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Abstract

In this research work, we have introduced a new notion of weighted hesitant bipolar-valued fuzzy soft set (WHBFSS)
as a generalization of hesitant bipolar-valued fuzzy soft set (HBFSS), and we examine some of its fundamental properties in
detail. We’ve also defined some novel notions of the root mean square difference operator (RMSDO), root mean square
difference score matrix (RMSDSM), and weighted score, and using these novel notations, we have proposed an advanced and
adjustable decision-making method (DMM) for solving real-life decision-making problems (DMPs) based on both HBFSS and
WHBFSS. A real-life example is provided to demonstrate the validity of our suggested method. Finally, a comparative analysis

of our approach with an existing method is provided.
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1. Introduction

Molodtsov (1999) developed the basic results of soft
sets (SSs) and successfully applied them to a variety of fields,
including the smoothness of functions, operations analysis,
game theory, Riemann integration, probability, and so on. To
solve DMPs, Maji, Biswas, and Roy (2002) used SSs for the
first time. Recently, several authors have looked into
properties and applications of SSs more broadly. Alcantud and
Santos-Garcia (2017) presented a new criterion for SSs-based
DMPs under incomplete information, and Dalkilic (2021)
proposed a novel approach to SSs in DMPs under uncertainty.

The idea of the fuzzy set (FS) was started by Zadeh
(1965), and thereafter many new approaches and ideas have
been offered to deal with imprecision and ambiguity, such as
hesitant fuzzy set (HFS), intuitionistic fuzzy set (IFS)
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(Atanassov, 1986), bipolar-valued fuzzy set (BFS) (Lee,
2000), and so on. Torra (2010) first introduced the theory of
HFSs, and later on, Rodryguez, Martynez, Torra, Xu, and
Herrera (2014) presented the state of the art and future
directions of HFSs. Xia and Xu (2017) proposed hesitant
fuzzy (HF) information aggregation in DMPs and also studied
some properties of HFSs. Ren and Wei (2017) proposed an
MCDM algorithm with a prioritization relationship and dual
HF-decision information. Xu and Zhou (2017) presented
consensus building with a group of decision-makers (DMs) in
a hesitant probabilistic fuzzy environment. Liu and Zhang
(2017, 2017a) suggested an extended multi criteria decision-
making (MCDM) technique using neutrosophic HF-
information and also proposed another MCDM technique
using neutrosophic HF-heronian mean aggregation functions.
Alcantud and Torra (2018) presented some decomposition
theorems as well as extension principles for HFSs. Naz and
Akram (2019) suggested a novel DMM based on HFSs and
graph theory. Alcantud and Giarlotta (2019) studied the
necessary and possible HFSs as well as proposed a novel
model for group DMPs.
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Maji, Biswas, and Roy (2001) described fuzzy soft
set (FSS), which is a hybrid of FS and SS. The applications of
FSSs have been gradually concentrated by using these
concepts. Feng, Jun, Liu, and Li (2010) introduced an
adjustable DMM to solve FSS-based DMPs. Wang, Li, and
Chen (2014) defined the hesitant fuzzy soft set (HFSS) and
proposed its applications in MCDM. The topic of
intertemporal-FSS selection was first raised by Alcantud and
Muoz Torrecillas (2017). Peng and Dai (2017) suggested
some HF-soft DMMs using COPRAS, MABAC, and
WASPAS. Using revised aggregation functions, Peng and Li
(2019) suggested a DMM for HF soft DMPs. Gao and Wu
(2021) defined filters and their applications in topological
spaces formed by FSSs. Dalkili¢ (2021a) defined topology on
virtual fuzzy parameterized-FSSs. Bhardwaj and Sharma
(2021) described an advanced uncertainty measure using FSSs
and suggested an application in DMPs. Fatimah and Alcantud
(2021) presented the idea of multi-fuzzy N-SS and its
applications in DMPs. Later on, Das and Granados (2022)
introduced a new theory on FP-1FS multisets and suggested an
adjustable approach based on FP-IFS multisets; also, Das,
Granados and Bhattacharya (2022) defined some new
operations on FSSs and studied their applications in decision-
making. Recently, Das and Granados (2023) introduced a
new notion of IFP-intuitionistic multi fuzzy N-soft set and
induced IFP-hesitant N-soft set and also studied their
applications to solve real-world DMPs. Granados, Das and
Osu (2023) defined weighted neutrosophic soft multisets and
studied their application to solve real-life DMPs.

