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Abstract 
 

Image fusion is becoming increasingly important as a result of recent advancements in image processing applications 

because of the enormous number of different capture devices available. By fusing multiple images into one, the overall image 

quality is improved and key characteristics are preserved efficiently. This improvement in image quality and integrity is achieved 

by the use of multi-temporal, multi-view, and multi-sensor information during the process of image combination. For instance, a 

single-mode medical image has very little information, whereas a fused image contains more important image data and provides 

a reliable diagnosis of the condition. Experiments on the fusion of MRI and PET medical images are being conducted to evaluate 

performance, algorithm stability, and other parameters. In this article, the benefits and drawbacks of different degrees of state-of-

the-art picture fusion approaches are explored, and also some of the standard quality metrics that are used for medical image 

fusion are computed. 
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1. Introduction  
 

The application of medical imaging has become 

important in clinical diagnosis. Images that use many 

modalities can provide information from a variety of 

perspectives, which can help medical professionals verify a 

diagnosis and determine the most appropriate treatment. 

Single-photon emission computed tomography (SPECT) 

images show the soft-tissue structures of the body, while 

magnetic resonance imaging (MRI) images reveal the bone 

structure and details on high-density tissue; positron emission 

tomography (PET) images reveal the metabolic action of the 

cells and tissues; and Computer Tomography (CT) scans 

reveal the bone structure and high-density tissue information. 

The primary goal of the fusion is to improve the perceived 

quality, contrast, and perceived experience of the fusion.

 

Some of the requirements of fusion are: (a) it must retain all of 

the details from the source images; (b) it should not add any 

new details like effects; and (c) it must avoid problems like 

noise and misregistration (Meher, Agrawal, Panda, & 

Abraham, 2019). The main objective of this paper is to 

provide an overview of recent changes in the field of medical 

image fusion research and to look at how the field might grow 

in the future. Medical images captured using various 

modalities each have advantages and limitations which lead to 

complicated diagnosis processes and diagnostic errors. To 

improve the utilization rate of medical images, image fusion 

algorithms can be divided into two categories: transform 

domain and spatial domain. Algorithms based on the 

transform domain include Multi-scale Transform (MST) and 

feature space methods such as Independent Component 

Analysis (ICA) and Sparse Representation (SR) (Wang, Li, 

Zhang, & Zhang 2018). The most important spatial domain-

based algorithms can be divided into block-based, region-

based, and pixel-based fusion algorithms (Ancuti, Ancuti, De 

Vleeschouwer, & Bovik 2016).  
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Region-based algorithms break down the input 

images into regions and merge them to generate the fused 

image, whereas block-based algorithms segment the images 

into blocks. Pixel-based algorithms generate a fused decision 

graph, while deep learning promotes the progress of image 

fusion due to its powerful feature extraction and data 

expression capabilities (Huang & Jing, 2007). Deep learning 

methods have been proposed for image fusion, providing 

theoretical support and practical experience. They have 

advantages over traditional image fusion algorithms such as 

stronger feature extraction and expression, more flexible 

network architecture, and end-to-end fusion process. These 

advantages include a stronger ability for feature extraction and 

expression, a more flexible network architecture, and an end-

to-end fusion process (Du, Li, Lu, & Xiao, 2016). This paper 

is divided into the following sections: Related Works, Medical 

Image fusion methods using deep learning, Results and 

Discussion, and Conclusion. 

 

2. Related Works 
 

Many researchers have suggested a diverse 

assortment of tried-and-true methods for the process of fusing 

medical images. Using various decomposition approaches, 

these techniques can be divided into the following groups: (i) 

methods that are based on pyramids (Ancuti, Ancuti, De 

Vleeschouwer, & Bovik, 2016; Huang & Jing, 2007; Wang, 

Li, Zhang, & Zhang, 2018) and (ii) wavelet-based techniques 

(Du, Li, Lu, & Xiao, 2016) including wavelet (Thévenaz & 

Unser, 1996), discrete wavelet (Sahu, Bhateja & Krishn, 

2014), stationary wavelet (Du, Li, Xiao, & Nawaz, 2016), 

dual-tree discrete wavelet (James & Dasarathy, 2014), lifting 

wavelet (Cheng, He, & Lv, 2008),  etc. (ii) In light of the 

recent interest in deep learning, certain deep learning based 

fusion algorithms, such as Enhanced medical image fusion 

(EMFusion) (Bhavana & Krishnappa, 2015), offer an end-to-

end unsupervised network. To maintain the integrity of the 

one-of-a-kind information that has been added to the surface-

level constraint, a deep-level constraint is applied. Original 

multimodal images are input into the feature in the Multiscale 

Residual Pyramid Attention Network (MSRPAN) (Ganasala 

& Prasad, 2020), and the network generates chrominance 

channels to decrease mosaic. The original multimodal photos 

serve as input for the feature extractor, which then uses those 

images to generate high-dimensional features (Singh, 

Srivastava, Prakash, & Khare, 2012).  

