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Abstract 
 

This study evaluated the potential of statistical models to predict daily PM2.5 concentrations in Upper Thailand using 

daily climate data on air pressure, temperature, humidity, rainfall, evaporation, wind speed, and direction, as predictors. Four 

statistical methods were employed: Multiple Linear Regression (MLR), Quantile Regression (QR), Generalized Additive Models 

(GAMs), and Support Vector Regression (SVR). Humidity emerged as the most influential climate factor on PM2.5, especially in 

cool and hot seasons. SVR outperformed other models in prediction accuracy, while GAMs showed promise in specific provinces. 

Despite limitations indicated by R² values, this research demonstrates the potential of utilizing statistical modeling and accessible 

climate data for PM2.5 prediction in regions lacking air quality monitoring equipment, but with access to real-time or short-term 

forecasted climate data. 
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1. Introduction  
 

Fine particulate matter (PM2.5), an invisible yet 

insidious form of air pollution, poses a serious threat to human 

health, with exposure directly linked to increased risks of 

cardiovascular and respiratory diseases (Hayes et al., 2020; Liu 

et al., 2017; Pope, Coleman, Pond, & Burnett, 2020; Pun, 

Kazemiparkouhi, Manjourides & Suh, 2017; Ren et al., 2021; 

Slama et al., 2019). While air quality monitoring stations offer 

crucial real-time data on PM2.5 concentrations, their geographic 

coverage, particularly in regions like northern Thailand, is often 

limited. Forecasting models present a promising solution for 

predicting PM2.5 levels even in areas without extensive 

monitoring infrastructure. Current models typically rely on a 

combination of air quality data (e.g., sulfur dioxide, nitrogen 

dioxide) and meteorological data (Bensalam, 2024; Gulati et 

al., 2023; Sirithian & Thanatrakolsri, 2022;  Zaman, Kanniah, 

 

Kaskaoutis & Latif, 2021). However, the availability of 

detailed air quality data can be a constraint, especially in 

regions like northern Thailand. In contrast, meteorological data 

is widely accessible, often in real-time or short-term forecasts, 

making it a valuable resource for timely PM2.5 predictions. 

This study focuses on the upper region of northern 

Thailand, which is particularly vulnerable to severe PM2.5 

episodes, especially during the hot season. We aim to evaluate 

the effectiveness of four distinct models for predicting daily 

PM2.5 concentrations in this region using solely meteorological 

data. 

Multiple linear regression (MLR) is broadly used to 

investigate the relationship between two or more variables. Due 

to its simplicity and interpretability in capturing the relationship 

between independent and dependent variables, MLR is often a 

good starting point for air pollution prediction. It has been 

successfully used in past studies to examine PM2.5 

concentrations (Amnuaylojaroen, 2022; Bekesiene, Meidute-

Kavaliauskiene, & Vasiliauskiene, 2021; Kliengchuay et al., 

2021; Lesar, & Filipčić, 2021). Another alternative type of  

regression analysis is quantile regression (QR), which is useful
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when the focus is on capturing relationships beyond just the 

mean values of the variables, such as the median or other 

quantile, providing a more meticulous understanding of PM2.5 

variations. We also consider the models for nonlinearity. 

Generalized additive models (GAMs) offer greater flexibility 

for modeling non-linear relationships and they have shown 

promise in previous air pollution research (Zeng, Jaffe, Qiao, 

Miao, & Tang, 2020). Finally, we apply support vector 

regression (SVR), which is another powerful tool for non-linear 

modeling. It has been successfully applied in air quality 

prediction studies (Chen, Yang, Du, & Huang, 2021; 

Mogollón-Sotelo et al., 2021; Weizhen et al., 2014; Zaman, 

Kanniah, Kaskaoutis & Latif, 2021). 

By investigating these models, this study seeks to 

identify the most accurate and reliable approach for PM2.5 

prediction in the upper region of northern Thailand. The 

findings will not only advance our understanding of the 

relationship between climate and air pollution but also provide 

critical information for public health interventions and 

decision-making during periods of high PM2.5 levels. 

 

2. Materials and Methods 
 

2.1 Data 
 

This study analyzes the relationship between PM2.5 

and various climate factors in Thailand's upper north region. 

