhang, Wang, & Yang, 2022). 

Furthermore, O3 concentrations are always higher in 

the afternoon due to the amount of UV radiation from 

sunlight. The two causes of ambient air pollution are man-

made activities (anthropogenic) and natural sources. Natural 

sources include pollen dispersal, forest fires, and windblown 

dust (Mabahwi, Ling, & Omar, 2014). Surprisingly, about 1.2 

million deaths due to air pollution were estimated in China in 

2010, accounting for 35% of all such deaths worldwide 
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(Zhang et al., 2018). According to Kim, Kabir, and Kabir 

(2015), the most hazardous air pollutant to human health is 

O3, which kills 0.47 million people worldwide. Furthermore, 

numerous studies have indicated that the ozone pollutant has a 

negative impact on human health. Bolsoni, Oliveira, Pedrosa, 

and Souza (2018) discovered that ozone pollutant has an 

aggressive action on vegetation, entering the plants through 

stomata. Once inside the stomatal complex, it becomes soluble 

when it molecularly diffuses into the subestomatic cavity by 

spreading the intercellular gap of the mesophyll. This has 

occurred as a result of changes in VOC levels. 

Previous studies have discovered that O3 

concentrations are generally higher during the day and lower 

at night and in the early morning (Song & Hao, 2015). As the 

ozone pollutant increases, forecasting and modeling air 

pollution can be used to identify and provide a tool to evaluate 

the ozone concentration in the future. Statistical analysis is 

commonly utilized to analyze existing and future air quality, 

particularly with regard to ozone pollutants. Maciejewska, 

Rezlar, Reizer, and Klejnowski in 2015 studied modeling of 

black carbon (BC) concentration in Warsaw, Poland by using 

statistical distribution and return period of the extreme 

concentration. Lognormal, Weibull, and gamma distributions 

were used, and the lognormal distribution was found to be the 

most appropriate to represent the middle-range values. 

Previous research on O3 concentration features and 

distribution fitting, on the other hand, has only looked at 

parent distributions such as lognormal, Weibull, and gamma. 

This study is more in-depth because it contains a features 

analysis as well as the fitting of eight different types of 

statistical distributions. The goal of this study was to find the 

best fit probability distribution and compare it to the parent 

distributions in air quality modelling in order to predict O3 

concentration exceedances and return periods at three 

monitoring locations: Jerantut, Kuala Terengganu, and 

Banting. To identify the best model, prediction values for each 

statistical distribution will be compared using five types of 

performance indicators: root mean square error (RMSE), 

normalized absolute error (NAE), index of agreement (IA), 

coefficient of determination (R2), and prediction accuracy 

(PA). 

 

2. Materials and Methods 
 

2.1 Area of study and data 
 

Three locations were selected for this study, Kuala 

Terengganu, Jerantut, and Banting. Kuala Terengganu 

monitoring station is located in the East Coast of Peninsular 

Malaysia, facing the South China Sea (05º18.455’N, 

103º07.213’E). This monitoring station is categorized as an 

urban area by Department of Environment Malaysia, and 

surrounded by a high-density population, an airport, 

commercial areas, and congested traffic (Ahmad Isiyaka et al., 

2014). Nevertheless, this monitoring station is influenced by 

the inter monsoons, South-West monsoon, and North-East 

monsoon (Abdullah, Ismail, Yuen, Abdullah, & Elhadi, 2017). 

Meanwhile, the Jerantut monitoring station is located at Batu 

Embun, Pahang (03º55.59’N, 102º22.120’E). It is located 

approximately 180 km from Kuantan and 200 km from Kuala 

Lumpur, capital city of Malaysia. Jerantut monitoring station 

is situated in a rural area that has a low potential of air 

pollution concentration (Mohammad, Deni, & Ul-Saufie, 

2018) and is surrounded by the forest as well as villages and 

agricultural areas (Zaki, Faizah, Yusof, & Shith, 2016). This 

station is considered a reference site since it is located in a 

rural area near a conserved forest. The Banting monitoring 

station is located at Kolej Mara Banting, Bukit Changgang 

(2.83º N, 101.62ºE). This monitoring station is categorized as 

a suburban area and surrounded by villages, residential areas, 

and palm oil estates (Suparta, Alhasa, Singh, & Latif, 2015). 

