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Abstract

This research focuses on the development of a streamlined numerical technique founded on the hybridization of two
shifted polynomial basis functions to address a specific category of nonlinear Partial Differential Equations. Within this
approach, a solution based on power series is employed, utilizing Chebyshev and Legendre shifted polynomials to meet the
specific conditions of the Partial Differential Equation. Plugging the candidate solution series into the provided Partial
Differential Equation, and employing suitable points of collocation, a linear system of algebraic equations with unspecified
hybridization coefficients was obtained and numerically solved by Gaussian elimination. Furthermore, different discretization
patterns were examined to comprehend how the outcomes vary with alterations in the placement of the collocation points within
the domain. Two instances were examined using the numerical method to determine the method’s efficiency in terms of its
reliability, effectiveness, and accuracy. The results obtained were benchmarked and validated with existing results in the
literature. However, the combination of the two shifted orthogonal polynomials (Chebyshev and Legendre) greatly improved

performance past that in prior literature.

Keywords: shifted Chebyshev polynomials, shifted Legendre polynomials, nonlinear partial differential equations,

Klein-Gordon equations, Gaussian elimination

1. Introduction

A fundamental mathematical framework known as
partial differential equations (PDEs) is used to explain a broad
range of physical, engineering, and scientific phenomena.
They are crucial tools for comprehending complex systems
that vary in both space and time because they offer a potent
method of modelling how quantities change regarding
numerous independent variables.

Since the groundbreaking work of mathematicians
like Leonhard Euler and Joseph-Louis Lagrange, the study of

*Corresponding author
Email address: waltolxy@yahoo.com

PDEs has a long and illustrious history. PDEs have shown to
be essential over the years in a variety of disciplines,
including fluid dynamics, heat conduction, quantum physics,
and image processing. They are widely used in science and
engineering because of their capacity to summarize the
underlying ideas guiding the development of ongoing physical
processes. Partial differential equations have played a crucial
role in scientific computing. Some basic historical
significance includes the modelling of natural phenomena,
bridging pure and applied mathematics gap, and they have
remained foundationally solid in scientific fields.

One key aspect of solving PDEs involves expressing
approximate solutions in terms of orthogonal polynomials.
One of the distinctive characteristics of the family of
mathematical functions known as orthogonal polynomials is
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that they are orthogonal over intervals when using particular
weight functions to modify the inner product. Two noteworthy
sets of orthogonal polynomials commonly employed in the
context of PDEs are the shifted Chebyshev and Legendre
polynomials.

Shifted Chebyshev polynomials are obtained from
the classical Chebyshev polynomials and are known for their
orthogonality properties over an interval, such as [-1, 1]. They
play a vital role in numerical analysis, approximation theory,
and spectral methods for solving PDEs. These polynomials
enable efficient approximations and transformations of
functions, making them a valuable tool in scientific
computing.

Legendre polynomials, another family of orthogonal
polynomials, find applications in solving PDEs that exhibit
spherical or cylindrical symmetry. Defined over the interval [-
1, 1], Legendre polynomials offer solution to a broad
spectrum of problems in physics, including those involving
celestial mechanics, electrostatics, and quantum mechanics.
Their unique properties make them indispensable for solving
PDEs in systems with radial or angular symmetry.

Abdul et al. (2023) proposed a hybridized approach
for numerically solving PDEs, such that the temporal
derivatives are approximated using both first and second order
finite differences, with the idea of Lucas and Fibonacci
polynomials. Forstythe and Wasow (2013a, 2013b) introduced
numerical approaches using finite differences to solve partial
differential equations. Akyuz-Dascioglu (2009) used the idea
of polynomial approximation in terms of Chebyshev for high-
order PDEs with complex conditions. Caporale and Carrato
(2010) applied Chebyshev polynomials for the approximate
solution of PDEs. Yuksel and Sezer (2013) introduced an
approximating linear second-order PDEs approach with
complex boundary conditions using Chebyshev scheme
expansion. Ali and Abozar (2013) worked on utilizing the
Legendre polynomials for solving PDEs. Ghimire et al. (2016)
used Chebyshev polynomials as basis functions for the
approximate solutions of elliptic PDEs. Mredula and Vakaskar
(2017) applied collocation to wavelets for solving a partial
differential equation. Madenci et al. (2017) applied
peridynamic differential operator to numerically solve both
linear and nonlinear PDEs. Luo et al. (2017) used the
barycentric rational collocation approach to address a set of
nonlinear parabolic PDEs. Dhiman and Tamsir (2018)
explored a collocation method that utilized a modified version
of cubic B-spline trigonometric functions to address Fisher’s
reaction diffusion equation. Youssri, Ismail, and Atta (2023)
addressed the time-fractional heat conduction equation in one
spatial dimension, subject to nonlocal conditions in the
temporal domain. Elzaki (2018) applied the Laplace
variational iteration scheme for the solution of nonlinear
PDEs. Karunakar and Chakraverty (2019) employed a highly
effective technique relying on shifted Chebyshev polynomials
to tackle PDEs. They selected a power series solution
involving shifted Chebyshev polynomials to ensure
compliance with the specified conditions. Jena et al. (2020)
proposed a proficient numerical approach for addressing
fractional-order delay differential equations (FDDES), which
involves application of the shifted Legendre polynomials
within collocation and Galerkin schemes. This methodology
transforms FDDEs into linear and nonlinear algebraic
equations. Atta and Youssri (2022) focused on an approximate

