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Abstract 
 

This research focuses on the development of a streamlined numerical technique founded on the hybridization of two 

shifted polynomial basis functions to address a specific category of nonlinear Partial Differential Equations. Within this 

approach, a solution based on power series is employed, utilizing Chebyshev and Legendre shifted polynomials to meet the 

specific conditions of the Partial Differential Equation. Plugging the candidate solution series into the provided Partial 

Differential Equation, and employing suitable points of collocation, a linear system of algebraic equations with unspecified 

hybridization coefficients was obtained and numerically solved by Gaussian elimination. Furthermore, different discretization 

patterns were examined to comprehend how the outcomes vary with alterations in the placement of the collocation points within 

the domain. Two instances were examined using the numerical method to determine the method’s efficiency in terms of its 

reliability, effectiveness, and accuracy. The results obtained were benchmarked and validated with existing results in the 

literature. However, the combination of the two shifted orthogonal polynomials (Chebyshev and Legendre) greatly improved 

performance past that in prior literature. 
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1. Introduction  
 

A fundamental mathematical framework known as 

partial differential equations (PDEs) is used to explain a broad 

range of physical, engineering, and scientific phenomena. 

They are crucial tools for comprehending complex systems 

that vary in both space and time because they offer a potent 

method of modelling how quantities change regarding 

numerous independent variables. 

Since the groundbreaking work of mathematicians 

like Leonhard Euler and Joseph-Louis Lagrange, the study of

 
PDEs has a long and illustrious history. PDEs have shown to 

be essential over the years in a variety of disciplines, 

including fluid dynamics, heat conduction, quantum physics, 

and image processing. They are widely used in science and 

engineering because of their capacity to summarize the 

underlying ideas guiding the development of ongoing physical 

processes. Partial differential equations have played a crucial 

role in scientific computing. Some basic historical 

significance includes the modelling of natural phenomena, 

bridging pure and applied mathematics gap, and they have 

remained foundationally solid in scientific fields. 

One key aspect of solving PDEs involves expressing 

approximate solutions in terms of orthogonal polynomials. 

One of the distinctive characteristics of the family of 

mathematical functions known as orthogonal polynomials is 
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that they are orthogonal over intervals when using particular 

weight functions to modify the inner product. Two noteworthy 

sets of orthogonal polynomials commonly employed in the 

context of PDEs are the shifted Chebyshev and Legendre 

polynomials. 

Shifted Chebyshev polynomials are obtained from 

the classical Chebyshev polynomials and are known for their 

orthogonality properties over an interval, such as [-1, 1]. They 

play a vital role in numerical analysis, approximation theory, 

and spectral methods for solving PDEs. These polynomials 

enable efficient approximations and transformations of 

functions, making them a valuable tool in scientific 

computing. 

Legendre polynomials, another family of orthogonal 

polynomials, find applications in solving PDEs that exhibit 

spherical or cylindrical symmetry. Defined over the interval [-

1, 1], Legendre polynomials offer solution to a broad 

spectrum of problems in physics, including those involving 

celestial mechanics, electrostatics, and quantum mechanics. 

Their unique properties make them indispensable for solving 

PDEs in systems with radial or angular symmetry. 

Abdul et al. (2023) proposed a hybridized approach 

for numerically solving PDEs, such that the temporal 

derivatives are approximated using both first and second order 

finite differences, with the idea of Lucas and Fibonacci 

polynomials. Forstythe and Wasow (2013a, 2013b) introduced 

numerical approaches using finite differences to solve partial 

differential equations. Akyuz-Dascioglu (2009) used the idea 

of polynomial approximation in terms of Chebyshev for high-

order PDEs with complex conditions. Caporale and Carrato 

(2010) applied Chebyshev polynomials for the approximate 

solution of PDEs. Yuksel and Sezer (2013) introduced an 

approximating linear second-order PDEs approach with 

complex boundary conditions using Chebyshev scheme 

expansion. Ali and Abozar (2013) worked on utilizing the 

Legendre polynomials for solving PDEs. Ghimire et al. (2016) 

used Chebyshev polynomials as basis functions for the 

approximate solutions of elliptic PDEs. Mredula and Vakaskar 

(2017) applied collocation to wavelets for solving a partial 

differential equation. Madenci et al. (2017) applied 

peridynamic differential operator to numerically solve both 

linear and nonlinear PDEs. Luo et al. (2017) used the 

barycentric rational collocation approach to address a set of 

nonlinear parabolic PDEs. Dhiman and Tamsir (2018) 