Once the features have been extracted, they are 

combined with the help of the FER technique, and the 

resulting combined image is then provided to the 

reconstructor. Within this paradigm, these three methods have 

been compared to one another. In magnetic resonance 

imaging, electromagnetic signals from within the body are 

collected and used to recreate images of the patient (Kor & 

Tiwary, 2004). The technology of magnetic resonance 

imaging was made possible after some discoveries by two 

scientists and also it was followed by a way to code nuclear 

magnetic resonance data spatially. Using this method, it is 

possible to put together pictures of people. CT and MRI are 

two imaging methods that display the spatial distributions of 

physical quantities. MRI can display spectral distributions of 

space in four or three dimensions, while CT can display a fault 

in three dimensions and shows how a certain physical amount 

is spread out in space. Due to the greater array of MRI 

imaging modalities and the complexity of the imaging 

concepts involved, the resulting image data will be of a 

greater quantity. This exemplifies the primary distinction that 

can be made between MRI and CT scans (Xu & Ma 2021). 

 

3. MRI and PET Imaging 
 

Imaging modalities such as MRI-T1 and MRI-T2, 

CT and MRI, SPECT and PET, SPECT and CT, and PET and 

CT are some examples of imaging techniques that can be 

merged in medical image fusion. There are many different 

integration techniques, each with its own set of benefits and 

drawbacks. For instance, MRI/PET fusion images can be 

helpful in the identification of brain tumors, Alzheimer's 

disease, and liver metastases. On the other hand, positron 

emission is the basis for the creation of PET pictures. Along 

with anatomical information, this imaging method may also 

show the functions and metabolisms of particular tissues. 

From these characteristics, doctors can identify illnesses and 

tumors before they develop. A particular fusion approach is 

required to combine PET and MRI images to create a single 

fused picture that contains both spatial and spectral important 

information since PET images are colorful and have a 

relatively poor spatial resolution (James & Dasarathy, 2014). 

In this review work, three distinct methods have been 

compared for analyzing MRI and PET scans. 

MRI is a grayscale image while PET is a color 

image, making fusion processing susceptible to distortion. In 

most of the fusion algorithms, intensity components of a PET 

image are decomposed by the IHS model (Haddadpour, 

Daneshvar, & Seyedarabi, 2017) and BEMD, Log-Gabor 

transform, and other algorithms are combined to process these 

components to preserve more of the PET image's color. (Yin 

et al., 2018) proposed an MRI and PET image fusion 

algorithm based on nonsubsampled shearlet transform (NSST) 

and simplified pulse-coupled neural network model 

(S_PCNN), which transforms the PET image to the YIQ 

component and employs NSST to break down the MRI and 

the Y component of PET into low-frequency and high-

frequency subbands. 

 

3.1 MRI 
 

The imaging principle is that the nucleus has 

positive electricity and the atomic nuclear energy of many 

elements’ spins. When the magnetization vector of the spin 

system gradually increases from zero, the magnetization 

intensity reaches equilibrium. After the radio frequency pulse 

has stopped, the nucleus will revert to its original arrangement 

state in the magnetic field, releasing weak energy that will 

transform into a radio signal and be detected. MRI can 

disclose the form of the brain's soft tissues but cannot 

determine the brain's functional composition. With high 

proton densities of soft tissue, fat, the nervous system, and 

articular cartilage lesions, the image is very clear and does not 

produce any artifacts. Its high spatial resolution, absence of 

radiation's harmful effects on the human body, and 

informational advantage all play a vital part in clinical 

diagnostics. Since the proton density in bone is extremely low, 

it is not possible to obtain an accurate picture of bone using 

MRI (Asif, Bennamoun, & Sohel, 2017).  
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3.2 PET 
 

The image obtained from PET reveals accurate 

details on blood flow and can precisely localize where the 

lesion on the patient is situated. Photons are created as a result 

of the collision of electrons in the flesh with positrons, which 

is the fundamental concept behind this theory. While PET is 

sensitive, it is difficult to collect exact information about the 

location of the brain's structural components. The purpose of 

PET is to count photons and build an image with information 

about brain function that is adequate for cancer identification. 

