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Abstract

Tropospheric ozone or ground-level ozone, mainly found near ground level, has adverse effects on human health.
Distribution fitting is useful for predicting the probability, or forecasting the frequency of recurrence, of a phenomenon in a
specific period of time. This study aimed to find the best fit distribution of ground-level ozone for specific industrial, rural, and
suburban areas of monitoring locations in Malaysia, which were Kuala Terengganu, Jerantut, and Banting. Secondary data from
2017 to 2020 used in this study were obtained from the Department of Environment Malaysia (DoE). This study employed eight
probability distributions namely Weibull, gamma, lognormal, logistic, log-logistic, Birnbaum-Saunders, Nakagami, and inverse
Gaussian. The method of moments was used to estimate the parameters for each distribution and the best distribution can be used
for predicting the return period of the concentration. The descriptive statistics analysis showed that ground-level ozone reached
the highest peak at 1400 and 1500 hours, due to the UV radiation from sunlight, while the lowest concentration reading was at
0700 hours at all monitoring locations. By comparing the analysis of the eight distributions, Nakagami was found to be the best
fit distribution to the actual monitoring data for Kuala Terengganu, Jerantut, and Banting stations from 2017 to 2020. As a result,
this study suggests that the Nakagami distribution be used to predict exceedances and return periods, based on the performance
indicators. Thus, it can take the place of the typical distributions employed in fitting the distribution of air pollutants, such as the
lognormal distribution and the gamma distribution.
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1. Introduction

Ozone has emerged as a serious pollutant in
megacities and rapidly growing countries. It has the potential
to significantly impact human health, vegetation, and climate
(Zeng et al., 2018). When nitrogen oxides (NOx) react with
oxygen molecules (O2) in the presence of solar light, they
produce free oxygen atoms (O), which combine to form ozone
(O3) (Awang & Ramli, 2017). Several factors influence the Os
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concentration, including cloud cover, sunlight, NOx, carbon
monoxide (CO), and volatile organic compounds (VOC) via
reactions (Latif, Huey, & Juneng, 2012). In addition,
particulate matter and meteorological variables also affect the
reading of Os (Zhou, Cheng, Zhang, Wang, & Yang, 2022).
Furthermore, Oz concentrations are always higher in
the afternoon due to the amount of UV radiation from
sunlight. The two causes of ambient air pollution are man-
made activities (anthropogenic) and natural sources. Natural
sources include pollen dispersal, forest fires, and windblown
dust (Mabahwi, Ling, & Omar, 2014). Surprisingly, about 1.2
million deaths due to air pollution were estimated in China in
2010, accounting for 35% of all such deaths worldwide
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(Zhang et al., 2018). According to Kim, Kabir, and Kabir
(2015), the most hazardous air pollutant to human health is
O3, which kills 0.47 million people worldwide. Furthermore,
numerous studies have indicated that the ozone pollutant has a
negative impact on human health. Bolsoni, Oliveira, Pedrosa,
and Souza (2018) discovered that ozone pollutant has an
aggressive action on vegetation, entering the plants through
stomata. Once inside the stomatal complex, it becomes soluble
when it molecularly diffuses into the subestomatic cavity by
spreading the intercellular gap of the mesophyll. This has
occurred as a result of changes in VOC levels.

Previous studies have discovered that Oz
concentrations are generally higher during the day and lower
at night and in the early morning (Song & Hao, 2015). As the
ozone pollutant increases, forecasting and modeling air
pollution can be used to identify and provide a tool to evaluate
the ozone concentration in the future. Statistical analysis is
commonly utilized to analyze existing and future air quality,
particularly with regard to ozone pollutants. Maciejewska,
Rezlar, Reizer, and Klejnowski in 2015 studied modeling of
black carbon (BC) concentration in Warsaw, Poland by using
statistical distribution and return period of the extreme
concentration. Lognormal, Weibull, and gamma distributions
were used, and the lognormal distribution was found to be the
most appropriate to represent the middle-range values.

