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Abstract

Image fusion is becoming increasingly important as a result of recent advancements in image processing applications
because of the enormous number of different capture devices available. By fusing multiple images into one, the overall image
quality is improved and key characteristics are preserved efficiently. This improvement in image quality and integrity is achieved
by the use of multi-temporal, multi-view, and multi-sensor information during the process of image combination. For instance, a
single-mode medical image has very little information, whereas a fused image contains more important image data and provides
a reliable diagnosis of the condition. Experiments on the fusion of MRI and PET medical images are being conducted to evaluate
performance, algorithm stability, and other parameters. In this article, the benefits and drawbacks of different degrees of state-of-
the-art picture fusion approaches are explored, and also some of the standard quality metrics that are used for medical image

fusion are computed.
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1. Introduction

The application of medical imaging has become
important in clinical diagnosis. Images that use many
modalities can provide information from a variety of
perspectives, which can help medical professionals verify a
diagnosis and determine the most appropriate treatment.
Single-photon emission computed tomography (SPECT)
images show the soft-tissue structures of the body, while
magnetic resonance imaging (MRI) images reveal the bone
structure and details on high-density tissue; positron emission
tomography (PET) images reveal the metabolic action of the
cells and tissues; and Computer Tomography (CT) scans
reveal the bone structure and high-density tissue information.
The primary goal of the fusion is to improve the perceived
quality, contrast, and perceived experience of the fusion.
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Some of the requirements of fusion are: (a) it must retain all of
the details from the source images; (b) it should not add any
new details like effects; and (c) it must avoid problems like
noise and misregistration (Meher, Agrawal, Panda, &
Abraham, 2019). The main objective of this paper is to
provide an overview of recent changes in the field of medical
image fusion research and to look at how the field might grow
in the future. Medical images captured using various
modalities each have advantages and limitations which lead to
complicated diagnosis processes and diagnostic errors. To
improve the utilization rate of medical images, image fusion
algorithms can be divided into two categories: transform
domain and spatial domain. Algorithms based on the
transform domain include Multi-scale Transform (MST) and
feature space methods such as Independent Component
Analysis (ICA) and Sparse Representation (SR) (Wang, Li,
Zhang, & Zhang 2018). The most important spatial domain-
based algorithms can be divided into block-based, region-
based, and pixel-based fusion algorithms (Ancuti, Ancuti, De
Vleeschouwer, & Bovik 2016).
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Region-based algorithms break down the input
images into regions and merge them to generate the fused
image, whereas block-based algorithms segment the images
into blocks. Pixel-based algorithms generate a fused decision
graph, while deep learning promotes the progress of image
fusion due to its powerful feature extraction and data
expression capabilities (Huang & Jing, 2007). Deep learning
methods have been proposed for image fusion, providing
theoretical support and practical experience. They have
advantages over traditional image fusion algorithms such as
stronger feature extraction and expression, more flexible
network architecture, and end-to-end fusion process. These
advantages include a stronger ability for feature extraction and
expression, a more flexible network architecture, and an end-
to-end fusion process (Du, Li, Lu, & Xiao, 2016). This paper
is divided into the following sections: Related Works, Medical
Image fusion methods using deep learning, Results and
Discussion, and Conclusion.