explored a collocation method that utilized a modified version 

of cubic B-spline trigonometric functions to address Fisher’s 

reaction diffusion equation. Youssri, Ismail, and Atta (2023) 

addressed the time-fractional heat conduction equation in one 

spatial dimension, subject to nonlocal conditions in the 

temporal domain. Elzaki (2018) applied the Laplace 

variational iteration scheme for the solution of nonlinear 

PDEs. Karunakar and Chakraverty (2019) employed a highly 

effective technique relying on shifted Chebyshev polynomials 

to tackle PDEs. They selected a power series solution 

involving shifted Chebyshev polynomials to ensure 

compliance with the specified conditions. Jena et al. (2020) 

proposed a proficient numerical approach for addressing 

fractional-order delay differential equations (FDDEs), which 

involves application of the shifted Legendre polynomials 

within collocation and Galerkin schemes. This methodology 

transforms FDDEs into linear and nonlinear algebraic 

equations. Atta and Youssri (2022) focused on an approximate 

spectral method for the nonlinear time-fractional partial 

integro-differential equation with a weakly singular kernel by 

setting up a new Hilbert space that satisfies the initial and 

boundary conditions. Samaneh et al. (2020) developed a 

method to investigate the inverse problem in the estimation of 

time-dependent heat and temperature source in the context of 

the heat equation, which includes the Dirichlet boundary 

conditions and the integral over-determination condition. The 

solution approximation for this problem employs shifted 

Chebyshev polynomials as the foundation of Tau method 

depending on the operational matrices in form of Chebyshev. 

Youssri and Atta (2024) constructed an explicit modal 

numerical solver based on the spectral Petrov-Galerkin 

method via a specific combination of shifted Chebyshev 

polynomial basis for handling the nonlinear time-fractional 

Burger-type partial differential equation in the Caputo sense. 

 

2. Preliminaries of the Chebyshev and Legendre  

    Polynomials 
 

Here, the discussion covers the fundamentals, as 

well as the significant characteristics of Chebyshev and 

Legendre polynomials. The polynomial of nth degree with 

unity as the leading coefficient in the range [-1, 1] was first 

introduced by the Russian mathematician Pafnuty Chebyshev.     
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The Chebyshev polynomials can be determined using the 

recurrence formula (Theodore, 1974) 
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The conversion of the interval of Chebyshev 

polynomial [-1, 1] into another interval [0, 1] is called 

“Shifted Chebyshev Polynomial”. The first five shifted 

Chebyshev polynomials are 
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On the other hand, Legendre polynomials are a class 

of complete and orthogonal polynomials in mathematics that 

bear Adrien-Marie Legendre's name (1782). They have a wide 

range of mathematical properties and are used in a diverse 

range of applications. Polynomials are referred to as an 

orthogonal system in terms of the weight function g(f) = 1 

with the range [- 1, 1]. That is, each Vm(f) is a polynomial of 

degree m satisfying 
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Rodrigues' formula provides a concise representation for the 

Legendre polynomials as follows: 
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The initial five Legendre polynomials are  
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The counterpart to Rodrigues’ formula for the shifted 

Legendre polynomials is expressed by 
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The initial five shifted Legendre polynomials are 
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3. Methodology 
 

3.1 The hybridization collocation method 
 

Here, we describe an approach to solve partial 

differential equations (PDEs); the amalgamation of 

Chebyshev and Legendre shifted polynomials. To exemplify 

the technique, we examine a partial differential equation in 

general characterized by the two distinct variables m and t; 

and with w as the dependent variable represented as follows: 

 

)6(),()( tmcwH   (6) 

 

Depending on the stipulated terms and circumstances:    
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(7) 

 

where w is an unspecified function; c, d and k denote 

specified functions while m0 and t0 remain constants. To 

begin, we make the initial assumption of a two-variable power 

series solution expressed using the adjusted Chebyshev and 

Legendre polynomials, which must meet the criteria outlined 

in (8)  
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It’s significant to note ξ (m, t) and η (m, t) to be characteristics 

of both m and t, and their selection should be such that (8) 

complies with the prescribed requirements set forth in 

condition (7). Then, we substitute the assumed solution (8) 

into (6), and from this process, we derive a residual equation 

denoted as Q(m, t) = 0, which encompasses coefficients 

represented as aqs. By employing appropriate points of 

collocation within [0, 1] by [0, 1]; we formulate a system of 

equations for the unspecified coefficients, denoted by aqs 
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In this context, H stands as the well-established 

coefficient matrix, v represents a column vector containing 

Chebyshev and Legendre coefficients, and b is a 

predetermined vector on the right-hand side (RHS). The very 

important thing to note here is that both H and b consist of 

real values determined through the utilization of the points of 

collocation within the equation of residuals L(m, t) = 0. 