BFS is a FS extension with a membership degree
range that differs from the previous extensions. Lee (2000)
pioneered the BFS as an FS extension. Many academics have
been interested in the merging of BFS and HFS in recent
years, and good findings have been obtained. The concepts of
hesitant bipolar-valued fuzzy sets (HBFSs) and their
applications in DMPs were described by Han, Lou, and Chen
(2016). Wei, Alsaadi, Hayat, and Alsaedi (2017) developed
some hesitant bipolar fuzzy aggregation functions in MCDM,
and Xu and Wei (2017) suggested some dual hesitant bipolar
fuzzy aggregation functions in MCDM. The concepts of BFSs
and their applications in DMPs were introduced by Abdullaha,
Aslamb, and Ullaha (2014), and the concept of bipolar-valued
hesitant fuzzy sets (BHFSs) with applications in MCDM was
proposed by Ullah, Mahmood, Jan, Broumi, and Khan (2018).
In a bipolar fuzzy environment, Alghamdi, Alshehri, and

2. Preliminaries

Akram (2018) proposed an enhanced method for MCDM.
Following that, Multiple-attribute decision-making ELECTRE
Il approach under a bipolar fuzzy model was introduced by
Shumaiza, Akram, and Al-Kenani (2019). More information
on the outcomes of HBFSs and BHFSs, as well as their
applications in multi criteria group decision-making
(MCGDM), was explored by Mandal and Ranadive (2019).
Later on, in 2020, Akram, Shumaiza, and Al-Kenani (2020)
proposed an innovative MCGDM method for choosing green
suppliers using a bipolar fuzzy PROMETHEE process.
Additionally, Akram Shumaiza and Arshad (2020) created
two novel techniques for diagnosing bipolar disorder: the
bipolar fuzzy TOPSIS method and the bipolar fuzzy
ELECTREI method. Bipolar fuzzy soft D-metric spaces were
researched by Dalklg and Demirtas (2021) in 2021. The
concepts of HBFSSs were established by Wang, Wang, and
Liu (2020), who also proposed a DMM (Wang-method) based
on HBFSS that makes use of a scoring function and choice
value in order to use HBFSs and SSs more effectively to
address the uncertainty issues that are present in most real-
world problems. A new MAGDM approach with 2-tuple
linguistic bipolar fuzzy Heronian mean operators was recently
introduced by Naz, Akram, Al-Shamiri, Khalaf, and Yousaf
(2022), and Akram, Shumaiza, and Alcantud (2023) provided
an efficient MCDM method with BFSs to resolve real-world
DMPs.

In this study, we provide a new concept of
WHBFSS and look at some of its fundamental properties in
depth. We’ve also defined some novel notions of RMSDO,
RMSDSM, and weighted score, and using these novel
concepts, we have proposed an advanced and adjustable
DMM for solving HBFSS and WHBFSS based DMPs. The
following is the structure of this paper: The essential concepts
and conclusions of FS, SS, FSS, HFS, HFSS, HBFS, and
HBFSS are presented in Section 2, which will be important in
later discussion. In Section 3, we provide a new concept of
WHBFSS and look at some of its fundamental properties in
detail. Also, we’ve defined some novel notions of RMSDO,
RMSDSM, and weighted score, and using these novel
concepts we have proposed an advanced and adjustable DMM
for solving HBFSS and WHBFSS based DMPs. In Section 4,
we show one real-life example to demonstrate the validity of
our technique, and in Section 5, we provide a comparative
analysis with an existing method. Finally, in Section 6, we
bring the paper to a conclusion and discuss our future work.

Let us consider Q representing the starting universe and Q representing a nonempty set of parameters. Let the power set

of Q be denoted by P(Q2) and T Q.

Definition 2.1 (Zadeh, 1965) A FS Z on Q is a set with a structure 7 :{(ﬂ, I, (ﬂ));ﬂeg}’ where the real-valued function

u,:Q —[0, 1] is said to be the membership functionand |, () is called the degree of membership for each object g <.

