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Abstract

The article reveals concept of EQ’ (X),1 <p < o, the p — absolutely summable neutrosophic valued sequence space. We
have proved that it is a neutrosophic normed linear space valued sequence space. We have studied its different algebraic and
topological properties. We have also established some inclusion results. The main aim is to introduce the notion of neutrosophic
normed linear space EQ’ (X),1 <p < o, and to show that it is a complete neutrosophic sequence space.
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1. Introduction

In today’s world we come across with many
uncertainties which cannot always be dealt with the help of
classical methods. To overcome such uncertainties, Zadeh
(1965) introduced the concept of fuzzy sets. Regardless of
many applications of it, fuzzy set cannot explain the
indeterminacy states as it provides a truth value only. Kamthan
and Gupta (1980) investigated sequence spaces and series. The
notion of fuzzy metrices was introduced by Kelava and
Seikkala (1984). Then Atanassov (1986) revealed intuitionistic
fuzzy sets theory considering non - membership value along
with membership one. Felbin (1992) investigated finite
dimensional fuzzy normed linear spaces. Thereafter, concept of
neutrosophic set was introduced by Smarandache (1998, 1999).
Here membership, non - membership and indeterminacy are
defined as independent of each other in neutrosophic set theory.
Intuitionistic fuzzy set theory has a role to play in all areas of
research where fuzzy set theory has been applied. Park (2004)
defined metric space in intuitionistic fuzzy setting.
Smarandache (2005) further investigated neutrosophic sets.
Researchers successfully applied the notion of fuzzy and
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intuitionistic fuzzy sets theory in studying several types of
sequence spaces viz. (Das 2014a, 2014b; Karakus, Demirci, &
Duman, 2008; Karakaya, Simsek, Erturk, & Gursoy, 2014;
Komisaski, 2008; Kumar & Kumar, 2009; Saadati, 2009;
Tripathy, Baruah, & Gungor, 2012; Tripathy & Dutta, 2014,
2015; Tripathy & Sarma, 2008. Further Das (2017) introduced
normed linear space sequence space in fuzzy setting. Bera and
Mahapatra (2017, 2018) studied the neutrosophic soft linear
spaces and their normed spaces. Tripathy and Das (2019)
investigated a class of fuzzy number sequences bv}.
Muralikrishna and Kumar (2019) investigated neutrosophic
approach to normed linear space. Kirisci and Simsek (2020)
investigated statistical convergence in neutrosophic normed
space (NNS). Omer (2021a, 2021b, 2022) investigated different
types of convergence in neutrosophic normed spaces. Studies
on different types of statistical convergence in neutrosophic
normed spaces have been carried out by Gonul (2022, 2023a
and 2023b) and Khan et al. (2023). In section 2, we mention
some definitions and results relevant to the study.
Main contribution: The main contributions are as follows:
We have defined neutrosophic normed linear
space valued sequence space. We have also
defined addition and scalar multiplication,
monotonicity, symmetric, convergence,
solidness, completeness, p — absolutely
summable sequence etc. of this space.
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We have established that p — absolutely summable sequence space is neutrosophic normed linear space valued
seguence space.

We have obtained completeness property of neutrosophic normed linear space valued sequence space.

With suitable counterexample, we have established that neutrosophic normed linear space valued sequence space is
not convergence free

We have established symmetricity and inclusion property of neutrosophic normed linear space valued sequence
space.

2. Definitions and Preliminaries

Here we procured different well-known definitions and results, which are used in getting our results. For Definitions 2.1
to 2.8, one may refer to Das (2017); and for Definition 2.9, one may refer to Smarandache (1998).

Definition 2.1. Let the collection of all bounded intervals [a;, a,] on R be C. Let X, Y € C.
Take
U = [x,x]and V = [y4,y,]. Forx;<y, and x,<y,, let U<V and
d(U,V) = max(x; — y1l, lxz — y2 ).
Then, <is a partial order in C and (C, d) is a complete metric space.