spectral method for the nonlinear time-fractional partial
integro-differential equation with a weakly singular kernel by
setting up a new Hilbert space that satisfies the initial and
boundary conditions. Samaneh et al. (2020) developed a
method to investigate the inverse problem in the estimation of
time-dependent heat and temperature source in the context of
the heat equation, which includes the Dirichlet boundary
conditions and the integral over-determination condition. The
solution approximation for this problem employs shifted
Chebyshev polynomials as the foundation of Tau method
depending on the operational matrices in form of Chebyshev.
Youssri and Atta (2024) constructed an explicit modal
numerical solver based on the spectral Petrov-Galerkin
method via a specific combination of shifted Chebyshev
polynomial basis for handling the nonlinear time-fractional
Burger-type partial differential equation in the Caputo sense.

2. Preliminaries of the Chebyshev and Legendre
Polynomials

Here, the discussion covers the fundamentals, as
well as the significant characteristics of Chebyshev and
Legendre polynomials. The polynomial of nth degree with
unity as the leading coefficient in the range [-1, 1] was first
introduced by the Russian mathematician Pafnuty Chebyshev.
K, (f) = Cos(ncos* ), n=0,1234... @
The Chebyshev polynomials can be determined using the
recurrence formula (Theodore, 1974)

K, (f)=2fK,(f)=K, ,(f), n=1234... (2

where the first five polynomials are as follows

K, (f)=1
K ()= f
K,(f)=2f2-1

K,(f)=4f°-3f
K,(f)=8f*-8f2+1

The conversion of the interval of Chebyshev
polynomial [-1, 1] into another interval [0, 1] is called
“Shifted Chebyshev Polynomial”. The first five shifted
Chebyshev polynomials are

K (f)=1

Ki(f)=2f -1

K2(f)=8f2-8f +1
K's(f)=32f°-48f% +18f -1

K (f)=128f* - 256f° +160f2 —32f +1

On the other hand, Legendre polynomials are a class
of complete and orthogonal polynomials in mathematics that
bear Adrien-Marie Legendre's name (1782). They have a wide
range of mathematical properties and are used in a diverse
range of applications. Polynomials are referred to as an
orthogonal system in terms of the weight function g(f) = 1
with the range [- 1, 1]. That is, each V(f) is a polynomial of
degree m satisfying
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[Va (), (f)df =0 if m=k ®)

Rodrigues' formula provides a concise representation for the
Legendre polynomials as follows:

1 dm(fz—l)m

V. (f)= 4
n(F) 2™ it df " @
The initial five Legendre polynomials are
Vo (f)=1
V. (f)=f

V, (1) =1@3f2 -1)
V,(f)=1(6f° -3f)
V,(f)=1(35f*-30f? +3)

The counterpart to Rodrigues’ formula for the shifted
Legendre polynomials is expressed by

Va(f) == S (rr 1) ©)

The initial five shifted Legendre polynomials are
Vo(f)=1
V,(f)=2f -1
V,(f)=6f2-6f +1
V,(f)=20f%-30f2 +12f -1
V,(f)=70f%-140f° +90f2 - 20f +1

3. Methodology
3.1 The hybridization collocation method

Here, we describe an approach to solve partial
differential equations (PDEs); the amalgamation of
Chebyshev and Legendre shifted polynomials. To exemplify
the technique, we examine a partial differential equation in
general characterized by the two distinct variables m and t;
and with w as the dependent variable represented as follows:

H(w) =c(m.t) (6)
Depending on the stipulated terms and circumstances:
w(m,,t) =d () and w(m,t,) =k(m) 0

where w is an unspecified function; ¢, d and k denote
specified functions while mo and to remain constants. To
begin, we make the initial assumption of a two-variable power
series solution expressed using the adjusted Chebyshev and
Legendre polynomials, which must meet the criteria outlined
in (8)

w(m, t) = £(m,t) + n(m,t) i i a, T, MP:() ()

q=0s=0

It’s significant to note & (m, t) and # (m, t) to be characteristics
of both m and t, and their selection should be such that (8)
complies with the prescribed requirements set forth in
condition (7). Then, we substitute the assumed solution (8)
into (6), and from this process, we derive a residual equation
denoted as Q(m, t) = 0, which encompasses coefficients
represented as ags. By employing appropriate points of
collocation within [0, 1] by [0, 1]; we formulate a system of
equations for the unspecified coefficients, denoted by ags

Hv=Db (9)

In this context, H stands as the well-established
coefficient matrix, v represents a column vector containing
Chebyshev and Legendre coefficients, and b is a
predetermined vector on the right-hand side (RHS). The very
important thing to note here is that both H and b consist of
real values determined through the utilization of the points of
collocation within the equation of residuals L(m, t) = 0.

Now, Mp? as collocation points become a requisite
when for degree N polynomial with M, = N + 1
Subsequently, the equations for determining the unspecified
coefficients are solved followed by their substitution into (8)
and we get an approximate solution to (6).

The discretization of the domain represents a
significant consideration and should be noted. For
hybridization of the method, the coefficients of the selected
polynomials are required (not necessarily equal). But they are
dependent on the number of associated unknowns.
Meanwhile, the selected hybridization coefficients are evenly
distributed over the members of the selected polynomials. As
a result, different discretization patterns will be considered
before the best one is finally selected to produce results that
are acceptable. The hybridization of the polynomials resulted
in a vibrant method that combines the features of the two
polynomials; mainly the distribution of errors equally over the
selected intervals.

4. Numerical Examples and their Results

Example 1: Examine the nonlinear Klein-Gordon equation
featuring y = -1 and

K )
W) =|— |W+ W,
g(w) [4J +

S*w k2

2
o w +—w+w? :mzsinz(gtj (10)

st?  Ssm? 4

where m e (—1,1), t > 0. (12) meets the conditions
w(m, 0) =0, % (m, 0) = gm where me[-1,1]" & well as

the Dirichlet boundary conditions

w(-1,t) = - sin [gt) w(l, t) = sin (gtj suchthatt>0  (11)


https://www.wikiwand.com/en/Rodrigues'_formula
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The theoretical solution for the differential equation is known to be w(m, t) = msin (Etj

Assume that the bivariate series solution for the Klein-Gordon (10) is given by

w(m,t)=gmt+ m%in(%tj —5m3t+[2mt2 ~Kirm )Z Z ag, Ty (M) P/ (1) (12)

2 q=0 s=
where £ (m t) = —mt +m sm( t) XMt and n(m,t) = K mt? — Kt2 3. Initial conditions (11) are satisfied by the
2 2 2 2
anticipated solutlon (12). Now, differentiate (12) partially with relation to m and t to acquire the derivatives
5w
st?
(2m - 1)(2t - 1)a, + (xkm - xm?®)(2m - 1)(6t> - 6t + L)a, + 2(xmt — xm*t)2m - 1)(12t - 6)a,,
+ (em = em®)(2m — 1)(20t° - 30t2 + 12t — 1)a,, + 2(xmt — xm*t)(2m - 1)(60t> - 60t + 12)ay,
+(Bemt? - 1emt2)(2m — 1)(120t — 60)ay, + (xm — xm?)@Bm? — 8m+ 1)(2t — )a,, + (xm — xm?)
(Bm? —8m +1)(6t* — 6t + 1)a,, + 2(xmt — xm>t)(8m? — 8m + 1)(12t - 6)a,, + (xm — xm?)