Since there is no resolution of the boundaries between soft 

tissue and bone, the spatial resolution is quite poor, and there 

will likely be spatial distortion. 

 

4. Medical Image Fusion Methods Using Deep  

    Learning  
 

4.1 MRI and PET fusion 
 

PET generates a color image, whereas MRI 

generates a grayscale image; the color image generated by 

PET is easily distorted during the fusion processing. BEMD, 

the Log-Gabor transform, and several additional algorithms 

are utilized in the color processing and preservation of the 

PET image. Alternatively, these methods can be combined. 

The intensity components of the PET image are decomposed 

by the IHS model, which is used in fusion methods (Lahoud & 

Susstrunk, 2019). The MRI and PET image fusion approach 

that was proposed by (Yin et al., 2018) converts the PET 

picture into the YIQ component before utilizing NSST to split 

the Y component of the PET into low-frequency and high-

frequency subbands based on NSST and PCNN. This is done 

before the MRI image is fused with the PET image. The high-

frequency coefficients of the image were processed by 

employing a simplified version of the PCNN model, and as a 

consequence, the image possesses great effects, such as very 

little color distortion and a wealth of structural information.  

For the preprocessing of MRI and PET image 

fusion, (Wang et al., 2006) have presented a method 

predicated on the discrete wavelet transform. This method was 

successful in overcoming the decline in image quality as well 

as the unreadability of the raw files, and it achieved an 

accuracy of 90–95% in the fusion process. Shearlet 

transformation and discrete cosine transform were combined 

to create a brand-new fusion method that was suggested by 

(Chaitanya et al., 2016). In order to maximize filter 

coefficients, adaptive filters were first applied to the merging 

of MRI-PET images by Saboori and Birjandtalab (2019). 

Utilizing both spatial and spectral difference parameters, they 

achieved this. There are additional MRI/PET fusion methods 

(Bhavana & Krishnappa, 2016; Shabanzade & Ghassemian, 

2017; Shahdoosti & Mehrabi, 2018. Alzheimer's disease is 

frequently diagnosed using MRI/PET imaging, which 

frequently requires the fusion of MRI and PET pictures. 

MRI/PET is a vital part of tumor identification. In clinical 

oncology, PET/MRI may eventually become a powerful 

multimodal technique. 

 

4.2 EMFusion 
 

An unsupervised improved fusion model is utilized 

in this EMFusion effort in order to address a problem 

involving the fusing of multiple types of medical images. For 

the purpose of merging medical images, it is recommended to 

make use of an end-to-end autonomous network. It adds 

surface-level constraints as well as deep-level restrictions to 

the information to keep it secure. The activity level of the 

source images is determined at the surface level, by doing a 

rigorous analysis of the salience and abundance of the images. 

When dealing with multi-modal images, the many different 

representations and measuring approaches are more suitable. 

For objectively quantifying uniqueness, neural networks are 

utilized in the deep-level constraint. It does not explicitly keep 

the chrominance information in functional images; rather, it 

improves the preservation of unique details using a fusion 

network. This is in place of overtly maintaining the 

chrominance information. The mosaic was reduced by 

leveraging the texture information obtained from MRI scans, 

which resulted in an improvement in chrominance (Xu & Ma 

2021). The EMFusion framework is shown in Figure 1. The 

main framework is split into two phases, namely Training 

phase and Testing phase as explained below. 

 

4.2.1 Training phase  
 

1. Initialize the Transnet, encoder-decoder network, 

and FusionNet  

 

 
 

Figure 1. EMFusion framework 
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2. Update the parameters of Transnet   

3. Fix Transnet, and update the parameters of the 

encoder–decoder network 

4. The 𝑛 channels are obtained from the output of 

the encoder as the unique channels 

5. Fix Transnet and the encoder–decoder network, 

and update the parameters of FusionNet. In this step, the 

encoder is used as a feature extractor to provide a deep-level 

constraint for FusionNet. 

 

4.2.2 Testing phase  
 

To generate the fused image, source images should 

be fed into FusionNet. In this phase, encoder–decoder network 

and Transnet are not required. 