Daily average PM2.5 data (micrograms per cubic meter, µg/m3) 

were collected from the Pollution Control Department 

(Ministry of Natural Resources and Environment). Climate 

data, including air pressure (hPa), temperature (°C), relative 

humidity (%), rainfall (mm), evaporation (mm), wind speed 

(m/s), and wind direction (degrees), were obtained from the 

Northern Meteorological Center (Ministry of Digital Economy 

and Society). 

The study focuses on eight provinces in the upper 

north: Chiang Mai, Chiang Rai, Lampang, Lamphun, Mae 

Hong Son, Nan, Phayao, and Phrae. Data from Uttaradit was 

excluded due to recent station installation, as shown in Figure 

1. The timeframe spans from January 1st, 2018, to December 

31st, 2022. Daily PM2.5 and climate data were merged based on 

corresponding dates and locations. It's important to note that 

some stations had missing data in early 2018, resulting in 

variations in data points per province as shown in Table 1. The 

analysis considers seasonal variations defined by the Thai 

Meteorological Department: wet (June-October), cool 

(November-February), and hot (March-May). 

Figure 2 illustrates the seasonal variations in PM2.5 

concentrations across the eight provinces throughout the year. 

It reveals that the hot season (red) exhibits a considerably 

higher PM2.5 compared with the wet season (green). Notably, 

Chiang Mai, Chiang Rai, and Mae Hong Son experience peak 

PM2.5 of over 300 µg/m3 during the hot season, which 

substantially exceeds standard levels. 

 

 
 
Figure 1. Map of Thailand in which the highlighted regions are the 

upper northern provinces

 

 
 

Figure 2. Time series plot of daily average PM2.5 concentrations 
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Table 1 also presents the descriptive statistics for 

PM2.5 concentrations across eight provinces, grouped by 

season. The mean and standard deviation of PM2.5 were highest 

during the hot season, exceeding those of the wet and cool 

seasons. Air pollution is particularly severe during the hot or 

dry season when farmers routinely burn agricultural fields, 

resulting in trapping smoke and other pollutants close to the 

ground. 
 

2.2 Methodology 
 

2.2.1 Correlation analysis 
 

Correlation analysis is used to examine a linear 

relationship between two variables: 𝑋 and 𝑌, and to assess the 

relationship. For a given dataset 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)  and 𝑦 =
(𝑦1, 𝑦2, … , 𝑦𝑛), the sample correlation coefficient, 𝑟, is defined 

as 
 

𝑟 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 ∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

,       𝑖 = 1, … , 𝑛 (1) 

  

and 𝑛 is the number of observations. The correlation 

coefficient defined in Equation (1) ranges from +1 to -1. A 

value close to +1 indicates a strong positive correlation, 

whereas a value near -1 indicates a strong negative correlation.  

A value around 0 indicates a weak or negligible relationship 

between the two variables. 

 

2.2.2 Multiple linear regression 
 

Multiple linear regression (MLR) attempts to predict 

a dependent variable, 𝑌, by assuming a linear relationship with 

independent variables, 𝑋1, 𝑋2, … , 𝑋𝑘 . The model can be 

expressed as 

𝑦𝑖 =  𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑗𝑥𝑖𝑗 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝜖𝑖 ,     𝑖 =

1, … , 𝑛, 𝑗 = 1, . . . , 𝑘                        (2) 
 

where 𝑥𝑖𝑗  is the value of ith observation of jth 

independent variable, 𝑦𝑖 is the value of ith observation of the 

dependent variable,  𝛽0, 𝛽1, … , 𝛽𝑘  are regression coefficient 

parameters, 𝜖 is random error assumed to be 𝜖𝑖~𝑁(0, 𝜎2)  and 

𝑛 is the number of observations.  The regression parameters can 

be estimated by the least squares and maximum likelihood 

methods, yielding the fitted equation. 
 