=(em—xm?)ag, + 4lemt — xmit)ay, +12(1xmt® —Lxem?t?)a, + (xkm - xm?
2

(8Bm? —8m +1)(20t* — 30t? + 12t — 1)a,, + 2(xmt — xm*t)(Bm> — 8m + 1J60t> — 60t + 12)a, (3)
+ (Bamt? —1xmt?)(8m? — 8m + 1)(120t — 60)a,, + (xm — xm?)(32m* — 48m? + 18m — 1)
(2t —1)ay, + (xm — xm*)(32m® - 48m? + 18m — 1)(6t* - 6t + 1)a, + 2(xmt — xm*t)
(32m® — 48m? + 18m - 1)12t - 6)a,, + (xm — xm?)(32m° — 48m? + 18m — 1)
(20t - 30t + 12t — 1)y, + 2(xmt — xm*t)(32m* — 48m? + 18m — 1)(60t> — 60t + 12)ay,
+ (Lamt? — 1xm?t?)(32m® - 48m? + 18m — 1)(120t — 60)ay, + 4 (xmt — xm’t)(2m - 1)a,,
and
2
gm"zv = —3xmt’ (2m - 1)(2t - 1)a,, - 3xmt? (2m - 1)(6t* - 6t + L)a, - 3xmt? (2m - 1)(20t° - 30t?
+12t - Ya,, - 31cmt2(8m2 -8m+ 1)(2t - 1)a, - 3xmt? (sz -8m+ 1)(6t2 -6t + 1)a22 - 3xmt?
(Bm? - 8m + 1)(20t* - 30t? + 12t - 1)a,, - 3xmt? (32m* — 48m? + 18m - 1)(2t - 1)a,, - 3xmt?
(32m® - 48m? + 18m — 1)(6t* — 6t + 1)a,, — 3xmt® (32m* — 48m> + 18m — 1)(20t° — 30t* + 12t — 1)a,,
+ 20Kt - 2em?t2)A6m - 8)a,, + 4(x t? - 2xem?t2)(20t° - 30t° + 12t - 1)a,, + 2(ix t? = 2xem’t?)
(96m* - 96m +18)a30 + (L t? = 2em??)(192m - 96)ay, + 41k t? — 2xm’t? )(6t2 ~ 6t +1)a, +
1,23 . 2 3.2\(py _ 1.2 2
4(2 Zl(m t )(Zt L)a, +16(2Kmt ka t jzr +16(2Kmt Lemt )(Gt 6t+1)
a22+4(%1<t2—%xm2t2)a10+16(1Kmt2 —%Kmstz)a +6msm(%xt) 3kmt? a, +2(; t2 %sztzj
(16m - 8) (zt-l)a21+z(lxt2 gxmztz)(lﬁm 8)(6t2 6t+1) ay, + z(%mz grcmztzj(16m—8) 14)
3 1,23 1.2 3 202
(20t —30t% +12t - 1) 23+2(2 - 5Kkm 2t j(gsm 96m+18)(2t—1)a31 (2“ - SKmt )
1,2 3,122 gsm?2 2 1.2 132
(192m—96)(2t—1)a31+2(2 - yKkm°t )(%m —96m+18)(6t 6t+1) 2 ( Kmt® - xmt )
192m —96)(6t2 6t +1j g, + z(%mz —%sztzj(%mz —96m +18j(20t3 30t2 + 12t )a33 +

(lkmtz %;«m t j(192m 96)(20t —30t2 + 12t 1) 2

> —3Kmt2(8m2—8m+1)a - 3xkmt

33 20

(Gt2 —6t+ 1)a02 - 3Kmt2(20I3 ~30t% + 12t —l)a - 3Kmtz(32m3 —48m? +18m —1ja30

03

2 2 2 3.2)( 903 _ 20r2
-3xmt® (2t ~ay, - 3xmt®(2m - 1)a, +16(2Kmt me t )(ZOI - 30t +12t—1)a23—31<mt
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Now, substitute (12), (13) and (14) into (10) to have the residual equation L (m, t) = 0. Then, collocation is at sixteen points, since
our N = 3, within the domain [-1, 1] x [-1, 1] i.e.