 

4.3 MSRPAN fusion 
 

A novel multiscale residual pyramid attention 

network-based fusion technique is analyzed for use with 

medical images. For the feature extractor to collect high-

dimensional features, it must initially be fed the original 

multimodal images. Next, the FER technique is used to the 

retrieved features in order to fuse them, and the resulting 

fused picture is then provided to the reconstructor. When the 

training process is complete, the original photos are input, and 

the fused image is instantaneously received without any more 

parameter changes or setting adjustments being made. The 

numerous head-to-head comparisons of the studies reveal that 

the recommended approach exceeds the usual algorithm in the 

majority of the metrics and in terms of visual quality. It 

possesses both the properties of residual attention networks 

and pyramid attention networks. The design of the MSRPAN 

network is flexible in that its blocks can be altered to 

accommodate a variety of additional fusion operations (Fu, Li, 

Du & Huang 2021). Figure 2 depicts the MSRPAN 

algorithm's design. The three components are the feature 

extractor, fuser, and reconstructor. The high-dimensional 

features in the source images are extracted using the feature 

extractor, and the feature fuser is used to merge these 

extracted characteristics. The reconstructor then incorporates 

the fused features into the fused image. The feature 

reconstructor's job is to convert the fused features back into 

fusion images. Three MSRPAN blocks make up the feature 

extractor, while three convolution layers make up the 

reconstructor.  

The Algorithm is given by 

Input: Image 1 (OI_1) and Image 2 (OI_2) 

Output: Fused image (FI) 

Step 1: Input the training data into the MSRPAN. 

Step 2: Once the training epochs reach 500, the 

training process is finished and the fusion model is obtained. 

Step 3:  Feed OI_1 and OI_2 to the fusion model 

and the features Fe1 and Fe2 are obtained respectively. Then 

use the feature fuser to fuse Fe1 and Fe2 and the fused feature 

(FF) is obtained. 

Step 4: Input FF into the feature reconstructor of the 

fusion model and the fused image (FI) is obtained directly. 

 

4.4 ZL Image fusion 
 

The primary building blocks of the zero-learning 

image fusion technique rely on pre-trained neural networks 

and saliency analysis. The process involved in zero-learning 

image fusion is shown in Figure 3. In contrast to other neural 

network-based approaches, this one may be applied to a wide 

variety of fusion applications and does not require any 

training on the image modalities to be completed beforehand. 

Based on pre-trained CNN an innovative and speedy method 

for the process of picture fusion is proposed. At first, the 

source images are separated into a base layer and a detail 

layer. A pre-trained CNN with feature maps is used to 

combine the detail layers and visual saliency is employed to 

combine the base levels. The final weights map accurately 

reflects the source images and is ensured by a guided filter 

that makes the necessary adjustments. Once both the basic and 

detail levels have been fused, the final unified image can be 

created (Lahoud & Süsstrunk 2019). The block diagram of the 

ZL image fusion method is shown in Figure 3. The image is 

split into detail and base fusion layers using the two-scale 

decomposition technique. The detail layers are built on CNN 

intermediate feature maps, and the base layers are fused based 

on a comparison of saliency measures. The weight maps are 

smoothed using the guided filter, which also ensures that they 

are consistent with the original pictures. The merged base and 

detail layers are linked to create the ultimate fusion in the final 

stage.

 

 
 

Figure 2. MSRPAN fusion framework 
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5. Results and Discussion 
 

The MRI-PET fusion images using three fusion 

approaches are shown in Figure 4. The data sets are taken 

from (https://www.med.harvard.edu/aanlib/). Figures 4a and 

4b show the sample MRI and PET images. The fusion of MRI 

and PET images combines structural and functional 

information, providing clinicians with a comprehensive view 

of the patient's anatomy and physiology. This integrated 

approach enhances diagnostic accuracy, improves treatment 

planning, and facilitates monitoring of disease progression and 

treatment response. 

Figure 4a displays an MRI slice that was captured 

using various radiation techniques. The PET slices in Figure 

4b were constructed after exposure to various photon 

radiations. This integrated approach enhances diagnostic 

accuracy, improves treatment planning, and facilitates 

monitoring of disease progression and treatment response. 

Figures 5a, 5b and 5c depict the fused images of EMFusion, 

MSRPAN, and ZL methods respectively. To examine the 

precise pixel values on the tumor area and obtain in-depth 

information about the tissue in the brain, the brain slices are 

gathered with various radiation excitations on the brain tissue.  