This study relies on secondary data supplied by the 

Department of Environment. The data quality has been 

ascertained through verification procedures in line with the 

department's instrumentation standards. Nevertheless, it's 

important to note that each dataset contains some missing 

values. To address these gaps, a mean top-bottom method has 

been employed for imputing the missing data points. The 

ground level ozone (O3) hourly average concentration data 

from these three monitoring stations were used in this study to 

fit eight types of distributions, including the lognormal, 

gamma, and Weibull distributions, which are the three main 

distributions that are most frequently used in Malaysia to 

approximate the distribution of air pollutants. These data sets 

span four years, from January 2017 to December 2020. A map 

of the monitoring sites used in this study is shown in Figure 1. 

 

 
 
Figure 1. Locations of the monitoring stations 

 

2.2 The distribution 
 

The three parent distributions that are commonly 

used in air pollution modelling are gamma, lognormal, and 

Weibull. This section will go over five more distributions that 

were used in this study. Table 1 presents the probability 

distributions used in this study. For estimating the parameters, 

the method of moments will be used. 

 

2.3 Performance indicators 
 

To compare the results for each set of predicted 

values using different statistical distributions, five 

performance measures were employed. Root mean square 

error (RMSE), normalized absolute error (NAE), coefficient 

of determination (R2), index of agreement (IA), and prediction 

accuracy (PA) are the performance measures that have been 

employed. The RMSE presented the model's error in actual 

size (Prasad, Gorai, & Goyal, 2014), while NAE is sensitive in 

measuring the forecast model's residual error (Shcherbakov et 
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Table 1. Distributions and parameter estimator 

 
al., 2013). The R2 reflects the degree of model error fitting 

(Rybarczyk & Zalakeviciute, 2018), the AI determines the 

magnitudes of the actual values in relation to the model's 

predicted value (Prasad et al., 2014) and the PA was utilized 

as an indicator to determine the estimator performance of the 

generated model (Junninen, Niska, Tuppurainen, Ruuskanen, 

& Kolehmainen, 2004). The formulae for each performance 

indicator that has been used are given in Table 2. 

where n is the number of monitoring records, Oi is 

the observed monitoring records, and Pi is the predicted 

values. Smaller values of RMSE and NAE are better, while 

for R2, IA and PA, a value closer to 1 indicates a better 

estimator. 

 

3. Results and Discussion 
 

3.1 Descriptive statistics 
 

Table 3 shows the descriptive statistics for hourly 

average data from Kuala Terengganu, Jerantut, and Banting 

Distribution Probability density function (pdf) Parameter estimator 
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Table 2. Performance indicators 
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Table 3. Summary of descriptive statistics 
 

Year 2017 2018 2019 2020 

     

Kuala Terengganu 

Mean 0.0176 0.0174 0.0159 0.0141 

Std Deviation 0.0119 0.0125 0.0112 0.0098 
Minimum 0.0001 0.0001 0.0001 0.0001 

Maximum 0.0218 0.0694 0.0579 0.0570 

Skewness 0.5130 0.6350 0.5200 0.5210 
Jerantut 

Mean 0.0152 0.0163 0.0189 0.0120 

Std Deviation 0.0104 0.0117 0.0131 0.0105 
Minimum 0.0001 0.0001 0.0002 0.0003 

Maximum 0.0546 0.0595 0.0668 0.0609 

Skewness 0.7290 0.7020 0.6080 0.6210 
Banting 

Mean 0.0187 0.0198 0.0195 0.0177 

Std Deviation 0.0150 0.0195 0.0190 0.0171 
Minimum 0.0001 0.0001 0.0001 0.0003 

Maximum 0.1280 0.1028 0.1011 0.0928 

Skewness 1.1230 0.9940 0.8780 1.0500 
     

 
monitoring stations from 2017 to 2020. The highest 

concentrations were observed in 2017 at the Banting 

monitoring station, with a reading of 0.1280 ppm. Jerantut is a 

reference monitoring station located far from urban centres. 