Previous research on Os concentration features and
distribution fitting, on the other hand, has only looked at
parent distributions such as lognormal, Weibull, and gamma.
This study is more in-depth because it contains a features
analysis as well as the fitting of eight different types of
statistical distributions. The goal of this study was to find the
best fit probability distribution and compare it to the parent
distributions in air quality modelling in order to predict Os
concentration exceedances and return periods at three
monitoring locations: Jerantut, Kuala Terengganu, and
Banting. To identify the best model, prediction values for each
statistical distribution will be compared using five types of
performance indicators: root mean square error (RMSE),
normalized absolute error (NAE), index of agreement (l1A),
coefficient of determination (R?), and prediction accuracy
(PA).

2. Materials and Methods

2.1 Area of study and data

Three locations were selected for this study, Kuala
Terengganu, Jerantut, and Banting. Kuala Terengganu
monitoring station is located in the East Coast of Peninsular
Malaysia, facing the South China Sea (05°18.455°N,
103°07.213°E). This monitoring station is categorized as an
urban area by Department of Environment Malaysia, and
surrounded by a high-density population, an airport,
commercial areas, and congested traffic (Ahmad Isiyaka et al.,
2014). Nevertheless, this monitoring station is influenced by
the inter monsoons, South-West monsoon, and North-East
monsoon (Abdullah, Ismail, Yuen, Abdullah, & Elhadi, 2017).
Meanwhile, the Jerantut monitoring station is located at Batu
Embun, Pahang (03°55.59’N, 102°22.120’E). It is located
approximately 180 km from Kuantan and 200 km from Kuala
Lumpur, capital city of Malaysia. Jerantut monitoring station
is situated in a rural area that has a low potential of air

pollution concentration (Mohammad, Deni, & Ul-Saufie,
2018) and is surrounded by the forest as well as villages and
agricultural areas (Zaki, Faizah, Yusof, & Shith, 2016). This
station is considered a reference site since it is located in a
rural area near a conserved forest. The Banting monitoring
station is located at Kolej Mara Banting, Bukit Changgang
(2.83° N, 101.62°E). This monitoring station is categorized as
a suburban area and surrounded by villages, residential areas,
and palm oil estates (Suparta, Alhasa, Singh, & Latif, 2015).
This study relies on secondary data supplied by the
Department of Environment. The data quality has been
ascertained through verification procedures in line with the
department's instrumentation standards. Nevertheless, it's
important to note that each dataset contains some missing
values. To address these gaps, a mean top-bottom method has
been employed for imputing the missing data points. The
ground level ozone (Os) hourly average concentration data
from these three monitoring stations were used in this study to
fit eight types of distributions, including the lognormal,
gamma, and Weibull distributions, which are the three main
distributions that are most frequently used in Malaysia to
approximate the distribution of air pollutants. These data sets
span four years, from January 2017 to December 2020. A map
of the monitoring sites used in this study is shown in Figure 1.

Figure 1. Locations of the monitoring stations

2.2 The distribution

The three parent distributions that are commonly
used in air pollution modelling are gamma, lognormal, and
Weibull. This section will go over five more distributions that
were used in this study. Table 1 presents the probability
distributions used in this study. For estimating the parameters,
the method of moments will be used.

2.3 Performance indicators

To compare the results for each set of predicted
values using different statistical distributions, five
performance measures were employed. Root mean square
error (RMSE), normalized absolute error (NAE), coefficient
of determination (R?), index of agreement (1A), and prediction
accuracy (PA) are the performance measures that have been
employed. The RMSE presented the model's error in actual
size (Prasad, Gorai, & Goyal, 2014), while NAE is sensitive in
measuring the forecast model's residual error (Shcherbakov et
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Table 1.  Distributions and parameter estimator
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al., 2013). The R? reflects the degree of model error fitting
(Rybarczyk & Zalakeviciute, 2018), the Al determines the
magnitudes of the actual values in relation to the model's
predicted value (Prasad et al., 2014) and the PA was utilized
as an indicator to determine the estimator performance of the
generated model (Junninen, Niska, Tuppurainen, Ruuskanen,
& Kolehmainen, 2004). The formulae for each performance
indicator that has been used are given in Table 2.

where n is the number of monitoring records, Oi is
the observed monitoring records, and Pi is the predicted

values. Smaller values of RMSE and NAE are better, while
for Rz, IA and PA, a value closer to 1 indicates a better
estimator.