2.2.3 Quantile regression 
 

We can use quantile regression to estimate the τ 

quantile of the dependent variable, called quantile regression 

(QR). The 𝜏 value shows the quantile and its value is between 

0 and 1. The 0.5 quantile or 𝜏 = 0.5 is the median regression 

meaning that 50% of the data are less than the value of the 

median. Similarly, the 0.25 and 0.75 quantiles are values such 

that 25% and 75% of the data are smaller than these values, 

respectively. The regression model for 𝜏 quantile is defined as 

 
𝑄𝑟(𝑦𝑖) =  𝛽0(𝜏) + 𝛽1(𝜏)𝑥𝑖1 + ⋯ + 𝛽𝑘(𝜏)𝑥𝑖𝑘 ,                 (3) 

 
where 𝑄𝑟(. )  is the estimated quantile point for the τ 

quantile. The 𝛽0(𝜏), 𝛽1(𝜏), … , 𝛽𝑘(𝜏) are regression coefficient 

parameters for 𝜏 quantile regression and are estimated by 

solving  
 

𝑚𝑖𝑛 ∑ 𝜌𝜏(𝑦𝑖 − 𝛽0(𝜏) − ∑ 𝛽𝑗(𝜏)𝑥𝑖𝑗
𝑘
𝑗=1 )𝑛

𝑖=1 ,                         (4) 

 

where 𝜌𝜏(𝑟) = 𝜏 𝑚𝑎𝑥(𝑟, 0) + (1 − 𝜏) 𝑚𝑎𝑥 (−𝑟, 0) 

is referred to as a check function (Koenker, & Hallock, 2001). 

 

Table 1. Descriptive statistics of PM2.5 concentrations 
 

Province Start date Season Number of observations Mean SD Min Max 

        

Chiang Mai Jan 1, 2018 Cool 537 32.05 14.53 12 83 

  Hot 457 49.74 34.38 8 219 

  Wet 633 13.81 5.27 7 35 
Chiang Rai Jul 18, 2018 Cool 539 27.94 13.79 7 94 

  Hot 366 68.94 60.38 7 308 

  Wet 691 12.27 7.89 4 74 
Lampang Jan 1, 2018 Cool 540 33.53 21.49 6 167 

  Hot 460 40.42 26.23 6 143 

  Wet 640 10.10 4.51 4 33 
Lamphun Jul 20, 2018 Cool 468 35.38 14.13 11 91 

  Hot 360 39.55 27.60 3 183 

  Wet 538 13.80 6.27 3 38 
Mae Hong Son Jul 21, 2018 Cool 478 26.27 23.15 4 168 

  Hot 355 69.08 60.68 4 323 

  Wet 588 6.97 3.78 2 25 

Nan Jan 1, 2018 Cool 538 27.26 13.44 6 85 

  Hot 453 44.22 33.56 4 200 

  Wet 636 10.73 5.08 4 34 
Phayao Oct 17, 2018 Cool 469 34.50 18.52 5 99 

  Hot 275 42.48 33.83 5 246 

  Wet 456 10.12 5.14 3 32 
Phrae Oct 17, 2018 Cool 475 37.65 22.18 8 151 

  Hot 339 41.64 26.57 6 158 

  Wet 378 11.01 5.38 3 36 
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2.2.4 Generalized additive model 
 

A generalized additive model (GAM) eases the 

assumption of normality and linearity between dependent and 

independent variables required in the MLR. GAM assumes that 

the mean of the dependent variable depends on independent 

variables through a non-linear function. It uses smoothing 

techniques to model the shape of a relationship which is not 

entitled to take a particular form such as linear or exponential. 

The GAM model is defined as  

 

𝑦𝑖 = 𝑠1(𝑥𝑖1) + 𝑠2(𝑥𝑖2) + ⋯ + 𝑠𝑘(𝑥𝑖𝑘),   𝑖 = 1, … , 𝑛,          (5) 

 

where 𝑠𝑗()  is a smoothing function which 

corresponds to an associated independent variable 𝑥𝑗  for 𝑗 =

1, … , 𝑘 . The 𝑠𝑗() function or smoothing terms are spline 

functions of a single independent variable with smoothing 

parameters (Binder & Tutz, 2008). 
 

2.2.5 Support vector regression 
 

Support vector regression (SVR) is a machine 

learning technique used for regression tasks. It is useful when 

dealing with non-linear relationships between independent and 

dependen variables. For a given dataset {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)} 

where 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑘)  is a vector of independent variables 

for ith observation. The SVR creates a hyperplane  
 

𝑦𝑖 = 𝑓( 𝑥𝑖) = 𝑤𝑇  𝑥𝑖 + 𝑏,                   (6) 
 

where 𝑤 is a coefficient vector and 𝑏 is an intercept. 