2. Related Works

Many researchers have suggested a diverse
assortment of tried-and-true methods for the process of fusing
medical images. Using various decomposition approaches,
these techniques can be divided into the following groups: (i)
methods that are based on pyramids (Ancuti, Ancuti, De
Vleeschouwer, & Bovik, 2016; Huang & Jing, 2007; Wang,
Li, Zhang, & Zhang, 2018) and (ii) wavelet-based techniques
(Du, Li, Lu, & Xiao, 2016) including wavelet (Thévenaz &
Unser, 1996), discrete wavelet (Sahu, Bhateja & Krishn,
2014), stationary wavelet (Du, Li, Xiao, & Nawaz, 2016),
dual-tree discrete wavelet (James & Dasarathy, 2014), lifting
wavelet (Cheng, He, & Lv, 2008), etc. (ii) In light of the
recent interest in deep learning, certain deep learning based
fusion algorithms, such as Enhanced medical image fusion
(EMFusion) (Bhavana & Krishnappa, 2015), offer an end-to-
end unsupervised network. To maintain the integrity of the
one-of-a-kind information that has been added to the surface-
level constraint, a deep-level constraint is applied. Original
multimodal images are input into the feature in the Multiscale
Residual Pyramid Attention Network (MSRPAN) (Ganasala
& Prasad, 2020), and the network generates chrominance
channels to decrease mosaic. The original multimodal photos
serve as input for the feature extractor, which then uses those
images to generate high-dimensional features (Singh,
Srivastava, Prakash, & Khare, 2012).

Once the features have been extracted, they are
combined with the help of the FER technique, and the
resulting combined image is then provided to the
reconstructor. Within this paradigm, these three methods have
been compared to one another. In magnetic resonance
imaging, electromagnetic signals from within the body are
collected and used to recreate images of the patient (Kor &
Tiwary, 2004). The technology of magnetic resonance
imaging was made possible after some discoveries by two
scientists and also it was followed by a way to code nuclear
magnetic resonance data spatially. Using this method, it is
possible to put together pictures of people. CT and MRI are
two imaging methods that display the spatial distributions of
physical quantities. MRI can display spectral distributions of
space in four or three dimensions, while CT can display a fault
in three dimensions and shows how a certain physical amount

is spread out in space. Due to the greater array of MRI
imaging modalities and the complexity of the imaging
concepts involved, the resulting image data will be of a
greater quantity. This exemplifies the primary distinction that
can be made between MRI and CT scans (Xu & Ma 2021).

3. MRI and PET Imaging

Imaging modalities such as MRI-T1 and MRI-T2,
CT and MRI, SPECT and PET, SPECT and CT, and PET and
CT are some examples of imaging techniques that can be
merged in medical image fusion. There are many different
integration techniques, each with its own set of benefits and
drawbacks. For instance, MRI/PET fusion images can be
helpful in the identification of brain tumors, Alzheimer's
disease, and liver metastases. On the other hand, positron
emission is the basis for the creation of PET pictures. Along
with anatomical information, this imaging method may also
show the functions and metabolisms of particular tissues.
From these characteristics, doctors can identify illnesses and
tumors before they develop. A particular fusion approach is
required to combine PET and MRI images to create a single
fused picture that contains both spatial and spectral important
information since PET images are colorful and have a
relatively poor spatial resolution (James & Dasarathy, 2014).
In this review work, three distinct methods have been
compared for analyzing MRI and PET scans.

MRI is a grayscale image while PET is a color
image, making fusion processing susceptible to distortion. In
most of the fusion algorithms, intensity components of a PET
image are decomposed by the IHS model (Haddadpour,
Daneshvar, & Seyedarabi, 2017) and BEMD, Log-Gabor
transform, and other algorithms are combined to process these
components to preserve more of the PET image's color. (Yin
et al., 2018) proposed an MRI and PET image fusion
algorithm based on nonsubsampled shearlet transform (NSST)
and simplified pulse-coupled neural network model
(S_PCNN), which transforms the PET image to the YIQ
component and employs NSST to break down the MRI and
the Y component of PET into low-frequency and high-
frequency subbands.

3.1 MRI

The imaging principle is that the nucleus has
positive electricity and the atomic nuclear energy of many
elements’ spins. When the magnetization vector of the spin
system gradually increases from zero, the magnetization
intensity reaches equilibrium. After the radio frequency pulse
has stopped, the nucleus will revert to its original arrangement
state in the magnetic field, releasing weak energy that will
transform into a radio signal and be detected. MRI can
disclose the form of the brain's soft tissues but cannot
determine the brain's functional composition. With high
proton densities of soft tissue, fat, the nervous system, and
articular cartilage lesions, the image is very clear and does not
produce any artifacts. Its high spatial resolution, absence of
radiation's harmful effects on the human body, and
informational advantage all play a vital part in clinical
diagnostics. Since the proton density in bone is extremely low,
it is not possible to obtain an accurate picture of bone using
MRI (Asif, Bennamoun, & Sohel, 2017).