However, the maximum reading and mean value for this 

station do not differ considerably from those recorded in 

Kuala Terengganu. According to Department of Environment 

Malaysia (DoE, 2014) the highest O3 concentration occurred 

due to high traffic volume and a conducive atmospheric 

condition for O3 formation. Nevertheless, during this study 

period, the ground-level ozone in Kuala Terengganu and 

Jerantut monitoring station did not exceed the limit set by 

MAAQG, which was 0.10 ppm. However, the Banting 

monitoring station shows that the maximum reading of O3 

concentration each year exceeded the 0.1000 ppm limit. This 

may be due to the location being nearer to the Kuala Lumpur 

International Airport (KLIA) and the Genting Sanyen power 

plant, which may affect the O3 concentration. 

The bar charts in Figure 2 show the means of 

ground-level ozone concentration in Kuala Terengganu, 

Jerantut, and Banting monitoring stations in 24 hours, from 

2017 to 2020. Kuala Terengganu showed the occurrences of 

the highest concentrations at 3.00 pm, while at 7.00 am the 

lowest concentrations were recorded. The ground-level ozone 

started to increase at 8:00 am until it reached a peak at 3.00 

pm, and later slowly began to decrease simultaneously as the 

sunlight intensity decreased. In Jerantut, the occurrences of 

the highest concentrations also appeared at 3.00 pm, while at 

7.00 am the lowest concentrations were observed. Banting 

monitoring station showed the highest average reading of O3 

concentration, surpassing Kuala Terengganu and Jerantut. It 

reached the highest concentrations at 3.00 pm and the lowest 

concentrations recorded were at 1.00 am. The highest 

concentration of ozone was caused by the intense sunlight and 

the presence of nitrogen dioxide that reacted in the sunlight 

(Geng et al., 2018). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Behavior of the O3 concentration at all monitoring stations 

 

3.2 Distribution fitting 
 

For Kuala Terengganu monitoring station, Table 4 

clearly shows that the Nakagami distribution has a better fit 

than the other distributions, for all the years involved in this 

study. Five performance indicators were used for comparing 

those distributions to obtain the best distribution. The 

performance indicators involved are root mean square error 

(RMSE), normalized absolute error (NAE), coefficient of 

determination (R2), index of agreement (IA) and prediction 

accuracy (PA). The performance indicators consistently 

indicate that the Nakagami distribution yields low values for 

error measures and high values for accuracy measures. 

However, it's worth noting that in the year 2018, the gamma 

distribution outperformed the Nakagami distribution in one 

specific indicator, which is the R2. 

The probability density function (pdf) and 

cumulative distribution function (cdf) plots in Figure 3 and 

Figure 4 show the distribution curve of O3 concentration for 

Kuala Terengganu monitoring station. The pdf plotted is a 

positive skew distribution. This indicates that most of the O3 

concentration readings are low and centered on the left side of 

the distribution. Moreover, the cdf was plotted based on the 

best distribution that fit the O3 concentration. The cdf plot 
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Table 4. The performance indicators for comparing distributions for Kuala Terengganu 

 

 
 

Figure 3. Probability density function plot of ground-level ozone for 

Kuala Terengganu 
 

 
 

Figure 4. Cumulative distribution function plot of ground-level 
ozone for Kuala Terengganu 

 

shows that the probability of the O3 concentration to exceed 

the limit is zero. Since the probability that O3 concentration 

does not exceed the MAAQG limit, the air in this area is still 

not contaminated by O3 pollutant. 

The results show that the probability of 

concentration exceeding the limit 0.10 ppm was 0 [that is, 

P(X>0.10) = 0] for all the years involved in this study. This 

indicates that the ground-level ozone in Kuala Terengganu 

monitoring station for the entire year stayed at a concentration 

below 0.10 ppm. Therefore, there is no return period predicted 

for concentrations above the limit set by MAAQG. 