The two boundary lines are constructed from the hyperplane 

with margin ±𝜀. The distances between the data points outside 

the boundary lines and the boundary lines are denoted by 𝜉 and 

𝜉∗. The SVR aims to find a function 𝑓(𝑥) that minimizes 𝑤𝑇𝑤 

while having a maximum deviation of 𝜀 from the actual targets 

for all the data  
 

minimize  
1

2
𝑤𝑇𝑤 + 𝐶 ∑ (𝜉𝑖 , 𝜉𝑖

∗)𝑛
𝑖=1 ,                        (7) 

 

constraints  𝑦𝑖 − 𝑤𝑇  𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖,                    (8) 
 

𝑤𝑇  𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤  𝜀 + 𝜉𝑖
∗,                           (9) 

 

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0                                                       (10) 

(Awad, & Khanna, 2015). 

 

2.2.6 Packages and programming 
 

This work utilizes R for statistical analysis, 

employing various model fitting techniques. The function lm 

from base R is used to fit a linear model and estimate the 

coefficients for the MLR. Unlike traditional regression, we use 

the rq function from the quantreg package to perform QR 

analysis for various quantiles of the dependent variable, 

providing a more comprehensive picture. We employ the gam 

function to fit a GAM, allowing for the capture of non-linear 

relationships using a smoothing function. The svm function 

from the e1071 package implements SVR, a kernel-based 

method suitable for handling non-linear relationships and 

potentially high-dimensional data depending on the hyperplane 

used in the analysis. 

3. Results and Discussion 
 

This study employed models; MLR, QR with 𝜏 = 0.5 

and  𝜏 = 0.75 denoted QR0.5 and QR0.75, respectively, GAM 

and SVR are employed to predict the daily PM2.5 concentrations 

in eight provinces across three seasons in Upper Thailand. 

Daily climate data on air pressure, temperature, humidity, 

rainfall, evaporation, wind speed, and wind direction served as 

independent variables or inputs. A total of 120 models (5 

models x 8 provinces x 3 seasons) were generated. Prior to 

model interpretation, multicollinearity among climate variables 

was assessed as it can lead to unreliable coefficient estimates 

and significance levels, especially when the independent 

variables are highly correlated. The Variance Inflation Factor 

(VIF) was calculated for each climate variable, with a VIF > 5 

indicating a potential issue. In this study, the maximum VIF 

observed was 2.5, suggesting no substantial multicollinearity 

among the climate variables included in our models. 

The results can be divided into two main subsections. 

In Subsection 3.1, we show and discuss the relationship 

between PM2.5 and climate data using correlation coefficients.  

In Subsection 3.2, we assess the performance of models across 

the different provinces and seasons. To evaluate the predictive 

performance, the root mean square error (RMSE), mean 

absolute error (MAE), and mean absolute percentage error 

(MAPE) are calculated to assess the model's accuracy. The 

coefficient of determination (R2) is used to evaluate the 

goodness of fit. 

 

3.1 Correlation  
 

Studies have revealed that climate factors can 

influence PM2.5 concentrations, with both positive and negative 

correlations observed. These effects can exhibit substantial 

variation depending on the region and season, making it a 

necessity to incorporate these factors into any analysis. 

As an initial step, scatterplots can be used to visualize 

the relationships between climate factors and PM2.5. For 

instance, Figures 3 and 4 illustrate the relationships between 

humidity and evaporation, respectively, with humidity 

generally showing a positive correlation and evaporation 

showing a negative correlation. In addition, during the hot 

season, PM2.5 concentrations appear more dispersed compared 

to the cool and wet seasons, likely due to the wider range of 

PM2.5 values observed during this period. However, the 

relationships between climate variables and PM2.5 seem to be 

non-linear, with no clear trend across all three seasons.  

To explore the relationships among all factors 

comprehensively, we present the coefficients of correlation and 

significance of the test in Table 2. The relationship between 

PM2.5 and climate variables differs across seasons. The wet 

season shows the weakest relationship, while the cool and hot 

seasons show stronger relationships. Relative humidity is the 

most strongly correlated climatic factor with PM2.5 levels 

during both the cool and hot seasons, exhibiting correlation 

coefficients of -0.55 and -0.51, respectively. This suggests an 

inverse relationship, where higher relative humidity 

corresponds to lower PM2.5 concentrations during these 

seasons. However, relative humidity shows no noticeable 

correlation with PM2.5 levels during the wet season, suggesting 

their relationship is minimal under such climatic conditions. 