A. Veeraputhiran et al. / Songklanakarin J. Sci. Technol. 46 (4), 347-354, 2024

3.2PET

The image obtained from PET reveals accurate
details on blood flow and can precisely localize where the
lesion on the patient is situated. Photons are created as a result
of the collision of electrons in the flesh with positrons, which
is the fundamental concept behind this theory. While PET is
sensitive, it is difficult to collect exact information about the
location of the brain's structural components. The purpose of
PET is to count photons and build an image with information
about brain function that is adequate for cancer identification.
Since there is no resolution of the boundaries between soft
tissue and bone, the spatial resolution is quite poor, and there
will likely be spatial distortion.

4. Medical Image Fusion Methods Using Deep
Learning

4.1 MRI and PET fusion

PET generates a color image, whereas MRI
generates a grayscale image; the color image generated by
PET is easily distorted during the fusion processing. BEMD,
the Log-Gabor transform, and several additional algorithms
are utilized in the color processing and preservation of the
PET image. Alternatively, these methods can be combined.
The intensity components of the PET image are decomposed
by the IHS model, which is used in fusion methods (Lahoud &
Susstrunk, 2019). The MRI and PET image fusion approach
that was proposed by (Yin et al., 2018) converts the PET
picture into the Y1Q component before utilizing NSST to split
the Y component of the PET into low-frequency and high-
frequency subbands based on NSST and PCNN. This is done
before the MRI image is fused with the PET image. The high-
frequency coefficients of the image were processed by
employing a simplified version of the PCNN model, and as a
consequence, the image possesses great effects, such as very
little color distortion and a wealth of structural information.

For the preprocessing of MRI and PET image
fusion, (Wang et al., 2006) have presented a method
predicated on the discrete wavelet transform. This method was
successful in overcoming the decline in image quality as well
as the unreadability of the raw files, and it achieved an
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transformation and discrete cosine transform were combined
to create a brand-new fusion method that was suggested by
(Chaitanya et al., 2016). In order to maximize filter
coefficients, adaptive filters were first applied to the merging
of MRI-PET images by Saboori and Birjandtalab (2019).
Utilizing both spatial and spectral difference parameters, they
achieved this. There are additional MRI/PET fusion methods
(Bhavana & Krishnappa, 2016; Shabanzade & Ghassemian,
2017; Shahdoosti & Mehrabi, 2018. Alzheimer's disease is
frequently diagnosed using MRI/PET imaging, which
frequently requires the fusion of MRI and PET pictures.
MRI/PET is a vital part of tumor identification. In clinical
oncology, PET/MRI may eventually become a powerful
multimodal technique.

4.2 EMFusion

An unsupervised improved fusion model is utilized
in this EMFusion effort in order to address a problem
involving the fusing of multiple types of medical images. For
the purpose of merging medical images, it is recommended to
make use of an end-to-end autonomous network. It adds
surface-level constraints as well as deep-level restrictions to
the information to keep it secure. The activity level of the
source images is determined at the surface level, by doing a
rigorous analysis of the salience and abundance of the images.
When dealing with multi-modal images, the many different
representations and measuring approaches are more suitable.
For objectively quantifying uniqueness, neural networks are
utilized in the deep-level constraint. It does not explicitly keep
the chrominance information in functional images; rather, it
improves the preservation of unique details using a fusion
network. This is in place of overtly maintaining the
chrominance information. The mosaic was reduced by
leveraging the texture information obtained from MRI scans,
which resulted in an improvement in chrominance (Xu & Ma
2021). The EMFusion framework is shown in Figure 1. The
main framework is split into two phases, namely Training
phase and Testing phase as explained below.