Definition 2.2. The fuzzy real numbers are denoted by RF = {(x,ug (x)) : x ER}where uz : R € [0,1]}.

Definition 2.3. Let [X]* be denote a-level set of fuzzy real numbers Xwhere0 < ¢ < land [F]*={t € R: F(t) = a}.
We get closure of strong 0-cut fora@ = 0.
Collection {t € R : X(t) > a} denotes strong a-cut, where0 < a < 1.
Take X,Y € R(I) and consider <, a partial ordering defined by
X < Yifandonlyifaf <af and b < b5,V a € (0,1],
where [X]* = [af, bf ] and [Y]® = [a¥, bY].

Definition 2.4. Consider X, Y € R(I) and let their a-level sets be [X]* = [af, b ], [Y ]* = [a¥, bS], a € [0, 1]. We define
arithmetic operations on R(l) with @ — level sets as below:
[X ® Y] = [af +a3,bf + b7],
[X © Y]* =[af — b3, b — a3],
[X ® Y 1% = [min jeqy pyaibf* , min; jeq1 23a{ bf*]

i Yo
_ 1
and [1+Y]* = E,a—g],OeEY

Definition 2.5. Let F be a fuzzy real number. Then its absolute value |F| of X € R(I) is given by
_ (max(F(t), F(—t)), fort >0,
lFl(t)_{O, fort < 0.

Definition 2.6. A fuzzy real number F is said to be non-negative whenever F (t) takes zero V t < 0 and we denote such collection
by R*(I).

Definition 2.7. Consider Vas a vector space, and let w (V) denote the collection of sequences in V. Then with respect to pointwise
addition and scalar multiplication, w (V) is a vector space. If I'(V)is a subspace of w(V), then it is said to be vector valued as well
as fuzzy normed linear space-valued sequence space on fuzzy normed linear space (X, || - |]).

Definition 2.8. Let X be a vector space over R. Assume that the mappings L, R: [0, 1] X [0, 1] = [0, 1] are symmetric and non —
decreasing in both arguments and that L(0, 0) =0 and R(1, 1) = 1. Let || - || : X— F*(R). The quadruple (X, || - ||, L, R) is
called a fuzzy normed space with the fuzzy number || - ||, if the following conditions are satisfied:

(i) Ifx=#0,theninf||x||, > 0 whenever 0 < x < 1.

(ii) ||x||=0ifand onlyifx=0.

(iii) [[rx]] = Ir|||x|| forx € X and r € R.

(iv) forallx,y€X,

@|lx+yl[s+t) =L (||x||(s),||y||(t))wheneverss ||x||1,tS [Iyl|, s+t< ||x+y||1.
®)|lx+yl|(s+ <L (||x||(5),||}’||(t))WheneV9r52 Hxlly, t= [yl s+t=[|x +y|l;.

Definition 2.9. The neutrosophic real numbers are denoted by RY = {(x, Tg(x), Fr(x), Iz(x)) : x ER} where Tz : R — [0,1],
Fr: R - [0,1],Ir : R = [0,1].
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3. Neutrosophic Normal Linear Space
Now we introduce the notions of normed linear space in neutrosophic set of real numbers.
Definition 3.1. We denote linear space over R by X. Consider mapping || - ||: X — R*(I). We also consider symmetric mappings
L, M:[0,1] x [0,1] - [0,1] which is non-decreasing in both arguments and satisfies L(0,0) = 0, M(1,1) = 1. Define [||x ||]* =

max{|x|¥, |x|§], for x € X, x* = [xf, x¥],0 < a <1 and suppose Vx € X, x # 0,3 a, € (0, 1] independent of x such that
Va<ag,