The exact locations of the brain tissues are shown in 

Figure 5a of EMFusion model, which is obtained when 

combining MRI and PET images. The effectiveness of fusion 

techniques can be assessed quantitatively using localization 

measures. In medical imaging applications, techniques that 

improve feature localization such as identifying tumours are 

typically seen as more efficient. For fusion techniques such as 

EMfusion, localization is critical to their overall effectiveness 

and dependability. This is especially true in medical imaging 

scenarios where precise spatial feature representation is 

critical. The MSRPAN fusion of MRI and PET results is 

shown in Figure 5b. In comparison with EMFusion, MSRPAN 

displays better metrics, as summarized in Table 2. The image 

of ZL's fusion is shown in Figure 5c. Better results are being 

produced by ZL model fusion than by EMFusion, but it is not 

superior to MSRPAN. A comprehensive examination of three 

fusion methods allowed us to show that MSRPAN provides 

better metrics. 

The metric’s name and its abbreviation with its 

equations are shown in Table 1. The results are summarized in 

Table 2 for image fusion metrics such as Mutual Information 

(MI), Tsallis Entropy (TE), Nonlinear Correlation Information 

Entropy (NCIE), Gradient (G), Multi-Scale Analysis (M), 

Spatial Frequency (SF), Phase Congrency (P), Peilla-Select 

only one (S), Chen's algorithm (C), Yang's algorithm (Y), 

Chen-Varshney algorithm (CV), and Chen-Blum algorithm 

(BC), for the three methods compared in this work (Liu, 

Blasch 2011). We can create more reliable and efficient image 

fusion algorithms for a range of applications, such as 

computer vision, remote sensing, medical imaging, and image 

analysis, by combining these techniques. 
 

 
 

Figure 3. ZL image fusion framework 
 

 
(a) 

 
(b) 

 

Figure 4. (a) MRI samples, (b) PET samples 
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(a) 

 
(b) 

 

 
(c) 

 

Figure 5. (a) EMFusion, (b) MSRPAN fusion, (c) ZL fusion 

 
Table 1. Parameters and their defining equations 

 

Metric name Metric equation 

  

MI (Mutual 
information)  

TE (Tsallis Entropy) 

 
NCIE (Nonlinear 

correlation 

information entropy) 
 

G (Gradient) 

 

M (Multi-scale 

analysis) 
 

P (Phase 

congruency) 
 

  

 
From the table, it is observed that the MSRPAN 

method shows higher values compared to the other methods. 

MSRPAN Fusion is a medical imaging tool that offers 

enhanced accuracy, improved visualization, optimized feature 

fusion, and efficient workflow. Its superior performance in 

metrics like PSNR and SSIM results in images with higher 

fidelity and similarity to ground truth images, reducing false 

positives and negatives. It also provides better contrast, 

sharper edges, and improved visual quality, aiding in accurate 

interpretation and decision-making in medical diagnoses. The 

significance of Table 2 is that we can create more reliable and 

efficient image fusion algorithms for a range of applications, 

such as computer vision, remote sensing, medical imaging, 

and image analysis, by combining these techniques. The 

computational resources, memory, and processing power 

required for each algorithm are mentioned in Table 3. 

 

6. Conclusions 
 

In this study, image fusion based on deep learning 

techniques is proposed as a method for analyzing multimodal 

medical images. The most essential properties from data are 

easily extracted by deep learning algorithms, saving 

developers the trouble of having to manually construct the 

system. In this paper, the fusion of MRI and PET images 

utilizing EMFusion, MSRPAN, and ZLfusion was analyzed 

and compared, along with a discussion of the benefits and 

drawbacks of each method. In addition, the values of 

parameters including Mutual Information (MI), Tsallis 

Entropy (TE), Nonlinear Correlation Information Entropy 

(NCIE), Gradient (G), and others, have been reviewed. When 

compared to EMFusion and ZLfusion, it has been discovered 

that the MSRPAN technique performs significantly better. 

Subsequent investigations in this field are anticipated to 

concentrate on improving quantitative analysis techniques, 

discovering novel imaging biomarkers, and developing 

imaging technology in order to augment the therapeutic 

usefulness of MRI-PET fusion in diverse medical contexts. 

The importance of EMFusion, MSRPAN Fusion, and 
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Table 2. MRI-PET fusion comparison of three approaches 

 

 
Table 3. Computational resources, memory, and processing power required by each algorithm 
 

 

ZLFusion, in contrast to other image fusion algorithms, is 

found in their tailored methods for addressing certain 

requirements or obstacles in image fusion applications. To 

improve fusion results in their respective fields of application, 

they use various strategies like edge preservation, deep 

learning with attention mechanisms, and low-light picture 

augmentation, respectively. That can be pursued in future 

work and in extension of this research work. 
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