Assume that, FS(€2) means the collection of all FSs on Q.

Definition 2.2 (Molodtsov, 1999) A SS over the nonempty universe Q is a pair (V/,T), where y is a mapping defined by y:

T-P (Q).

Definition 2.3 (Maji, 2001) A pair ((//,T) is said to be an FSS over Q, where y: T—>FS(Q) is a mapping such that

VteT, w(t)={< B, 1, (B)> B}
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Assume that FSS(€2) means the collection of all FSSs on Q.

Definition 2.4 (Feng, Jun, Liu, and Li, 2010) Let @ :(V,,T)be a FSS on Q and A(T) = {A(t): teT} be a threshold vector on T;
then the A(T)-level soft set (A(T)-LSS) is denoted by L(®,1)= (w,,T) and defined as %(t):{ﬁeg;#w(t)(/})z,l(t)}, ‘
VteT.

Definition 2.5 (Lee, 2000) A bipolar-valued fuzzy set (BFS) B on Q is a set with a structure g :{(ﬂ, 1 (B), 15 (ﬂ));ﬂ EQ}’

where 15 Q—[0,1], and g : Q —[-1,0] are mappings, such that 45 () means the positive information and h; () means
the negative information V3 € Q.
As a matter of convenience, all BFSs on Q are abbreviated as BFS(Q).

Definition 2.6 (Abdullaha, 2014) A pair (,/,,T) is said to be a BFSS on Q, where y: T—BFS(Q) is a mapping such that
vteT, ()= {(ﬂv /1.;(1) (ﬂ)vﬂ.;(t) (ﬁ)) PBe Q}-

Definition 2.7 (Torra, 2010) A HFS on Q is denoted by 7 — {<ﬂ h, (ﬂ)) B EQ}and defined by the terms h, (B) when applied to

Q, where h, () is a collection of some various values in [0, 1], reflecting the possible membership degrees v ), and h, (5)
is called HFE.
Assume that HFS(Q) means the collection of all HFSs on Q.

Definition 2.8 (Wang, Li, & Chen, 2014) A pair (l//,T) is said to be an HFSS over Q, where y: T—>HFS(Q) is a mapping.

Definition 2.9 (Mandal, & Ranadive, 2019) A HBFS B on Q is a set with a structure B={< g, H, (B)=
(ha (B),h5 (B)) >: B € OO}, where h; () called the hesitant fuzzy positive element, is a set of some values in [0,1] denoting the
possible satisfaction degree of Q) to the corresponding property to the B; h; ()., called the hesitant fuzzy negative element,
is a set of some values in [-1,0] denoting the negative satisfaction degree of g <y to the opposite property to the B; and
Hy(B) called the hesitant bipolar-valued fuzzy element (simply, HBFE), is a set of some values in [0,1]x[—1,0] to the B.
Simply, all HBFSs on Q are abbreviated as HBFS(£2), and HBFE(Q2) means all HBFEs in Q.

Definition 2.10 (Wang, Wang, & Liu, 2020) A pair (‘//vT) is known as a HBFSS on Q, where v is a mapping given by

yT—HBFS(Q) and vteT, w(t)={< B, H,(B) > B Q}.
Assume that HBFSS(Q2) means the collection of all HBFSSs on Q.

Example 2.11 Let Q={4, ,} be the set of the universe and T = {tl,tz,ts} be the set of parameters. Then
(t,.((8.(£0.7,0.6 },{-0.3-0.4,0.5})),(3,,{0.6,0.5,0.4}{-05,-0.7})))),
(v, T)= < tz,((ﬂl,({0.8,0.7,0.6}, {-0.4,-0.6})),(,.({0.4,0.23}, {-0.5,-0.6,-0.7})))),

( t..((8.,(£0.7,0.5,03}, {-0.4,-0.8})),(5,.({0.8,0.6}, {-0.3-0.9))))
is an HBFSS on Q.

Definition 2.12 (Wang, Wang, & Liu, 2020) The FSS (i, T) is called the score matrix of the HBFSS (y, T), where the scoring

function of each member of the HBFS y/(t), Vt €T is the membership value of each member of the FS y/(t).
Wang-method (Wang, Wang, & Liu, 2020):

Algorithm 1:
Step 1. Enter the HBFSS (y, T).
Step 2. Compute the score matrix @ = (w,.T) associated with (y, T).