Furthermore,    evaporation    emerges    as    the    second    most
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Figure 3. Scatterplots of PM2.5 concentrations and relative humidity 

 

 
 

Figure 4. Scatterplots of PM2.5 concentrations and evaporation 

 

correlated variable with PM2.5 in the cool season, with a 

correlation value of 0.27, but shows no discernible relationship 

during the hot and wet seasons. Conversely, rainfall amount is 

the second most correlated variable with PM2.5 in the hot 

seasons with a correlation coefficient of -0.23, yet exhibits no 

appreciable association in the cool and wet seasons. Moreover, 

air pressure and temperature demonstrate notable correlations 

with PM2.5 during the wet season, with values of 0.28 and 0.13, 

respectively. Finally, wind speed and wind direction exhibit 

relatively weak relationships with PM2.5 across all three 

seasons. 

When considering seasonal variations, we observe 

that the correlations between PM2.5 concentrations and climate 

variables differ across seasons. During the cool season, relative 

humidity and evaporation emerge as the most influential 

climatic variables related to PM2.5. Relative humidity exhibits 

a moderate negative correlation, while evaporation shows a 

weak positive correlation. These results suggest that low 

relative humidity and high evaporation rates contribute to 

elevated PM2.5 during the cool season. In the hot season, 

relative humidity and rainfall amount are the most strongly 

correlated variables associated with PM2.5, both displaying 

negative correlations. This implies that low relative humidity 

and low precipitation levels lead to increased PM2.5 

concentrations during this period. 

Conversely, in the wet season, air pressure stands out 

as the primary climatic variable related to PM2.5, exhibiting a 

moderate positive correlation. Consequently, higher air 

pressure values correspond to higher PM2.5 levels. It is 

noteworthy that the wet season is generally considered the off-

season for PM2.5, characterized by the lowest concentrations 

and the least variation compared to the cool and hot seasons. 

Hence, PM2.5 during the wet season are less influenced by 

climatic factors, resulting in no or weak relationships between 

most climatic variables and PM2.5 levels. Therefore, it is 

recommended to model PM2.5 separately for each season, as the 

correlations with climate variables vary across different times 

of the year. 
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Table 2 also presents the correlations among climate 

variables. It appears that some climate variables are not related, 

while others seem to have a relationship, but it differs in 

different seasons. For instance, air pressure and temperature are 

correlated in the cool and hot seasons, but not in the wet season. 

On the other hand, temperature and humidity are correlated in 

the hot and wet seasons, but not in the cool season, which is 

similar to the relationship between temperature and rain amount 

in the cool season. However, humidity and evaporation exhibit 

a relatively strong relationship in every season. 

 

3.2 Predictive performance 
 

To evaluate the predictive performance of the five 

models, we analyze the agreement between predicted and 

observed PM2.5 concentrations using the test dataset. Figures 5-

7 display the plots between predicted and observed PM2.5 for 

the three seasons. It is important to highlight that the QR0.75 

models specifically forecast the third quantile of PM2.5. 

Consequently, their predicted values tend to be higher 

compared to those generated by other models. 

In Figure 6, during the hot season, there is notable 

agreement between model predictions and observed values, as 

evidenced by the scattering of dots along the diagonal for all 

provinces. This observation aligns with the average R2 values 

presented in Table 3, where a higher R2 value, closer to 1, 

signifies a superior fit for the model. Essentially, this suggests 

that climate variables account for a larger portion of the 

variability in PM2.5 concentrations. Moreover, the range of R2 

values across all models spans from 0.32 to 0.69 with SVR 

demonstrating the highest R2 values ranging from 0.54 to 0.69, 

positioning it as the top-performing model. However, the other 

models also exhibit relatively strong performance. Moreover, 

the predictions for the cool season are similar to those of the hot 

season, but with slightly lower degrees of agreement. The R2 

for the SVR model ranges from 0.362 to 0.634, which is the 

highest among the models evaluated. 

In contrast to the hot and cool seasons, the wet season 

exhibits the least agreement between model predictions and 

observed values, as shown in Figure 7. Here, the dots scatter 

along the diagonal primarily for a low range of PM2.5. However, 

the models tend to underestimate the high PM2.5 level. This 

discrepancy suggests a challenge in accurately predicting PM2.5 

levels during the wet season. 