(L1500 E2 D65 D65 D0 0.0 D.02.6.2.6.9.6.0.6. 26,2
which in turns and gives a system of sixteen linear algebraic equations. Having solved the system by Gaussian elimination (or by

computational software), we have the numerical solution
a,, = —0.6623183606, a,, = 0.5497199121, a,, = —0.3153758451, a,, = 0.09683077730

a,, = 0.1774167310, a,, = —0.2188744071, a,, = 0.1150522479, a,, = —0.08151337732
a,, = 0.0150467530 6, a,, = —0.02879743084, a,, = 0.01277593301, a,, = 0.02003622298

a,, = —0.003101315309, a;, = 0.01340175865, a,, = —0.001691759673, a,, = 0.01645813390
Substituting all aés in (12), we obtain an approximate solution for the differential equations as

u(m, t)=2xmt + m®sin(ixt) - Lxm®t — 03311591802 «xmt? + 0.3311591802 xm’t>

+ 05497199121 (Lxmt? - 2xem®t?)(2t - 1) - 03153758451 (1xmt? — 1xm*t?)(6t> — 6t + 1)
+0.096830777 30 (bxmt? — 1xm®t2)(20t° - 30t? + 12t — 1)+ 0.1774167310 (Lxmt? — 1xm’t?)
(2m —1) - 0.21887440 71 (1xmt? — Lem®t2)(2m - 1)(2 t — 1) + 01150522479 (Lxmt? — 1xem’t?)
(2m - 1)(6t> - 6t + 1) - 0.0815133773 2 (1xmt? — 1xm*t?)(2m - 1)(20t* - 30t* + 12t — 1)
+0.0150467530 6 (1xmt? — 1xm®t?)@m? - 8m + 1) - 0.02879743 084(Lxmt? — 1xm’t?)

(Bm? —8m +1)(2t — 1) + 0.012775933 01 (Lxmt? — Lem®t?)@m? — 8m + 1)(6t> - 6t + 1) +
0.020063222 98 (Lxmt? — xm*t?)Bm? — 8m + 1)(20t* - 30t> + 12t — 1) - 0.0031013153 09
(Lremt? - Lem®t?)(32m® - 48m? + 18m — 1)+ 0.013401758 65 (1xmt® — Lxm*t?)

(32m® - 48m? + 18m — 1)(2t — 1) - 0.001691759 673 (1xmt? — 1xm*t?)32m°® — 48m? +18m — 1)
(6t — 6t + 1) + 0.016458133 90(1xmt? — Lxm*t?)(32m* — 48m? + 18m — 1)(20t° — 30t? + 12t - 1)

2
But the exact solution of (10)is u (m, t) = msin [gtj In Table 1, the numerical error norms at different times are shown.

Table 1. Comparison of error norms when m = 1 at different times t

Rashidinia et al. (2010)  Rashidinia et al. (2010) Proposed/ Proposed/

m t method method Hongchun et al. (2018) Present method Present method at
O(K?+ k?h? + h?) O(K?+ k?n? + h%) atN=2 N=3

10 01 2.71 E-05 2.71 E-05 6.5955E-12 4.3176E-18 1.2514E-21
10 03 8.97 E-06 8.97 E-06 6.1985E-13 3.1052E-19 4.0841E-22
10 05 1.49 E-05 1.49 E-05 1.4550E-13 4.8002E-19 5.1673E-20
1.0 0.7 1.05 E-05 1.05 E-05 1.8202E-12 6.1025E-17 6.0144E-21
10 10 3.36 E-05 3.36 E-05 2.3494E-11 7.0203E-17 7.0183E-19

4.1 Discussion of results

It is evident from Table 1 above that the approximate results gotten with the current scheme performs well and is in a
satisfactory agreement with the theoretical solution of Example 1. Collocation points are picked within the boundary and have
proven good based on the results obtained. This method also requires choosing different discretization patterns to obtain a better
approximate solution for the PDEs. We could see from the solution that pattern at different schemes (N = 2 and N = 3) were
observed, both schemes performed better compared to that of the available ones. Figures 1 to 3 show the exact and approximate
results, and the error obtained for Example 1 at the various times t.

Exact Solution Approximate Solution Absolute Error 109

{4 L, \
19 I i
'
4
05 —~ 1
1 05
n 2 0 t

Figure 1. The theoretical solution of the Figure 2. The approximate solutions of the Figure 3. Errors in the approximate solution
nonlinear Klein-Gordon PDE nonlinear Klein-Gordon PDE of Example 1
at various times t, Example 1 at different times t, Example 1

W) - windy

w,(0,1) - wint)

wnd)-windl
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Example 2: Let us consider another example of nonlinear Klein-Gordon PDE with y = -1 and g(w) = w?
Stw Stw