Step 3. The threshold vector A(T) can be obtained by calculating the average value allocated to each parameter.
Step 4. For each alternative, calculate the average-LSS L (®, 1) and the choice value C; using the threshold vector A.

Step 5. The best optimal choice is to select Bk if Ck is maximized.
Step 6. If Bk has many values, any of these Bk may be selected.
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3. Weighted Hesitant Bipolar-Valued Fuzzy Soft Set and its Theoretical Analysis
Let Q represent the starting universe, Q represent a set of parameters, and T, S, Pc Q.

Definition3.1 A WHBFSS is a triple <(//,T , a) , where (., T) is an HBFSS over Q and o: T—[0,1] is a weight function that
specifies the weight o, =o(t) for every t, eT.+++++++++++
We denote the collection of all WHBFSSs over Q by WHBFSS(Q).

Example 3.2 If we consider the HBFSS (y, T) as shown in Example 2.11, and assume that DMs has set the weight for the
parameters in T as o, :g(tl):o,g; o, :O’(tz)zo_Y; o, :J(ts)zo_& then we have the HBFSS (y, T) is changed into a

WHBFSS (y,T,0) as
( (1,09).((4.(£0.7.0.6,}.{-0.3-0.4,-05})),(3,.({0.6,0.5,0.4},{-05-0.7})))),
(y,T,0)= < (,,0.7),((5,.({0.8,0.7,0.6}, {-0.4,-0.6})),( 5,.({0.4,0.2}, {-o.5,-o.e,-o.7})))>,
( (1:,0.8),((8,{0.7,05,0.3}, {-0.4,-0.8})).(5,.(0.8,0.6}, {-0.3-0.9))))

Definition 3.3 For two WHBFSSs <y, T,0 >,<¢,S, p>eWHBFSS(QY), we say that <y, T,o > is a sub-WHBFSS of
<, S, p>if ). TeSand vteT, of(t)<p(t), (ii). VteT, w(t) co(t).
Wewrite <y, T,0>E<0,S, p>.

Definition 3.4 Let <y, T,0>,<,S, p>eWHBFSS(Q). Then <y, T,0> and <¢,S,p> are equal-sets, denoted by
<y, T,o> = <@,S,p>ifandonlyif VteT, o(t) = p(t) and y(t) = @(t).

Proposition 3.5 Let <y, T,0>,<¢,S, p><7,P,8 > WHBFSS(Q) . Then

[l <y, T,0>=<@,S,p> and <@,S,p>=<1,P,0> =<y, T,0>=<1,P,6>

[ii]. <y, T,o0>&<@,S,p> and <@,S,p>E<7,P,6> =<y, T,0>E<7,P,0>

[ii]. <y, T,0>E<p,S,p> and <, S, p>C<y,T,0> =<y, T,0>=<p,S,p>

Definition 3.6 The complement of a WHBFSS <y, T,o>cWHBFSS(Q) denoted by <y, T,o>% is defined by
<y, T,0>=<y",T,06° > where T —HBFS(Q) and ¢°:T —[0,1] are functions given by vteT, y°(t)=(w(t))"
and o°(t) =1-o(t).

Proposition 3.7 Let<y, T, o > WHBFSS(Q) , then (<, T, o >° )c =<y, T,0>.

Definition 3.8 Union between two WHBFSSs <y, T,0 >,< ¢, S, p > WHBFSS(Q) is denoted by <y, T,oc>U<g,S, p>
and defined as <y, T,0>U<g,S, p>=<r,P,5 >, where P=T uSand

w(t), ifteT a(t), ifteT
7(t) =1 (1), ifteS and S(t) =1 p(t), ifteS
wt)ue), ifteT NS max{o(t), p(t)}, ifteT NS.

Definition 3.9 Intersection between two WHBFSSs <y, T, >,<¢,S, p >eWHBFSS(Q) is denoted by <, T, 6>~ <¢,S, p>
and defined as <« w,T,0>"<@,S, p>=<1,P,5>, where P=T uSand

w(t), ifteT a(t), ifteT
7(t) =1 (), ifteS and S(t) =4 p(t), ifteS
wt)net), ifteTnS min{o(t), p(t)}, ifteTNS.