3. Results and Discussion

3.1 Descriptive statistics

Table 3 shows the descriptive statistics for hourly
average data from Kuala Terengganu, Jerantut, and Banting
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Table 2.  Performance indicators
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Table 3. Summary of descriptive statistics
Year 2017 2018 2019 2020
Kuala Terengganu
Mean 0.0176 0.0174 0.0159 0.0141
Std Deviation 0.0119 0.0125 0.0112 0.0098
Minimum 0.0001 0.0001 0.0001 0.0001
Maximum 0.0218 0.0694 0.0579 0.0570
Skewness 0.5130 0.6350 0.5200 0.5210
Jerantut
Mean 0.0152 0.0163 0.0189 0.0120
Std Deviation 0.0104 0.0117 0.0131 0.0105
Minimum 0.0001 0.0001 0.0002 0.0003
Maximum 0.0546 0.0595 0.0668 0.0609
Skewness 0.7290 0.7020 0.6080 0.6210
Banting
Mean 0.0187 0.0198 0.0195 0.0177
Std Deviation 0.0150 0.0195 0.0190 0.0171
Minimum 0.0001 0.0001 0.0001 0.0003
Maximum 0.1280 0.1028 0.1011 0.0928
Skewness 1.1230 0.9940 0.8780 1.0500

monitoring stations from 2017 to 2020. The highest
concentrations were observed in 2017 at the Banting
monitoring station, with a reading of 0.1280 ppm. Jerantut is a
reference monitoring station located far from urban centres.
However, the maximum reading and mean value for this
station do not differ considerably from those recorded in
Kuala Terengganu. According to Department of Environment
Malaysia (DoE, 2014) the highest Oz concentration occurred
due to high traffic volume and a conducive atmospheric
condition for Os formation. Nevertheless, during this study
period, the ground-level ozone in Kuala Terengganu and
Jerantut monitoring station did not exceed the limit set by
MAAQG, which was 0.10 ppm. However, the Banting
monitoring station shows that the maximum reading of Os
concentration each year exceeded the 0.1000 ppm limit. This
may be due to the location being nearer to the Kuala Lumpur
International Airport (KLIA) and the Genting Sanyen power
plant, which may affect the Os concentration.

The bar charts in Figure 2 show the means of
ground-level ozone concentration in Kuala Terengganu,
Jerantut, and Banting monitoring stations in 24 hours, from
2017 to 2020. Kuala Terengganu showed the occurrences of
the highest concentrations at 3.00 pm, while at 7.00 am the
lowest concentrations were recorded. The ground-level ozone
started to increase at 8:00 am until it reached a peak at 3.00
pm, and later slowly began to decrease simultaneously as the
sunlight intensity decreased. In Jerantut, the occurrences of
the highest concentrations also appeared at 3.00 pm, while at
7.00 am the lowest concentrations were observed. Banting
monitoring station showed the highest average reading of O3
concentration, surpassing Kuala Terengganu and Jerantut. It
reached the highest concentrations at 3.00 pm and the lowest
concentrations recorded were at 1.00 am. The highest
concentration of ozone was caused by the intense sunlight and
the presence of nitrogen dioxide that reacted in the sunlight
(Geng et al., 2018).
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Figure 2. Behavior of the O; concentration at all monitoring stations

3.2 Distribution fitting

For Kuala Terengganu monitoring station, Table 4
clearly shows that the Nakagami distribution has a better fit
than the other distributions, for all the years involved in this
study. Five performance indicators were used for comparing
those distributions to obtain the best distribution. The
performance indicators involved are root mean square error
(RMSE), normalized absolute error (NAE), coefficient of
determination (R?), index of agreement (IA) and prediction
accuracy (PA). The performance indicators consistently
indicate that the Nakagami distribution yields low values for
error measures and high values for accuracy measures.
However, it's worth noting that in the year 2018, the gamma
distribution outperformed the Nakagami distribution in one
specific indicator, which is the R