Now, Mp
2 as collocation points become a requisite 

when for degree N polynomial with Mp = N + 1. 

Subsequently, the equations for determining the unspecified 

coefficients are solved followed by their substitution into (8) 

and we get an approximate solution to (6). 

The discretization of the domain represents a 

significant consideration and should be noted. For 

hybridization of the method, the coefficients of the selected 

polynomials are required (not necessarily equal). But they are 

dependent on the number of associated unknowns. 

Meanwhile, the selected hybridization coefficients are evenly 

distributed over the members of the selected polynomials. As 

a result, different discretization patterns will be considered 

before the best one is finally selected to produce results that 

are acceptable. The hybridization of the polynomials resulted 

in a vibrant method that combines the features of the two 

polynomials; mainly the distribution of errors equally over the 

selected intervals. 

 

4. Numerical Examples and their Results 
 

Example 1: Examine the nonlinear Klein-Gordon equation 

featuring γ = -1 and  
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The theoretical solution for the differential equation is known to be  



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Assume that the bivariate series solution for the Klein-Gordon (10) is given by 
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(14) 
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Now, substitute (12), (13) and (14) into (10) to have the residual equation L (m, t) = 0. Then, collocation is at sixteen points, since 

our N = 3, within the domain [-1, 1] x [-1, 1] i.e.  
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which in turns and gives a system of sixteen linear algebraic equations. Having solved the system by Gaussian elimination (or by 

computational software), we have the numerical solution 

00164581339.0,730016917596.0,50134017586.0,090031013153.0

80200362229.0,10127759330.0,40287974308.0,60150467530.0

20815133773.0,1150522479.0,2188744071.0,1774167310.0

00968307773.0,3153758451.0,5497199121.0,6623183606.0
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Substituting all /

sqa  in (12), we obtain an approximate solution for the differential equations as  
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But the exact solution of (10) is   







 tmtmu

2
sin,

  
. In Table 1, the numerical error norms at different times are shown. 

Table 1. Comparison of error norms when m = 1 at different times t 
 

m t 

Rashidinia et al. (2010) 

method 

O(k2 + k2h2 + h2) 

Rashidinia et al. (2010) 

method 

O(k2 + k2h2 + h4) 

Hongchun et al. (2018) 

Proposed/ 

Present method  

at N = 2 

Proposed/ 

Present method at 

N = 3 

       

1.0 0.1 2.71 E-05 2.71 E-05 6.5955E-12 4.3176E-18 1.2514E-21 

1.0 0.3 8.97 E-06 8.97 E-06 6.1985E-13 3.1052E-19 4.0841E-22 
1.0 0.5 1.49 E-05 1.49 E-05 1.4550E-13 4.8002E-19 5.1673E-20 

1.0 0.7 1.05 E-05 1.05 E-05 1.8202E-12 6.1025E-17 6.0144E-21 

1.0 1.0 3.36 E-05 3.36 E-05 2.3494E-11 7.0203E-17 7.0183E-19 
       

 

4.1 Discussion of results 
 

It is evident from Table 1 above that the approximate results gotten with the current scheme performs well and is in a 

satisfactory agreement with the theoretical solution of Example 1. Collocation points are picked within the boundary and have 

proven good based on the results obtained. This method also requires choosing different discretization patterns to obtain a better 

approximate solution for the PDEs. We could see from the solution that pattern at different schemes (N = 2 and N = 3) were 

observed, both schemes performed better compared to that of the available ones. Figures 1 to 3 show the exact and approximate 

results, and the error obtained for Example 1 at the various times t. 
 