Proposition 3.10 Let us consider <y, T,0 >,<,S, p>,<7,P,8 >e WHBFSS() , then
[i] Associative Laws
<y T,0>0(<9,S,p>0<1,P,6>)=(<y,T,0>0<9,S,p>)U<7,P,5>

<y T,o>A(<p,S,p>"<1,P,6>)=(<y,T,0>A<9,S,p>)"<7,P,5>
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[ii] Distributive Laws
<y, T,0>A(<p,S,p>0U<r,P,6>)=(<y.T,0>"<9,S,p>)0U(<y,T,o0>"<71,P,5>)
<z//,T,a>Q(<<p,S,p>r~\<r,P,5>):(<¢//,T,o->0<@,S,p>)ﬁ(<w,T,a>Q<r,P,5>)
[iii] De Morgan’s Laws
(<w,T,o->r~w<(p,S,p>)C =<y, T, 0> U<g,S, p>°
(<l//,T,O'>C)<g0,S,p>)C =<y, T, 0> "\<p,S,p>°

Definition 3.11 The RMSDO A: HBFE(Q) —[-1,1] defined by wH(8) = (h*(8),h () € HBFE(Q),

1 ) 2 1 2 g
AHB) =| —— D i g
( (ﬂ)) [ h+(ﬂ) ;l‘e;(/’)(lu ) ] [h(ﬁ)ﬂ Ehzw)(lu ) ]

Example 3.12 If we consider the WHBFSS <(//1T , g) as shown in Example 3.2, then we have the set of all HBFEs in Q,
HBFE(Q) = { ({0.7,0.6,},{-0.3,-0.4,-0.5}), ({0.8,0.7,0.6}, {-0.4,-0.6}),
({0.7,0.5,0.3}, {-0.4,-0.8}), ({0.6,0.5,0.4}, {-0.5,-0.7}),
({0.4,0.2}, {-0.5,-0.6,-0.7}), ({0.8,0.6}, {-0.3,-0.9})}.

Then
A({0.7,0.6,},{-0.3,-0.4,-0.5})

- (%{(0.7)2 ¥ (0.6)2}j

Similarly, we have
A({0.8,0.7,0.6}, {-0.4,-0.6}))=0.19485,
A({0.7,05,0.3}, {-0.4,-0.8})=-0.10647,
A({0.6,0.5,0.4}, {-0.5,-0.7})=-0.10165,
(
(

N
N

_[%{(_0_3)2 +(-0.4)° +(—o.5)2}] =0.24367.

A({0.4,0.2},{-0.5,0.6,-0.7}) = ~0.2893,
A({0.8,0.6}, {-0.3,-0.9})=-0.036287.

Definition 3.13 The RMSDSM of the HBFSS <y, T,o >cWHBFSS(Q) is denoted by <y, T,0> and defined as
VieT, y,(t)={< B, A(H,,(B) > B}

Example 3.14 If we consider the WHBFSS (i, T, o) as shown in Example 3.2, then we have
v, (t) ={< B,0.24367>,< f3,,—0.10165>},
v, (t,) ={< $3,0.19485> < 3,,—0.2893 >},

v, (t;) ={< B,,—0.10647>,< B,,—0.03629>}.

Now, we present our advanced machine learning algorithm for solving DMPs based on HBFSS and WHBFSS. The steps of our
proposed DMM are listed below:

Algorithm 2

Step 1: Enter a nonempty universe Q:{ﬁl,ﬁz ﬂn}' a set of parameters T = {tlvtzi"'vtm}' and a group of experts

{DM,,DM,,..., DM |.
Step 2: Enter the BFSSs (v, T), (l//Z’T)""’(l//q’T)1 as provided by each expert.
Step 3: Compute the resultant HBFSS (,,,,T) from the BFSSs (v, T), (V’le)v---l(‘//qu)
Step 4: Enter a weight ¢ corresponding to the HBFSS (y/,T ) , where &:T —[0,1]
Step 5: Obtain the WHBFSS <(//,T , g) with regards to the weight .