The probability density function (pdf) and
cumulative distribution function (cdf) plots in Figure 3 and
Figure 4 show the distribution curve of Os concentration for
Kuala Terengganu monitoring station. The pdf plotted is a
positive skew distribution. This indicates that most of the O3
concentration readings are low and centered on the left side of
the distribution. Moreover, the cdf was plotted based on the
best distribution that fit the Os concentration. The cdf plot
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Table 4. The performance indicators for comparing distributions for Kuala Terengganu
Year Pl Log- Gamma Weibull Nakagami Birmnbaum- Inv. Logistic Loglogistic
Normal Saunders Gaussian

2017 NAE 0.3561 0.1247 58.9600 0.0752 0.3134 0.4206 0.1534 1.0051

RMSE 0.0164 0.0032 1.3734 0.0027 0.0090 0.0147 0.0046 4.6854

1A 0.8084 0.9833 0.0273 0.9888 0.9156 0.8288 0.9675 0.2757

PA 0.8521 0.9674 0.9518 0.9779 0.9055 0.8426 0.9396 0.4631

R? 0.7260 0.9356 0.9057 0.9562 0.8198 0.7098 0.8828 0.2145

2018 NAE 0.2800 0.1031 57.1137 0.0491 0.2368 0.4030 0.1249 0.4630

RMSE 0.0140 0.0021 1.3733 0.0010 0.0061 0.0145 0.0036 0.0327

1A 0.8695 0.9922 0.0264 0.9982 0.9535 0.8269 0.9791 0.5693

PA 0.8960 0.9847 0.9628 0.9966 0.9525 0.8503 0.9622 0.7144

R? 0.8027 0.9695 0.9267 0.9930 0.9070 0.7229 0.9256 0.5103

2019 NAE 0.0299 0.1171 63.5063 0.0686 0.1988 0.4493 0.1163 0.5375

RMSE 0.6369 0.0021 1.3755 0.0013 0.0050 0.0145 0.0031 0.0338

IA 0.8034 0.9899 0.0232 0.9964 0.9717 0.7955 0.9805 0.5140

PA 0.6453 0.9802 0.9546 0.9933 0.9698 0.8252 0.9642 0.6855

R? 0.0299 0.9606 0.9111 0.9865 0.9404 0.6809 0.9295 0.4698

2020 NAE 0.2965 0.1209 69.5643 0.0713 0.1844 0.4518 0.1171 0.4818

RMSE 0.0130 0.0020 13773 0.0012 0.0052 0.0130 0.0027 0.0264

1A 0.8710 0.9891 0.0206 0.9957 0.9743 0.7931 0.9809 0.5612

PA 0.9063 0.9786 0.9503 0.9919 0.9741 0.8248 0.9651 0.7102

R? 0.8212 0.9576 0.9029 0.9837 0.9487 0.6802 0.9312 0.5043
oo The results show that the probability of
b S = T concentration exceeding the limit 0.10 ppm was 0 [that is,
— P(X>0.10) = 0] for all the years involved in this study. This
= oo indicates that the ground-level ozone in Kuala Terengganu
00 monitoring station for the entire year stayed at a concentration

Zoms \ below 0.10 ppm. Therefore, there is no return period predicted

3 - “'-;\\\ for concentrations above the limit set by MAAQG.

o A0 The results for Jerantut and Banting also show that
oo \ the Nakagami distribution fit the data better compared than
oorf N the other types of distributions. Table 5 and Table 6 show the
o N performance of each distribution for the data from Jerantut

) . . B and Banting monitoring stations, respectively.
% oM am@ ot e e Al o am Figure 5 to Figure 8 show the pdf and cdf of the best
O Concenteation eom) distribution for Jerantut and Banting. For Jerantut, the pdf
Figure 3. Probability density function plot of ground-level ozone for shows a positively skewed curve and the pdf plot for 2018 and
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Figure 4. Cumulative distribution function plot of ground-level
ozone for Kuala Terengganu

shows that the probability of the Os concentration to exceed
the limit is zero. Since the probability that Os concentration
does not exceed the MAAQG limit, the air in this area is still
not contaminated by Oz pollutant.