The results for Jerantut and Banting also show that 

the Nakagami distribution fit the data better compared than 

the other types of distributions. Table 5 and Table 6 show the 

performance of each distribution for the data from Jerantut 

and Banting monitoring stations, respectively. 

Figure 5 to Figure 8 show the pdf and cdf of the best 

distribution for Jerantut and Banting. For Jerantut, the pdf 

shows a positively skewed curve and the pdf plot for 2018 and 

2019 show longer tails than in the other years. This is sign of 

higher O3 concentration peaks compared to 2017 and 2020. 

Even though the O3 concentrations do not exceed the 0.1 ppm 

limit, caution is needed in this area to control the future 

increases in concentration. In the cdf plot, no occurrences 

exceed the 0.1 ppm limit in this area, indicating that Jerantut 

area still had a good air quality level not contaminated by O3. 

Hence, there is no return period that could be predicted for 

Jerantut station. 

The O3 concentrations from 2017 to 2020 in Banting 

in the pdf plot have a longer tail, which indicates that there are 

more extreme events. Moreover, the trends show that the O3 

concentration exceeded the limit 0.10 ppm. Furthermore, the 

cdf plot shows that the O3 concentration tends to exceed the 

0.10 ppm limit. For instance in 2017 and 2018, the predicted 

values of the concentration exceeded 0.11ppm. The yearly 

increases of O3 concentration depend on many factors, led by 

an increase in vehicles that produce nitrogen oxides (NOx), 

CO, and VOCs. This indicates that this area was contaminated 

with the O3 pollutant every year. 

The predictions of exceedances for the ground-level 

ozone are based on the best fit distributions. Moreover, the 

value for the exceedances is taken from the cdf plots of the 

Year PI 
Log-

Normal 
Gamma Weibull Nakagami 

Birnbaum-

Saunders 

Inv. 

Gaussian 
Logistic Loglogistic 

          

2017 NAE 0.3561 0.1247 58.9600 0.0752 0.3134 0.4206 0.1534 1.0051 

 
RMSE 0.0164 0.0032 1.3734 0.0027 0.0090 0.0147 0.0046 4.6854 

 IA 0.8084 0.9833 0.0273 0.9888 0.9156 0.8288 0.9675 0.2757 

 PA 0.8521 0.9674 0.9518 0.9779 0.9055 0.8426 0.9396 0.4631 

 R2 0.7260 0.9356 0.9057 0.9562 0.8198 0.7098 0.8828 0.2145 
2018 NAE 0.2800 0.1031 57.1137 0.0491 0.2368 0.4030 0.1249 0.4630 

 
RMSE 0.0140 0.0021 1.3733 0.0010 0.0061 0.0145 0.0036 0.0327 

 
IA 0.8695 0.9922 0.0264 0.9982 0.9535 0.8269 0.9791 0.5693 

 PA 0.8960 0.9847 0.9628 0.9966 0.9525 0.8503 0.9622 0.7144 

 R2 0.8027 0.9695 0.9267 0.9930 0.9070 0.7229 0.9256 0.5103 

2019 NAE 0.0299 0.1171 63.5063 0.0686 0.1988 0.4493 0.1163 0.5375 

 
RMSE 0.6369 0.0021 1.3755 0.0013 0.0050 0.0145 0.0031 0.0338 

 
IA 0.8034 0.9899 0.0232 0.9964 0.9717 0.7955 0.9805 0.5140 

 PA 0.6453 0.9802 0.9546 0.9933 0.9698 0.8252 0.9642 0.6855 

 R2 0.0299 0.9606 0.9111 0.9865 0.9404 0.6809 0.9295 0.4698 

2020 NAE 0.2965 0.1209 69.5643 0.0713 0.1844 0.4518 0.1171 0.4818 

 
RMSE 0.0130 0.0020 1.3773 0.0012 0.0052 0.0130 0.0027 0.0264 

 
IA 0.8710 0.9891 0.0206 0.9957 0.9743 0.7931 0.9809 0.5612 

 PA 0.9063 0.9786 0.9503 0.9919 0.9741 0.8248 0.9651 0.7102 

 R2 0.8212 0.9576 0.9029 0.9837 0.9487 0.6802 0.9312 0.5043 
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Table 5. The performance indicators for comparing distributions for Jerantut 