Overall, the prediction results in three seasons reveal 

that the predicted values for high PM2.5 concentration regions 

are consistently lower than the observed values across all 

models. This suggests that our models consistently 

underestimate high PM2.5 values. 

To evaluate the predictive errors, Table 4 presents the 

root mean squared error (RMSE), mean absolute error (MAE), 

and mean absolute percentage error (MAPE) scores for 

assessing the predictive performance of the models. Smaller 

values for these metrics indicate better model performance.  

During the cool season, the SVR generally outperforms other 

models across most provinces, except for Phayao. In Phayao, 

the RMSE of GAM is lower than that of SVR. In the hot season, 

the assessments indicate that SVR performs better than other 

models in most provinces, except for Mae Hon Son, Nan, and 

Phayao. In these provinces, the RMSEs of GAM are lower than 

those of SVR. In the wet season, considering RMSEs, GAM 

and SVR exhibit similar performance, both surpassing MLR, 

QR0.5, and QR0.75. However, MAE and MAPE consistently 

show that SVR outperforms other models across all provinces. 

 
Table 2. Correlation coefficients and significance of the correlation test 
 

Cool PM2.5 AvgPress AvgTemp AvgHumid Rainamnt Evapor WindSpeed WindDirection 

         

PM2.5 1.00        

AvgPress -0.15* 1.00       
AvgTemp -0.01 -0.43* 1.00      

AvgHumid -0.55* 0.18* 0.02 1.00     

Rainamnt -0.09* -0.06* 0.01 0.23* 1.00    
Evapor 0.27* -0.23* 0.31* -0.54* -0.06* 1.00   

WindSpeed 0.07* -0.11* -0.05* -0.32* 0.14* 0.25* 1.00  
WindDirection 0.11* -0.15* 0.06* -0.14* 0.01 0.12* 0.03 1.00 

Hot PM2.5 AvgPress AvgTemp AvgHumid Rainamnt Evapor WindSpeed WindDirection 

PM2.5 1.00        

AvgPress 0.09* 1.00       
AvgTemp -0.05* -0.49* 1.00      

AvgHumid -0.51* 0.13* -0.43* 1.00     

Rainamnt -0.23* 0.06* -0.20* 0.39* 1.00    
Evapor -0.05* -0.30* 0.65* -0.47* -0.04* 1.00   

WindSpeed -0.20* -0.14* 0.05* 0.04* 0.31* 0.23* 1.00  
WindDirection -0.08* -0.15* 0.08* -0.09* -0.05* 0.08* 0.16* 1.00 

Wet PM2.5 AvgPress AvgTemp AvgHumid Rainamnt Evapor WindSpeed WindDirection 

PM2.5 1.00        

AvgPress 0.28* 1.00       
AvgTemp -0.13* -0.23* 1.00      

AvgHumid -0.10* 0.07* -0.64* 1.00     

Rainamnt -0.13* -0.15* -0.19* 0.36* 1.00    
Evapor 0.03* -0.10* 0.55* -0.54* -0.10* 1.00   

WindSpeed 0.01 -0.22* -0.14* -0.05* 0.12* 0.13* 1.00  
WindDirection -0.02 -0.26* 0.03* -0.08* -0.01 0.07* 0.19* 1.00 

         

 

*means significance at level 0.05 
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Figure 5. Predicted and observed PM2.5 concentrations in the test set for the cool season 

 

 
 

Figure 6. Predicted and observed PM2.5 concentrations in the test set for the hot season 

 

In summary, SVR models consistently produce the 

smallest errors (RMSE, MAE, and MAPE) across all three 

seasons, while GAM may occasionally outperform SVR. 

Moreover, the ranges of RMSE, MAE, and MAPE in the hot 

season are higher than in the cool and wet seasons, in all 

provinces. 

 

4. Conclusions 
 

In this study, we used climate data, including air 

pressure, temperature, relative humidity, evaporation, rainfall, 

wind speed, and wind direction, as predictors to forecast PM2.5 

concentrations for eight provinces in Upper Northern Thailand 

from 2018 to 2022. The analysis accounted for seasonal 

variations (cool, hot, and wet seasons) and employed multiple 

linear regression (MLR), quantile regression, generalized 

additive models (GAM), and support vector regression (SVR) 

to model and predict PM2.5 levels. The evaluation metrics 

RMSE, MAE, MAPE, and R2 were used to assess model 

performance. 