Step 6: Compute the RMSDSM <1//A,T,o-> and the weighted score using the formula

@ :%id(tk)XA(wa(ﬂj»’ VP eQ
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Step 7: The best optimal choice is to select fs if g, is maximized.
Step 8. If Bs has many values, any of these 3s may be selected.

4, Results and Discussion

In this section, a real-life DMP is provided to demonstrate the validity of our suggested method.
Step 1: Let Q:{ﬂl,ﬂz,ﬂg,ﬂA,ﬂS} be the set of manuscripts submitted in the conference for the best manuscript

award, and T = {t,,t,,t,,t,,t;} be the parameters set, where
T ={t, =invention and originality,
t, = significance of outcomes,
t, = applications,
t, = modernity of references,

t, = precision of language and clarity of goal}.
Step 2: Suppose the manuscripts are reviewed by three experts, and their observations (v.T).(¢.T) and (p,T) are in

Tables 1, 2, and 3, respectively.
Step 3: Based on the results of combining the three experts’ observations, we have the resultant HBFSS (lpy'r) shown

in Table 4.
Step 4: Assume that the decision maker has set the weights for the parameters in T as follows:

o,=0(t)=09;, o,=0(,)=07 o0,=0(,)=09; o,=0(t,)=08; o,=0f(t;)=05.

Step 5: Then we have a weighted function ¢ for HBFSS (‘{’T) where o: T—[0,1] and the HBFSS (\y'r) is changed
into a WHBFSS <\{f’T’g> as in Table 5.

Step 6: We obtain the RMSDSM <« ¥, T,0> whose tabular representation is in Table 6. Table 6 shows the results of
the computation of the weighted score @, atstep 6.

Step 7: From the last column in Table 6, we have the optimal choice Ba.

Tablel. The BFSS (‘//,T)

.Q t1 tz t3 t4 tS

B1 0.7,-0.3 0.6,-0.4 0.5,-0.8 0.8,-0.4 0.2,-0.7
B2 0.6,-0.5 0.2,-05 0.7,-0.9 0.6,-0.9 0.4,-0.6
Bs 0.7,-0.2 0.4,-0.6 0.7,-0.5 0.8,-0.4 0.3,-0.7
Ba 0.8,-0.4 0.5,-0.3 0.6,-0.4 0.8,-0.2 0.2,-0.8
Bs 0.6,-0.7 0.3,-0.4 0.6,-0.8 0.7,-0.2 0.4,-0.7

Table 2. The BFSS (¢,T)

Q t1 tz t3 t4 t5

B1 0.6,-0.4 0.8,-0.6 0.3,-0.4 0.6,-0.5 0.4,-05
B2 0.4,-0.5 0.4,-0.7 0.6,-0.3 0.5,-0.7 05,-04
B3 0.5,-0.4 0.9,-0.8 0.5,-0.3 0.4,-0.6 0.6,-0.7
Ba 0.8,-0.6 0.7,-0.7 0.5,-0.2 0.7,-0.6 0.7,-0.7
Bs 0.6,-0.8 0.5,-0.8 0.4,-0.6 0.5,-0.6 0.6,-0.5

Table3. The BFSS (p,T)

Q t1 tz t3 t4 t5

B1 0.5,-0.5 0.7,-0.4 0.7,-0.4 0.6,-0.9 0.6,-0.3
B2 0.5,-0.7 0.3,-0.6 0.8,-0.6 0.4,-05 0.9,-0.2
Bs 0.3,-0.6 0.5,-0.7 0.7,-0.3 0.3,-0.8 0.9,-0.5
Ba 0.6,-0.5 05,-05 0.7,-0.3 0.3,-0.2 0.9,-0.6