4.2.1 Training phase

1. Initialize the Transnet, encoder-decoder network,

accuracy of 90-95% in the fusion process. Shearlet  and FusionNet
Encoder Decoder
Conv(32)+LRelLU Conv(64) +LReLU o
Image 1 —» | Feature maps —»] =
Conv(64)+LReLU Conv (32+LReLU [ 'g
Conv(32)+LReLU Conv(3)+LReLU
AN
& &
A
Encoder Decoder
Y Conv(32)*LReLU Conv(64)+LReLU o
I 2 - 2 y Feature maps E
mage g | Conv(64)+LReLU [ | Conv(321+LReLU > '§
Conv(32)+LReLU Conv(3)+LReLU

Figure 1. EMFusion framework
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2. Update the parameters of Transnet

3. Fix Transnet, and update the parameters of the
encoder—decoder network

4. The n channels are obtained from the output of
the encoder as the unique channels

5. Fix Transnet and the encoder—decoder network,
and update the parameters of FusionNet. In this step, the
encoder is used as a feature extractor to provide a deep-level
constraint for FusionNet.

4.2.2 Testing phase

To generate the fused image, source images should
be fed into FusionNet. In this phase, encoder—decoder network
and Transnet are not required.

4.3 MSRPAN fusion

A novel multiscale residual pyramid attention
network-based fusion technique is analyzed for use with
medical images. For the feature extractor to collect high-
dimensional features, it must initially be fed the original
multimodal images. Next, the FER technique is used to the
retrieved features in order to fuse them, and the resulting
fused picture is then provided to the reconstructor. When the
training process is complete, the original photos are input, and
the fused image is instantaneously received without any more
parameter changes or setting adjustments being made. The
numerous head-to-head comparisons of the studies reveal that
the recommended approach exceeds the usual algorithm in the
majority of the metrics and in terms of visual quality. It
possesses both the properties of residual attention networks
and pyramid attention networks. The design of the MSRPAN
network is flexible in that its blocks can be altered to
accommodate a variety of additional fusion operations (Fu, Li,
Du & Huang 2021). Figure 2 depicts the MSRPAN
algorithm's design. The three components are the feature
extractor, fuser, and reconstructor. The high-dimensional
features in the source images are extracted using the feature
extractor, and the feature fuser is used to merge these
extracted characteristics. The reconstructor then incorporates
the fused features into the fused image. The feature
reconstructor's job is to convert the fused features back into
fusion images. Three MSRPAN blocks make up the feature

Image 1

Convolution
block

Upsample

extractor, while three convolution layers make up the
reconstructor.

The Algorithm is given by

Input: Image 1 (Ol_1) and Image 2 (Ol_2)

Output: Fused image (FI)

Step 1: Input the training data into the MSRPAN.

Step 2: Once the training epochs reach 500, the
training process is finished and the fusion model is obtained.

Step 3: Feed Ol_1 and OI_2 to the fusion model
and the features Fel and Fe2 are obtained respectively. Then
use the feature fuser to fuse Fel and Fe2 and the fused feature
(FF) is obtained.

Step 4: Input FF into the feature reconstructor of the
fusion model and the fused image (FI) is obtained directly.

4.4 ZL Image fusion

The primary building blocks of the zero-learning
image fusion technique rely on pre-trained neural networks
and saliency analysis. The process involved in zero-learning
image fusion is shown in Figure 3. In contrast to other neural
network-based approaches, this one may be applied to a wide
variety of fusion applications and does not require any
training on the image modalities to be completed beforehand.
Based on pre-trained CNN an innovative and speedy method
for the process of picture fusion is proposed. At first, the
source images are separated into a base layer and a detail
layer. A pre-trained CNN with feature maps is used to
combine the detail layers and visual saliency is employed to
combine the base levels. The final weights map accurately
reflects the source images and is ensured by a guided filter
that makes the necessary adjustments. Once both the basic and
detail levels have been fused, the final unified image can be
created (Lahoud & Siisstrunk 2019). The block diagram of the
ZL image fusion method is shown in Figure 3. The image is
split into detail and base fusion layers using the two-scale
decomposition technique. The detail layers are built on CNN
intermediate feature maps, and the base layers are fused based
on a comparison of saliency measures. The weight maps are
smoothed using the guided filter, which also ensures that they
are consistent with the original pictures. The merged base and
detail layers are linked to create the ultimate fusion in the final
stage.