@ Ixlg <o,
(b) infyeullxli}>0.
Then (X, ]| - ||, L, M) is said to be a neutrosophic normed linear space. Here || - || denotes neutrosophic norm, provided
@ [IxT1] = [Ix!1] = |IxF1| = 0if and only if x = 8, the null element of X.
@iy |lrxTI| = Iel[IxT1], |lrx"1] = [l 1] [lrxFL | = el ]xF]]x € X, r € R

(iii) for all x,y € X,
@[T+ 715 +0 = L (1K1, [y 1]),
[l + 111G+ 0 = L (11, |1y'1] @)

1P +yF1](s + 0 = L (JIxF1(s), |lyFI| ),
whenever s < [[|x" || |3, [|]x" 113, 11127111
e< 1y L MY T 1y P
s+t < [|lx"+ YT "+ YL " + yFIE
) [|x" + y'[(s + 1) = M({IX [N, YD)
[1x" + y"|[(s +© = M([Ix" 1D (), [y 1(6)
1"+ y"11(s + ) = M(|Ix" 1D (), 11yF 1)
whenever s > || [x"| |14, [[|[x" |13, [11x"|[11
2> [y HIL N T Y P
s+t (|lx"+ YT X'+ Y "+ yFiE
In the sequel we take L(x,y) = min(x,y) and M(x,y) = max(x,y)forx,y € [0,1] and we here consider the
space (X, || - ||, L, M), for short denoted by (X, || - ||) or simply by X.
Here ||x"[|, ||Ix'|| and ||x"|| denote symbolically the norms of truthness, indetermancy and falseness, respectively.

Definition 3.2. Consider X that is a vector space. Let w(X) be the set of all sequences of it. Then with respect to pointwise addition
and scalar multiplication, w(X) is a vector space. Consider a subspace I'(X) of w(X). Then I'(X) is said to be vector valued
sequence space and it is called neutrosophic normed linear space valued sequence space when (X, || - |) is a neutrosophic normed
linear space.

Definition 3.3. Consider EV(X) that is a neutrosophic normed linear space valued sequence space. Then it is called normal (or
solid) if () € EN(X), as and when |[yZ || < |IxZ1], [lvkl| = |1xE1], [lvEl| = |1xE 1], for all k € N and (x;) € EN(X).

Definition 3.4. The EN(X), a neutrosophic normed linear space valued sequence space, is called monotone when it takes canonical
pre-images of all its step sets.

In Kamthan and Gupta (1980), for the sequences of real or complex numbers, a sequence space is solid implies it is
monotone. This also holds for the sequences of fuzzy real numbers. In view of these, we have the following remark.

Remark 3.5. A solid neutrosophic normed linear space valued sequence space implies that it is also monotone.

Definition 3.6. A neutrosophic normed linear space valued sequence space EV(X) is termed symmetric when (x,,)) € EV(X),
for(x,) € EN(X). Here r indicates a permutation of N.

Definition 3.7. A neutrosophic normed linear space valued sequence space EN(X) is called convergence free when (y;) € EN(X),

for(x,) € EN(X) and y, =0
whenever x;, = 0.

Definition 3.8. A neutrosophic normed linear space (X, || - ||) is called complete whenever each of its Cauchy sequences converges
to some point of it.

Definition 3.9. The neutrosophic normed linear space valued sequence space Eg (X) can be defined with the help of neutrosophic
norm as given below:
Eg(X) ={x=(x) € wVX): Xioq |1 ||P < A, for some 2 € R*(D)}.
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Definition 3.10. The collection of all p- absolutely summable sequences in (X, || - ||) for a sequence x = (x;) € I§(X),1 <p <
oo, can be defined as below:

0
il = ) QLI + 1kl P+ g 117y
k=1

Here ||x|| indicates a norm on X.
Here w¥ (X), Eg (X) and c¥ (X) indicate spaces of all, p-absolutely summable, and convergent sequences of X, respectively.

4. Prime Findings

Theorem 4.1. The collection of p-absolutely summable sequences EQ’(X) is neutrosophic normed linear space valued sequence
space.