2019 show longer tails than in the other years. This is sign of
higher Os concentration peaks compared to 2017 and 2020.
Even though the O3 concentrations do not exceed the 0.1 ppm
limit, caution is needed in this area to control the future
increases in concentration. In the cdf plot, no occurrences
exceed the 0.1 ppm limit in this area, indicating that Jerantut
area still had a good air quality level not contaminated by Os.
Hence, there is no return period that could be predicted for
Jerantut station.

The Os concentrations from 2017 to 2020 in Banting
in the pdf plot have a longer tail, which indicates that there are
more extreme events. Moreover, the trends show that the Os
concentration exceeded the limit 0.10 ppm. Furthermore, the
cdf plot shows that the Os concentration tends to exceed the
0.10 ppm limit. For instance in 2017 and 2018, the predicted
values of the concentration exceeded 0.11ppm. The yearly
increases of Oz concentration depend on many factors, led by
an increase in vehicles that produce nitrogen oxides (NOX),
CO, and VOCs. This indicates that this area was contaminated
with the Oz pollutant every year.

The predictions of exceedances for the ground-level
ozone are based on the best fit distributions. Moreover, the
value for the exceedances is taken from the cdf plots of the
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Table 5. The performance indicators for comparing distributions for Jerantut
Year PI Log- Gamma Weibull Nakagami Birbaum- Inv. Logistic Loglogistic
Normal Saunders Gaussian

2017 NAE 0.1848 0.0491 67.4556 0.0413 0.2360 0.2955 0.1298 1.0037

RMSE 0.0079 0.0011 1.3768 0.0007 0.0060 0.0089 0.0029 46178

1A 0.9010 0.9966 0.0211 0.9983 0.9366 0.8828 0.9767 0.2186

PA 0.9224 0.9935 0.9757 0.9970 0.9493 0.9096 0.9599 0.6184

R? 0.8506 0.9869 0.9518 0.9938 0.9011 0.8272 0.9213 0.3823

2018 NAE 0.2392 0.0867 61.6009 0.0319 0.1391 0.3841 0.1393 0.3901

RMSE 0.0115 0.0019 1.3746 0.0008 0.0035 0.0133 0.0036 0.0271

1A 0.8769 0.9928 0.0250 0.9987 0.9820 0.8318 0.9762 0.6090

PA 0.9066 0.9860 0.9666 0.9974 0.9850 0.8539 0.9579 0.7235

R? 0.8217 0.9720 0.9341 0.9946 0.9701 0.7290 0.9173 0.5233

2019 NAE 0.2242 0.0922 52.7009 0.0382 0.2449 0.3888 0.1207 0.3899

RMSE 0.0109 0.0022 1.3719 0.0010 0.0080 0.0152 0.0037 0.0301

1A 0.8931 0.9922 0.0277 0.9983 0.9284 0.8267 0.9795 0.6133

PA 0.9225 0.9847 0.9606 0.9968 0.9371 0.8506 0.9634 0.7283

R? 0.8509 0.9695 0.9225 0.9935 0.8780 0.7234 0.9279 0.5303

2020 NAE 0.1660 0.0927 65.9176 0.0404 0.2325 0.3299 0.1244 0.3652

RMSE 0.0084 0.0017 1.3762 0.0007 0.0079 0.0101 0.0030 0.0219

1A 0.9259 0.9926 0.0222 0.9985 0.9339 0.8661 0.9792 0.6482

PA 0.9381 0.9855 0.9619 0.9971 0.9457 0.8765 0.9627 0.7491

R? 0.8798 0.9711 0.9251 0.9941 0.8941 0.7681 0.9266 0.5611

Table 6.  The performance indicators for comparing distributions for Banting
Year PI Log- Gamma Weibull Nakagami Birnbaum- Inv. Logistic Loglogistic
Normal Saunders Gaussian