|

MSRPAN

Convolution MSRPAN
block
Feature le— Fusion
Reconstructor Strategy

Figure 2. MSRPAN fusion framework
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5. Results and Discussion

The MRI-PET fusion images using three fusion
approaches are shown in Figure 4. The data sets are taken
from (https://www.med.harvard.edu/aanlib/). Figures 4a and
4b show the sample MRI and PET images. The fusion of MRI
and PET images combines structural and functional
information, providing clinicians with a comprehensive view
of the patient's anatomy and physiology. This integrated
approach enhances diagnostic accuracy, improves treatment
planning, and facilitates monitoring of disease progression and
treatment response.

Figure 4a displays an MRI slice that was captured
using various radiation techniques. The PET slices in Figure
4b were constructed after exposure to various photon
radiations. This integrated approach enhances diagnostic
accuracy, improves treatment planning, and facilitates
monitoring of disease progression and treatment response.
Figures 5a, 5b and 5c¢ depict the fused images of EMFusion,
MSRPAN, and ZL methods respectively. To examine the
precise pixel values on the tumor area and obtain in-depth
information about the tissue in the brain, the brain slices are
gathered with various radiation excitations on the brain tissue.

The exact locations of the brain tissues are shown in
Figure 5a of EMFusion model, which is obtained when
combining MRI and PET images. The effectiveness of fusion
techniques can be assessed quantitatively using localization

Features

(F)) (F2)

] I3
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measures. In medical imaging applications, techniques that
improve feature localization such as identifying tumours are
typically seen as more efficient. For fusion techniques such as
EMfusion, localization is critical to their overall effectiveness
and dependability. This is especially true in medical imaging
scenarios where precise spatial feature representation is
critical. The MSRPAN fusion of MRI and PET results is
shown in Figure 5b. In comparison with EMFusion, MSRPAN
displays better metrics, as summarized in Table 2. The image
of ZL's fusion is shown in Figure 5c. Better results are being
produced by ZL model fusion than by EMFusion, but it is not
superior to MSRPAN. A comprehensive examination of three
fusion methods allowed us to show that MSRPAN provides
better metrics.

The metric’s name and its abbreviation with its
equations are shown in Table 1. The results are summarized in
Table 2 for image fusion metrics such as Mutual Information
(M), Tsallis Entropy (TE), Nonlinear Correlation Information
Entropy (NCIE), Gradient (G), Multi-Scale Analysis (M),
Spatial Frequency (SF), Phase Congrency (P), Peilla-Select
only one (S), Chen's algorithm (C), Yang's algorithm (),
Chen-Varshney algorithm (CV), and Chen-Blum algorithm
(BC), for the three methods compared in this work (Liu,
Blasch 2011). We can create more reliable and efficient image
fusion algorithms for a range of applications, such as
computer vision, remote sensing, medical imaging, and image
analysis, by combining these techniques.

Guided
Filter

1

Smoothing
Filter (M)
l |
Base (B1) || Base (Bz) |4

Detail
Layer(D2
)

Detail
layer(D1)

Saliency Saliency
(81) (82)

e ——

Figure 3.  ZL image fusion framework

Figure 4.