 

Table 6. The performance indicators for comparing distributions for Banting 

 

 
 

Figure 5. Probability density function plot of ground-level ozone for 

Jerantut 

 
 

Figure 6. Cumulative distribution function plot of ground-level 
ozone for Jerantut 

Year PI 
Log-

Normal 
Gamma Weibull Nakagami 

Birnbaum-

Saunders 

Inv. 

Gaussian 
Logistic Loglogistic 

          

2017 NAE 0.1848 0.0491 67.4556 0.0413 0.2360 0.2955 0.1298 1.0037 

 
RMSE 0.0079 0.0011 1.3768 0.0007 0.0060 0.0089 0.0029 4.6178 

 IA 0.9010 0.9966 0.0211 0.9983 0.9366 0.8828 0.9767 0.2186 

 PA 0.9224 0.9935 0.9757 0.9970 0.9493 0.9096 0.9599 0.6184 

 R2 0.8506 0.9869 0.9518 0.9938 0.9011 0.8272 0.9213 0.3823 
2018 NAE 0.2392 0.0867 61.6009 0.0319 0.1391 0.3841 0.1393 0.3901 

 
RMSE 0.0115 0.0019 1.3746 0.0008 0.0035 0.0133 0.0036 0.0271 

 
IA 0.8769 0.9928 0.0250 0.9987 0.9820 0.8318 0.9762 0.6090 

 PA 0.9066 0.9860 0.9666 0.9974 0.9850 0.8539 0.9579 0.7235 

 R2 0.8217 0.9720 0.9341 0.9946 0.9701 0.7290 0.9173 0.5233 
2019 NAE 0.2242 0.0922 52.7009 0.0382 0.2449 0.3888 0.1207 0.3899 

 
RMSE 0.0109 0.0022 1.3719 0.0010 0.0080 0.0152 0.0037 0.0301 

 
IA 0.8931 0.9922 0.0277 0.9983 0.9284 0.8267 0.9795 0.6133 

 PA 0.9225 0.9847 0.9606 0.9968 0.9371 0.8506 0.9634 0.7283 

 R2 0.8509 0.9695 0.9225 0.9935 0.8780 0.7234 0.9279 0.5303 

2020 NAE 0.1660 0.0927 65.9176 0.0404 0.2325 0.3299 0.1244 0.3652 

 
RMSE 0.0084 0.0017 1.3762 0.0007 0.0079 0.0101 0.0030 0.0219 

 
IA 0.9259 0.9926 0.0222 0.9985 0.9339 0.8661 0.9792 0.6482 

 PA 0.9381 0.9855 0.9619 0.9971 0.9457 0.8765 0.9627 0.7491 
 R2 0.8798 0.9711 0.9251 0.9941 0.8941 0.7681 0.9266 0.5611 
          

Year PI 
Log-

Normal 
Gamma Weibull Nakagami 

Birnbaum-
Saunders 

Inv. 
Gaussian 

Logistic Loglogistic 

          