   
   

Figure 1. The theoretical solution of the  

                  nonlinear Klein-Gordon PDE  
                  at various times t, Example 1 

Figure 2. The approximate solutions of the  

                   nonlinear Klein-Gordon PDE  
                   at different times t, Example 1 

Figure 3. Errors in the approximate solution  

                  of Example 1 
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Example 2: Let us consider another example of nonlinear Klein-Gordon PDE with γ = -1 and g(w) = w2 

 

 

(15) 

where (15) satisfies the initial conditions and   

 

 

 

as well as the Dirichlet boundary conditions 

 

 (16) 

The theoretical solution for the DE is w (m, t) = m cos t. Let the assumption for the bivariate series solution of (15) be written as: 

 

 
 
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222 )17()()()(cos),(
q s
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(17) 

where )(),(cos),( 222 ttmtmandtmtm    in (17) satisfy conditions (16). Now, differentiate (17) w.r.t. m and t partially 

to get the derivatives.  Following the same procedure as in Example 1, the unknown coefficients obtained numerically are 

a00 = - 1.811101092, a01 = 1.356771719, a02 = - 0.2324188716, a10 = 0.2113387523,  

a11 = - 0.04687048676, a12 = 0.05621444390, a20 = 0.04162676963, a21 = - 0.004205565904  

a22 = - 0.008362225938. Substituting the coefficients into (17), we have the solution (15) 

342
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443333
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580846528.4781973249.13290864892.0

677245256.3977006133.34013868450.03340977906.0

075960172.1075960172.1196153064.1196153064.1cos

2997608768.03290864892.0246748738.4380586404.1),(

tttm
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tmtmtmtmtmw









 

But the theoretical solution of (15) is w (m, t) = m cos t. Table 2 below enumerates the errors at various times t. 

 
Table 2. Comparison of error norms when m = 1 at various times t 

 

m t 

Rashidinia et al. (2010) 

method 
O(k2 + k2h2 + h2) 

Rashidinia et al. (2010) 

method 
O(k2 + k2h2 + h4) 

Hongchun et al. (2018) 

Proposed/ 

Present method  
at N = 2 

Proposed/ 

Present method at N 
= 3 

       

1.0 0.1 7.01 E-09 4.91 E-09 1.5457E-12 1.2146E-12 1.0124E-18 
1.0 0.3 6.59 E-09 4.69 E-09 2.3010E-13 9.4012E-12 4.0634E-19 

1.0 0.5 1.29 E-09 9.46 E-09 7.6876E-13 7.5018E-11 6.1315E-19 

1.0 0.7 7.47 E-09 5.11 E-09 2.1556E-12 2.4587E-10 9.1145E-19 
1.0 1.0 5.84 E-09 3.98 E-09 5.8307E-10 8.0017E-10 6.2357E-18 

       

 

From the table above, it is clearly observed that the approximate results obtained using the present scheme perform favourably 

well and are in a satisfactory agreement with the theoretical solution of Example 2. Collocation points are picked within the 

boundary and have proven good based on the results obtained. This method also requires choosing different discretization 

patterns to obtain better approximate solutions of the PDE. We could see from the solution that pattern at different schemes (N = 

2 and N = 3) were observed, both schemes performed well but at N = 3 the results perform better here than the other ones. 

Figures 4 to 6 below show the exact and approximate results, and the error between them in Example 2 at various times t. 

 

   
   

Figure 4. The theoretical solution of the 

nonlinear Klein-Gordon PDE at 
various times t, see Example 2 

Figure 5. The approximate solution of the 

nonlinear Klein-Gordon PDE at 
various times t, see Example 2 

Figure 3. Errors mesh for Example 2 
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5. Conclusion and Remarks 
 

A numerical approach that combines collocation 

with hybridizing the Legendre and Chebyshev shifted 

polynomials was successfully applied to solve a set of 

nonlinear Klein-Gordon PDEs. With this approach, a set of 

solutions in terms of the hybridized shifted polynomials was 

assumed such that satisfied the required boundary conditions 

of the PDE. Comparing the approach with the previous 

methods described in the literature, the adjustment to the 

assumption has been successful in yielding an approximate 

solution with fewer terms. The interval of examples 

considered was [0, 1], and as such requires shifting the 

polynomials. The numerical computation adopts the use of 

collocation methods, while the convergence was established 

using known exact solutions. Two examples were considered, 

and their results were good in comparison with the available 

literature. The outcomes demonstrated the effectiveness of the 

suggested approach and its ability to achieve convergence 

with fewer terms. However, it is recommended that higher 

than two-dimensional nonlinear PDEs with complex boundary 

conditions or irregular domains should be considered. 
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