Bs 0.5,-0.7 0.5,-0.6 0.6,-0.7 0.3,-0.6 0.8,-0.3
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Table 4. The HBFSS (\PT)
Q t1 tz tg t4 t5
B: {0.7,0.6,0.5} {0.8,0.7,0.6} {0.7,05,0.3} {0.8,0.6} {0.6,04,0.2}
{-0.3,-0.4,-0.5} {-0.4,-0.6} {-0.4,-0.8} {-0.4,-0.5,-0.9} {-0.3,-0.5,-0.7}
B, {0.6,0.5,0.4} {0.4,0.3,0.2} {0.8,0.7,0.6} {0.6,0.5,0.4} {0.9,0.5,0.4}
{-05,-0.7} {-0.5,-0.6,-0.7} {-0.3,-0.6,-0.9} {-0.5,-0.7,-0.9} {-0.2,-0.4,-0.6}
Ba {0.7,05,0.3} {0.9,05,0.4} {0.7,05} {0.8,04,0.3} {0.9,0.6,0.3}
{-0.2,-0.4,-0.6} {-0.6,-0.7,-0.8} {-0.3,-0.5} {-0.4,-0.6,-0.8} {-0.5,-0.7}
Bs {0.8,0.6} {0.7,05} {0.7,0.6,0.5} {0.8,0.7,0.3} {0.9,0.7,0.2}
{-0.4,-0.5,-0.6} {-0.3,-0.5,-0.7} {-0.2,-0.3,-0.4} {-0.2,-0.6} {-0.6,-0.7,-0.8}
Bs {0.6,0.5} {05,0.3} {0.6,0.4} {0.7,05,0.3} {0.8,0.6,0.4}
{-0.7,-0.8} {-0.4,-0.6,-0.8} {-0.6,-0.7,-0.8} {-0.2,-0.6} {-0.3,-0.5,-0.7}
Table5. The WHBFSS <\y,T , a)
Q 0.9 0.7 ;0.9 0.8 0.5
B: {0.7,0.6,0.5} {0.8,0.7,0.6} {0.7,0.5,0.3} {0.8,0.6} {0.6,0.4,0.2}
{-0.3,-0.4,-0.5} {-0.4,-0.6} {-0.4,-0.8} {-0.4,-0.5,-0.9} {-0.3,-0.5,-0.7}
B2 {0.6,0.5,0.4} {0.4,0.3,0.2} {0.8,0.7,0.6} {0.6,0.5,0.4} {0.9,0.5,0.4}
{-0.5,-0.7} {-0.5,-0.6,-0.7} {-0.3,-0.6,-0.9} {-0.9,-0.7,-0.5} {-0.2,-0.4,-0.6}
Bs {0.7,05,0.3} {0.9,05,0.4} {0.7,05} {0.8,04,0.3} {0.9,0.6,0.3}
{-0.2,-0.4,-0.6} {-0.6,-0.7,-0.8} {-0.3,-0.5} {-0.4,-0.6,-0.8} {-0.5,-0.7}
Bs {0.8,0.6} {0.7,0.5} {0.7,0.6,0.5} {0.8,0.7,0.3} {0.9,0.7,0.2}
{-0.4,-0.5,-0.6} {-0.3,-0.5,-0.7} {-0.2,-0.3,-0.4} {-0.2,-0.6} {-0.6,-0.7,-0.8}
Bs {0.6,0.5} {0.5,0.3} {0.6,0.4} {0.7,0.5,0.3} {0.8,0.6,0.4}
{-0.7,-0.8} {-0.4,-0.6,-0.8} {-0.6,-0.7,-0.8} {-0.2,-0.6} {-0.3,-0.5,-0.7}
Table 6. The RMSDSM <« \PA,T,O- >, with weighted score @
Q t,0.9 t,0.7 ;0.9 0.8 t50.5 @
B1 0.197282 0.194847 -0.106465 0.069403 -0.093942 0.04533592
B2 -0.101653 -0.294617 0.056675 -0.212172 0.205655 -0.06272444
Bs 0.093942 -0.067045 0.195965 -0.077155 0.039798 0.03443196
Bs 0.200484 0.082285 0.294617 0.190490 -0.036418 0.12747468
Bs -0.199397 -0.209514 -0.194847 0.078777 0.095834 -0.07810816

Advantages: When we use Algorithm 2, we get fewer object choices, which makes it easier for us to make a decision.

However, by using Algorithm 2, we can obtain more detailed data, which will assist leaders in making decisions. If there are lots

of optimal choices to be selected in the 71 step, we can return to the 4" step and adjust the weight so that we can find one single

optimal solution.