Proof. Consider (X, || - ||) as a neutrosophic normed linear space valued sequence space and x = (x;),y = (yx) € £, (X). We
have for
k €N, [lx + yil 1P < 2P max{(|xg 1P + [|xel P + [ 1P, Alyic 1P+ il P + 11yl )}
< 2P 1P+ el + N 11P) @ (kP + 11y 1P + i 11}
It follows that X7, || xx + ¥i||P < . Thus, (xx + yx) € & (X).
Let r € R. We have
S el P = [P Sgoy [ 1P + [P + | |xE | [P) < oo.
Thus, rx; € £y (X),Vr € R.
So, Eg (X) is a subspace in w (X) and thus neutrosophic normed linear space valued sequence space.

Theorem 4.2. Consider X that is a complete metric space. The space tg (X),1 < p < o, is complete with the norm

Il = Z= (P + g 1P+ [l P)YP,
where x = (x) € EQ(X),and k EN.

Proof. Consider (x) that is a Cauchy sequence in € (X).
Here x™ = (x(")) (x(n) xén),xén),. YEW,vneEN.

Then for a given €> 0,V n, € Nsuch that |[x®™ — x| = (X((UxE™ = xZ™ P + Q™ = L) P + ™ -

F(m)llp)}v <& Vmn=n,.

= [|x™ —xM|| < ¢
= Sequence (x,((")) is Cauchy in X for every k in N.

As X is complete, 3x;, € X such that
xM
k

—xk|| - 0,asn - o, for each k.

r® ()
—xe )+ Ullxe =2 115 + Ullxe = xl11$) = 0,
as n - oo, for every a € (0,1].
as n - oo, for every a € (0,1].
Here sequence x™ is also Cauchy. So, for every € > 0,3 no = ny(€) such that

m __rom) m __gm ™ __pm -
{Z((IIXT e P+l —xe P+l —xf PP <€

()
= (||Ixf " -

1 n)

1
() m >
= DY LCANE™ = <P + Al ™ = <N + 1k ™ = <k lIEPP < e for each a € (0,11,

Now fix n = ng and let m — o, to have

n) n)
g{(lgnw’“ gk|||zzp+](|||x” = xE ISP + (l1xk
oralln 2nyanda € (0,1

=> [2((||xk(”) P+ A ™ = 1P + (™ = xf PP < €,¥ n = ng. .. ..(l)
=> (21T = %D + (IxF™ = x|DP + (' = x|DPIVP < € V n = ng, where x = (1) ... .(2)
Hence, x™ - x,asn - .
Now we show that x = (x;) € €} (x).
From (2), we have, {£(||x™™ — x|[)? + (1" ™ = x|])? + (1" ™ - [P} < €@,
= (x™-x)e 1y (x).
Here x = x™ + (x — x™). Thus by Minkowski inequality and using (1), we get

1 I 2
= xi|115)PIP <,

)
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=z 1 2 1 2 1
O IIPF < O 1I=®1 PP @) [lx - 2Py
k=1 k=1 k=1

= {Z(IIX;III” P+ k| IP)FP < (1P + g 1P + [l P3P @ €

Z [ P3P+ [ 1P + |1, P) < o, simce x = () € B ()

Thus x € €y (X).
Thus, the result follows.

Theorem 4.3. Sequence space Eg(X) is solid as well as monotone.

Proof. Let x = (x;) and y = () be two sequences such that
||x,f +xf +x,’c|| < ||y,f +yr +y,’c|| v k € Nand (y,) € I (X).
= Tl 1P+ g 1P+ el P) < Tyl P+ g 1P + il P) < oo,
= (1P + g [P + 12l 1P) < ZHyelP + 1k 1P + Hyel[P) < o,
Thus x = (x;) € £y (X) and € (X) is solid.
Hence the space Eg (X) is monotone.

Theorem 4.4. Space ¢;, (X) cannot be convergent free.
Proof. Theorem is verified with the following example.