(b)

(a) MRI samples, (b) PET samples
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Figure 5. (a) EMFusion, (b) MSRPAN fusion, (c) ZL fusion

Table 1.  Parameters and their defining equations
Metric name Metric equation
MI (Mutual

I(X;¥) = H(X) — H(X/Y)

1— YW p?
TE (Tsallis Ent =—k———
(Tsallis Entropy) S, k 1—q

information)

NCIE (Nonlinear
correlation
information entropy)

NCC(U,V)=H'(U)+H'(V)—H'(U,V)

. : )"f j’f
G (Gradient) Quere = 1+ Z§ log, 3
i=1

N

M (Multi-scale _ ABFa,
analysis) QM - H[Qs )a
5=
P (Phase _ En Ap COS( P (t) - Q:'_
congruency) PC(r) = mgx YA,

From the table, it is observed that the MSRPAN
method shows higher values compared to the other methods.
MSRPAN Fusion is a medical imaging tool that offers
enhanced accuracy, improved visualization, optimized feature
fusion, and efficient workflow. Its superior performance in
metrics like PSNR and SSIM results in images with higher
fidelity and similarity to ground truth images, reducing false
positives and negatives. It also provides better contrast,
sharper edges, and improved visual quality, aiding in accurate

interpretation and decision-making in medical diagnoses. The
significance of Table 2 is that we can create more reliable and
efficient image fusion algorithms for a range of applications,
such as computer vision, remote sensing, medical imaging,
and image analysis, by combining these techniques. The
computational resources, memory, and processing power
required for each algorithm are mentioned in Table 3.

6. Conclusions

In this study, image fusion based on deep learning
techniques is proposed as a method for analyzing multimodal
medical images. The most essential properties from data are
easily extracted by deep learning algorithms, saving
developers the trouble of having to manually construct the
system. In this paper, the fusion of MRI and PET images
utilizing EMFusion, MSRPAN, and ZLfusion was analyzed
and compared, along with a discussion of the benefits and
drawbacks of each method. In addition, the values of
parameters including Mutual Information (MI), Tsallis
Entropy (TE), Nonlinear Correlation Information Entropy
(NCIE), Gradient (G), and others, have been reviewed. When
compared to EMFusion and ZLfusion, it has been discovered
that the MSRPAN technique performs significantly better.
Subsequent investigations in this field are anticipated to
concentrate on improving quantitative analysis techniques,
discovering novel imaging biomarkers, and developing
imaging technology in order to augment the therapeutic
usefulness of MRI-PET fusion in diverse medical contexts.
The importance of EMFusion, MSRPAN Fusion, and
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Table2. MRI-PET fusion comparison of three approaches
. Parameters
Fusion
methods
Ml TE NCIE G M SF P S C Y CVv CB
EMFusion 0.6206 0.5376 0.8074 0.7317 0.2808 -0.1014 0.7065 0.9274 0.8475 0.8635 74.99 0.5837
MSRPAN  0.6698 0.5045 0.8077 0.7607 03752 -0.0366 0.6726 0.9233 0.8332 0.8674 262.82  0.5895
ZL Fusion 05792 0.6195 0.8073 0.6409 1.0378 -0.0498 0.6903 0.8023 0.7975 0.8208 92.74 0.4846
Table 3. Computational resources, memory, and processing power required by each algorithm
Resources EMFusion MSRPAN ZL
GPU NVIDIA Geforce GTX Titan X NVIDIA GeForce GTX 1050 Ti GPU NVIDIA GeForce GTX 1050
and 8 GB of RAM
CPU Windows 3.4 GHz Intel Core i5 Intel Core 15— 8400 CPU with 6 core Windows 2.8GHz Intel Core i7-7700HQ
Training PyTorch Pytorch Pytorch
parameters Epochs - 500 Epochs - 300 Epochs- 300

Batch size - 64

Batch size - 32

Batch size - 64

ZLFusion, in contrast to other image fusion algorithms, is
found in their tailored methods for addressing certain
requirements or obstacles in image fusion applications. To
improve fusion results in their respective fields of application,
they use various strategies like edge preservation, deep
learning with attention mechanisms, and low-light picture
augmentation, respectively. That can be pursued in future
work and in extension of this research work.
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