2017 NAE 0.6090 0.1151 49.1085 0.0485 0.3465 0.6555 0.2830 1.0086 

 
RMSE 0.0478 0.0029 1.3659 0.0012 0.0117 0.0349 0.0082 4.9554 

 IA 0.6235 0.9941 0.0440 0.9990 0.9371 0.7078 0.9547 0.3269 
 PA 0.7777 0.9887 0.9889 0.9985 0.9317 0.7661 0.9222 0.2949 

 R2 0.6048 0.9774 0.9778 0.9967 0.8679 0.5869 0.8502 0.0869 

2018 NAE 0.4188 0.1437 50.8382 0.0710 0.1702 0.7700 0.2704 2.0052 

 
RMSE 0.0285 0.0035 1.3670 0.0018 0.0040 0.0414 0.0077 0.2750 

 
IA 0.6746 0.9910 0.0419 0.9977 0.9409 0.6263 0.9584 0.1163 

 PA 0.7247 0.9826 0.9825 0.9956 0.9123 0.6997 0.9270 0.4618 
 R2 0.5251 0.9653 0.9652 0.9911 0.8321 0.4895 0.8591 0.2132 

2019 NAE 0.3293 0.1728 51.5120 0.0981 0.3940 0.7679 0.2797 2.0132 

 
RMSE 0.0167 0.0043 1.3675 0.0025 0.0117 0.0403 0.0077 0.2750 

 
IA 0.8037 0.9862 0.0410 0.9952 0.7869 0.6185 0.9572 0.1079 

 PA 0.8397 0.9732 0.9729 0.9907 0.7861 0.6761 0.9246 0.4322 
 R2 0.7050 0.9469 0.9464 0.9813 0.6178 0.4571 0.8547 0.1868 

2020 NAE 0.1652 0.1257 56.3739 0.0581 0.4273 0.5007 0.2631 1.0368 

 
RMSE 0.0066 0.0028 1.3699 0.0011 0.0218 0.0215 0.0068 0.1083 

 
IA 0.9375 0.9926 0.0370 0.9988 0.7569 0.7989 0.9579 0.2727 

 PA 0.9319 0.9857 0.9845 0.9980 0.7537 0.8183 0.9266 0.5627 

 R2 0.8682 0.9714 0.9691 0.9958 0.5680 0.6695 0.8585 0.3165 
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Figure 7. Probability density function plot of ground-level ozone for 

Banting 
 

 
 

Figure 8. Cumulative distribution function plot of ground-level 

ozone for Banting 

 
best distribution. As shown in the table below, the best fit 

distribution is Nakagami. Table 7 shows the actual return 

period and predicted return period. The results indicate the 

probability that concentration exceeded the limit of 0.10 ppm 

[that is, P (X > 0.10) ≠ 0] from the year 2017 until 2019. This 

indicates that the ground-level ozone in Banting monitoring 

station has reached a concentration exceeding 0.10 ppm. 

Furthermore, it shows there is evidence of return period, 

predicted for concentration to exceed the limit set by 

MAAQG. 

 
Table 7. The actual return period and predicted return period 

 

Year 
Actual 

exceedance 

(Days) 

Predicted 
exceedance 

(Days) 

Actual  
return period 

(Days) 

Predicted 
return period 

(Days) 

     

2017 12 13 730 676 

2018 5 12 1738 730 

2019 1 9 8900 973 
2020 0 0 0 0 

     

 

4. Conclusions 
 

Environmental pollution, especially ozone pollution, 

should be taken into consideration especially if it occurs daily, 

as that may give negative effects on human health and the 

ecosystem itself. The O3 concentration for Kuala Terengganu 

has a lower average compared to the Banting monitoring 

station, remaining below 0.10 ppm. According to the findings 

of this study, when assessed based on air pollution monitoring 

areas, Banting, a sub-urban region, has exhibited notably 

higher air pollution readings. On multiple occasions, these 

readings have exceeded the thresholds established by the 

Malaysia Ambient Air Quality Guidelines. The expected O3 

concentrations for the Banting station are influenced by the 

surroundings and the amount of NOX. Banting monitoring 

station is near the Genting Sanyen power plant and the Kuala 

Lumpur International Airport (KLIA), which contribute as 

sources of the NOX. Meteorological factors such as 

temperature, UV radiation, and wind speed also affect the 

concentration levels. Based on the performance indicators, the 

Nakagami distribution, which was first employed in air 

pollution modelling, was the best fit for all three monitoring 

sites from 2017 to 2020. As only the Banting monitoring 

station had readings of ground level ozone that exceed the 

guideline, the return period for this station has also been 

predicted by using the Nakagami distribution to estimate when 

there will be a recurrence of ground level ozone readings 

exceed the limit. 
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