Example 4.5. Consider x = (x;) as a sequence given below:
_ (k™ for k even
xk_{O,forkodd ...... 3)
Consider X as a neutrosophic normed linear space and z = (z;,) € X. Consider ||z,f|| given below:

4|Zk|
<t<
Take k that is a natural number and let z; = 0, ||zF]|(t) = {Izkl bfor=Fst<lnd 4)
0, otherWISe
_ _(1,fort=0
and for [|zl| = 0, [lzlI(t) = {0, otherwise

Using (3), we have for

k evenand x, # 0,

|Xk| -4
<t< =
||(t)—{|x| 4, for t<|xgl=k"

0, otherw1se,
and for k odd,
B _(1,fort=0,
[ l1 = 0, 112 [1(8) = {0, otherwise.

Again, for each a € (0, 1], we have

a+4k4k 4, for k
T v
[Ixfl =31 5 orfteven

[0,0], for k odd

Hence for each a € (0,1],
Tialll NS = (271G — Ticolmrs
= Yioq |k 1P < eo.
Similarly, we can show that

=1 1x |1P < ooand Ti_y ||xi||P < co.
Thus, x = (x;) € JZg(X).
Let y = (y,) be this sequence:

] < oo,

(2k+1)4

1
Vi = k?, fork even
0,for k odd.
Then for k even and using (4), we have

—4for2d <t <y =

1

NyEll@®) = Iy I
0, otherwise.
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1,whent =0,

Further when k is odd, ||yk||(t) = { 0 otherwise

Further, every a € (0, 1] gives

a+4

[lyeln® = [< 5

Thus, for every a € (0, 1],

1 1
=l 1517 = Eioi (ke P)P = Ei_o{(2k + 1) 7)P,
which is unbounded.
=Y5_1 |1yI|P is unbounded.
Thusy = (yi) € Eg(x) and ¥ (X) is not convergence free.

Theorem 4.6. Symmetricity of £, (X) holds.

Proof. Consider x = (x) € £y (X).

1 1

) kP, k_ﬁ] ,for k even,
[0,0], for k odd.

Consider y = (yy) as rearrangement of x = (x, )where x; = y,, for eachk € N.

Then, X |lym, 1P = Z [1x£||P < o,
Similarly, we can show that ¥ ||x£ ||P < oo.
and X ||xg| P < eo.

Thus,y = (yx) € €g(X).

Thus, the result follows.

Theorem 4.7. £, (X) € €5 (X),for 1 <p < q < .

Proof. Let x = (x;) € £, (X). Then we have
SxI P < o= X[|]1xF|]|4]P < oo, for every a € (0, 1].

Since, lim l|lxf — 0] = 0 (as (xx) € €5 (X)), s0 3 ng of N where

[lxI — 0]] < 1. Here every k is greater than equal to n,,
Thus, 3 (13119 = B2, 11Xk 117 @ Zren 1%k 117
Clearly,
Timn, k117 < oy |2 1P < co.
Further we have,

"~ xI)19 is finite sum.
Hence, Y, ||xT]19 < .
Similarly, we can have Y, [|xf||? < . and X, ||x£]]9 < o.
Thus, x = (x;) € £, (X)and hence the result.

5. Conclusions

In this article, we introduced the notion of p -
absolutely summable sequences é’g, 1<p<w, of
neutrosophic real numbers and investigated some of their
algebraic and topological properties. We further examined
some relationships involving this space. The methodology
adopted to establish the results can be applied to study the class
of p - absolutely summable double sequences. This space can
be examined from a neutrosophic metric aspect. If we remove
the indeterminacy, i.e., if we consider value of indeterminacy
as zero, then we get intuitionistic fuzzy normed spaces, Again,
if we remove the indeterminacy and falseness, i.e., if we
consider both indeterminacy and falseness as zero, then we get
fuzzy normed spaces
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