5. Comparison Analysis

In the following, we have to show that the Wang method is not sufficient to solve HBFSS based DMPs. Let

Q={B.B, BB, B be the set of manuscripts submitted to the conference for the best manuscript award, and

T= {tivtzrtytmts} be the parameters set where

T ={t, = invention and originality,

t, =significance of outcomes,
t, = applications,
t, = modernity of references,

t, = precision of language and clarity of goal}

Suppose the manuscripts are reviewed by three experts, and their observations (l//,T ),((p,T) and (p;r) are in Tables 1, 2, and 3,

respectively.

Step 1: After combining the three experts’ observations, we have the resultant HBFSS (‘P,T) as shown in Table 4.
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Step 2: We obtain the score matrix @ = (P,.T) associated with (\y,'r) , shown in Table 7.

Step 3: Calculate the average value assigned to each parameter, that is,

1 5
AlL) = gz,u.,s(tl) (8,)=0.55,
k=1
1 5
Alt,) = *Z,u.,s(tz)(ﬁk) =0.55,
Sia
l 5
Alt) = gZﬂws(g)(ﬂk) =0.55,
k=1
18
Alt,) = gZﬂws(t4)(ﬂk) =0.55,
k=1

18
l(ts) = gz Hy 1) (ﬂk) =0.55.
k=1

Then, AT )={At), At,), At,), A(t,), A(t;)}={0.55, 0.55, 0.55, 0.55, 0.55}.
Step 4: Calculate the average-LSS |(©, 1) and the choice value Cj, shown in Table 8.
Step 5: From Table 8, we see that here all the choice values are the same, namely 3, so in this case the decision maker

cannot choose the optimal decision.

Table 7. The score matrix @ = (¥,,T) associated to (¥,T)

Q t1 tz t3 t4 tS

B1 0.50 0.60 0.55 0.65 0.45
B2 0.55 0.45 0.65 0.60 0.50
Bs 0.45 0.65 0.50 0.55 0.60
Ba 0.60 0.55 0.45 0.50 0.65
Bs 0.65 0.50 0.60 0.45 0.55

Table 8. The average-LSS | (®, 1) , with choice value C;

Q S1 Sz S3 Sy Ss Cj
B1 0 1 1 1 0 3
B2 1 0 1 1 0 3
Bs 0 1 0 1 1 3
B 1 1 0 0 1 3
Bs 1 0 1 0 1 3

This is enough to prove that the Wang-method is not
sufficient to solve HBFSS based DMPs, but the constructed
method in this paper is very advantageous to solving these
HBFSS based DMPs (Section 4). The novelty of our proposed
DMM is the concept of the RMSDO rather than the score
function, which makes our DMM more stable and more
feasible than the Wang-method and another difference is the
concept of the weighted score rather than the choice value,
which makes our DMM adjustable.

6. Conclusions

In this paper, we have introduced the new concept
of WHBFSS and studied some basic operations on it in detail.
In addition, we have defined some novel notions of RMSDO,
RMSDSM, and weighted score, and using these novel
notations, we have proposed an advanced and adjustable
DMM for solving HBFSS and WHBFSS based DMPs. The
novelty of our proposed DMM is the concept of the RMSDO

rather than the score function, which makes our DMM more
stable and more feasible than the existing method. Algorithm
2 is more suitable for many real-world applications because of
this adjustable feature. We can see that it can be related to a
variety of fields that have dubious relations by means of types
of operations. The approach should be expanded in the future
to address relevant issues such as computer science, software
engineering, current life condition, and so on.

In a future study, we will give more broad properties
and operations on WHBFSSs and extend this proposed DMM
to other real-life applications in the fields of pattern
recognition and medical diagnostics.

Abbreviations

BFS Bipolar-valued fuzzy set
BFSS Bipolar-valued fuzzy soft set

BHFS Bipolar-valued hesitant fuzzy set
DMM Decision-making method

DMP Decision-making problem

FS Fuzzy set

FSS Fuzzy soft set

HF Hesitant fuzzy

HFS Hesitant fuzzy set

HBFSS Hesitant fuzzy soft set

HBFSS Hesitant bipolar-valued fuzzy set
HBFSS Hesitant bipolar-valued fuzzy soft set
IFS Intuitionistic fuzzy set

LSS Level soft set

MCDM Multi criteria decision-making
MCGDM Multi criteria group decision-making
RMSDO Root mean square difference operator
RMSDSM Root mean square difference score matrix
SS Soft set
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