St? B sm?
where (15) satisfies the initial conditions and m € (-1,1),t >0

ow
w(m, 0) =m, — (m, 0) = 0 where m e [—1,1]
ot

+w? = —mcost +m* cos” t (15)

as well as the Dirichlet boundary conditions

w(—1,7)=—cost, w(l,t)=cost, t>0 (16)
The theoretical solution for the DE is w (m, t) = m cos t. Let the assumption for the bivariate series solution of (15) be written as:

w(m, t) = mcost + (m*t* —t?) 22: 22: ag, T, (M)P/(t) 17

q=0s=0
where £(m,t) =mcost and 7(m,t) = (m*t® —t?) in (17) satisfy conditions (16). Now, differentiate (17) w.r.t. m and t partially

to get the derivatives. Following the same procedure as in Example 1, the unknown coefficients obtained numerically are
aoo = - 1.811101092, a01 = 1.356771719, ao2 = - 0.2324188716, a0 = 0.2113387523,

a1 = - 0.04687048676, a1z = 0.05621444390, a2 = 0.04162676963, az1 = - 0.004205565904

az = - 0.008362225938. Substituting the coefficients into (17), we have the solution (15)

w(m, t) = —1.380586404m?t* + 4.246748738m*t* + 0.3290864892m*t? + 0.2997608768m*t?
+ mcost — 1.196153064m%° + 1.196153064mt> + 1.075960172m%* — 1.075960172mt*
+ 0.3340977906m*t® — 0.4013868450m“t* — 3.977006133m?t? + 3.677245256t° —

0.3290864892mt? + 1.781973249t* — 4.580846528t°
But the theoretical solution of (15) is w (m, t) = m cos t. Table 2 below enumerates the errors at various times t.

Table 2.  Comparison of error norms when m = 1 at various times t

Rashidinia et al. (2010)  Rashidinia et al. (2010) Proposed/ Proposed/
m t method method Hongchun et al. (2018) Present method Present method at N
O(K?+ k?h? + h?) O(k?+ k?h2+ h%) atN=2 =3
10 01 7.01 E-09 491 E-09 1.5457E-12 1.2146E-12 1.0124E-18
10 03 6.59 E-09 4.69 E-09 2.3010E-13 9.4012E-12 4.0634E-19
10 05 1.29 E-09 9.46 E-09 7.6876E-13 7.5018E-11 6.1315E-19
10 0.7 7.47 E-09 5.11 E-09 2.1556E-12 2.4587E-10 9.1145E-19
10 10 5.84 E-09 3.98 E-09 5.8307E-10 8.0017E-10 6.2357E-18

From the table above, it is clearly observed that the approximate results obtained using the present scheme perform favourably
well and are in a satisfactory agreement with the theoretical solution of Example 2. Collocation points are picked within the
boundary and have proven good based on the results obtained. This method also requires choosing different discretization
patterns to obtain better approximate solutions of the PDE. We could see from the solution that pattern at different schemes (N =
2 and N = 3) were observed, both schemes performed well but at N = 3 the results perform better here than the other ones.
Figures 4 to 6 below show the exact and approximate results, and the error between them in Example 2 at various times t.

Exact Solution Approximate Solution Absolute Error o'?

A
p ’ !
' ;- ” H
15 .
n 2 0 t

Figure 4. The theoretical solution of the Figure5. The approximate solution of the Figure 3. Errors mesh for Example 2
nonlinear Klein-Gordon PDE at nonlinear Klein-Gordon PDE at
various times t, see Example 2 various times t, see Example 2

wint) - wn.b]
(nd) -w,_ (0}
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5. Conclusion and Remarks

A numerical approach that combines collocation
with hybridizing the Legendre and Chebyshev shifted
polynomials was successfully applied to solve a set of
nonlinear Klein-Gordon PDEs. With this approach, a set of
solutions in terms of the hybridized shifted polynomials was
assumed such that satisfied the required boundary conditions
of the PDE. Comparing the approach with the previous
methods described in the literature, the adjustment to the
assumption has been successful in yielding an approximate
solution with fewer terms. The interval of examples
considered was [0, 1], and as such requires shifting the
polynomials. The numerical computation adopts the use of
collocation methods, while the convergence was established
using known exact solutions. Two examples were considered,
and their results were good in comparison with the available
literature. The outcomes demonstrated the effectiveness of the
suggested approach and its ability to achieve convergence
with fewer terms. However, it is recommended that higher
than two-dimensional nonlinear PDEs with complex boundary
conditions or irregular domains should be considered.
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