2017 NAE 0.6090 0.1151 49.1085 0.0485 0.3465 0.6555 0.2830 1.0086

RMSE 0.0478 0.0029 1.3659 0.0012 0.0117 0.0349 0.0082 4.9554

1A 0.6235 0.9941 0.0440 0.9990 0.9371 0.7078 0.9547 0.3269

PA 0.7777 0.9887 0.9889 0.9985 0.9317 0.7661 0.9222 0.2949

R? 0.6048 0.9774 0.9778 0.9967 0.8679 0.5869 0.8502 0.0869

2018 NAE 0.4188 0.1437 50.8382 0.0710 0.1702 0.7700 0.2704 2.0052

RMSE 0.0285 0.0035 1.3670 0.0018 0.0040 0.0414 0.0077 0.2750

1A 0.6746 0.9910 0.0419 0.9977 0.9409 0.6263 0.9584 0.1163

PA 0.7247 0.9826 0.9825 0.9956 0.9123 0.6997 0.9270 0.4618

R? 0.5251 0.9653 0.9652 0.9911 0.8321 0.4895 0.8591 0.2132

2019 NAE 0.3293 0.1728 51.5120 0.0981 0.3940 0.7679 0.2797 2.0132

RMSE 0.0167 0.0043 1.3675 0.0025 0.0117 0.0403 0.0077 0.2750

1A 0.8037 0.9862 0.0410 0.9952 0.7869 0.6185 0.9572 0.1079

PA 0.8397 0.9732 0.9729 0.9907 0.7861 0.6761 0.9246 0.4322

R? 0.7050 0.9469 0.9464 0.9813 0.6178 0.4571 0.8547 0.1868

2020 NAE 0.1652 0.1257 56.3739 0.0581 0.4273 0.5007 0.2631 1.0368

RMSE 0.0066 0.0028 1.3699 0.0011 0.0218 0.0215 0.0068 0.1083

1A 0.9375 0.9926 0.0370 0.9988 0.7569 0.7989 0.9579 0.2727

PA 0.9319 0.9857 0.9845 0.9980 0.7537 0.8183 0.9266 0.5627

R? 0.8682 0.9714 0.9691 0.9958 0.5680 0.6695 0.8585 0.3165
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Figure 5. Probability density function plot of ground-level ozone for
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Figure 6. Cumulative distribution function plot of ground-level
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Figure 7. Probability density function plot of ground-level ozone for
Banting
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Figure 8. Cumulative distribution function plot of ground-level
ozone for Banting

best distribution. As shown in the table below, the best fit
distribution is Nakagami. Table 7 shows the actual return
period and predicted return period. The results indicate the
probability that concentration exceeded the limit of 0.10 ppm
[that is, P (X > 0.10) # 0] from the year 2017 until 2019. This
indicates that the ground-level ozone in Banting monitoring
station has reached a concentration exceeding 0.10 ppm.
Furthermore, it shows there is evidence of return period,
predicted for concentration to exceed the limit set by
MAAQG.

Table 7. The actual return period and predicted return period
Actual Predicted Actual Predicted
Year  exceedance exceedance return period return period
(Days) (Days) (Days) (Days)
2017 12 13 730 676
2018 5 12 1738 730
2019 1 9 8900 973
2020 0 0 0 0

4, Conclusions

Environmental pollution, especially ozone pollution,
should be taken into consideration especially if it occurs daily,
as that may give negative effects on human health and the
ecosystem itself. The Os concentration for Kuala Terengganu
has a lower average compared to the Banting monitoring
station, remaining below 0.10 ppm. According to the findings

of this study, when assessed based on air pollution monitoring
areas, Banting, a sub-urban region, has exhibited notably
higher air pollution readings. On multiple occasions, these
readings have exceeded the thresholds established by the
Malaysia Ambient Air Quality Guidelines. The expected O3
concentrations for the Banting station are influenced by the
surroundings and the amount of NOx. Banting monitoring
station is near the Genting Sanyen power plant and the Kuala
Lumpur International Airport (KLIA), which contribute as
sources of the NOx. Meteorological factors such as
temperature, UV radiation, and wind speed also affect the
concentration levels. Based on the performance indicators, the
Nakagami distribution, which was first employed in air
pollution modelling, was the best fit for all three monitoring
sites from 2017 to 2020. As only the Banting monitoring
station had readings of ground level ozone that exceed the
guideline, the return period for this station has also been
predicted by using the Nakagami distribution to estimate when
there will be a recurrence of ground level ozone readings
exceed the limit.
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