Our correlation analysis revealed that the relationship 

between  PM2.5  and  climatic  variables  varied  across  seasons,
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Table 3. Average R2 in 5-fold cross validation 
 

Season Province MLR QR0.5 QR0.75 GAM SVR 

       

Cool   

 Chiang Mai 0.199 0.156 -0.158 0.224 0.362 
 Chiang Rai 0.360 0.329 0.141 0.418 0.485 

 Lampang 0.589 0.574 0.437 0.626 0.634 

 Lamphun 0.255 0.244 0.039 0.282 0.385 
 Mae Hong Son 0.526 0.461 0.455 0.574 0.592 

 Nan 0.370 0.337 0.108 0.406 0.457 

 Phayao 0.430 0.413 0.157 0.474 0.452 
 Phrae 0.371 0.326 0.186 0.422 0.454 

Hot   

 Chiang Mai 0.580 0.566 0.448 0.587 0.601 
 Chiang Rai 0.538 0.506 0.447 0.597 0.628 

 Lampang 0.631 0.619 0.496 0.677 0.689 

 Lamphun 0.484 0.461 0.319 0.564 0.592 
 Mae Hong Son 0.653 0.630 0.571 0.669 0.664 

 Nan 0.498 0.473 0.389 0.606 0.544 

 Phayao 0.546 0.533 0.408 0.584 0.558 
 Phrae 0.498 0.462 0.337 0.559 0.560 

Wet   

 Chiang Mai 0.194 0.167 -0.021 0.280 0.336 
 Chiang Rai 0.026 -0.084 -0.042 0.098 0.066 

 Lampang 0.243 0.200 0.117 0.400 0.380 

 Lamphun 0.273 0.240 -0.079 0.383 0.383 
 Mae Hong Son 0.121 0.053 -0.111 0.169 0.233 

 Nan 0.347 0.307 0.101 0.361 0.418 

 Phayao 0.333 0.273 0.101 0.469 0.467 
 Phrae 0.339 0.295 0.163 0.435 0.409 
       

 

 
 

Figure 7. Predicted and observed PM2.5 concentrations in the test set for the wet season 
 

aligning with previous research demonstrating seasonal 

patterns in PM2.5 levels and meteorological conditions (Saiohai 

et al., 2023). Relative humidity was the most strongly 

correlated factor, exhibiting a negative relationship with PM2.5, 

particularly during the cool and hot seasons. This finding aligns 

with previous studies that reported a strong inverse relationship 

between relative humidity and PM2.5 concentrations 

(Amnuaylojaroen, 2022; Sirithian & Thanatrakolsri, 2022). 

Furthermore, we observed a positive correlation between PM2.5 

and temperature throughout the study period. 
 



K. Chaisee, & K. Suphawan / Songklanakarin J. Sci. Technol. 47 (2), 141-150, 2025  149 

Table 4. Average RMSE, MAE, and MAPE in 5-fold cross validation 
 

Province Model 

Cool Hot Wet 

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

           

Chiang Mai   
 MLR 12.942 9.927 34.138 22.089 15.626 40.209 4.698 3.476 26.411 

 QR0.5 13.298 9.508 29.344 22.480 15.305 36.272 4.782 3.382 24.074 

 QR0.75 15.493 12.406 48.279 25.138 18.973 54.818 5.261 4.276 36.152 
 GAM 12.715 9.785 34.049 21.837 15.338 38.975 4.424 3.292 24.882 

 SVR 11.515 8.155 26.075 21.493 13.948 30.955 4.250 2.922 20.512 

Chiang Rai   
 MLR 10.978 8.408 35.399 40.759 28.565 67.587 7.714 4.752 40.957 

 QR0.5 11.245 8.232 32.232 42.202 27.246 54.069 8.145 3.995 26.421 

 QR0.75 12.731 10.326 49.604 44.503 33.365 87.653 7.987 4.862 42.512 
 GAM 10.468 8.024 33.787 38.091 26.505 65.083 7.412 4.653 40.199 

 SVR 9.836 7.128 28.698 36.535 22.713 44.868 7.566 3.631 24.327 

Lampang   

 MLR 13.682 10.241 36.974 15.837 11.727 39.561 3.892 2.762 28.676 

 QR0.5 13.949 10.068 33.660 16.111 11.441 35.388 4.008 2.668 25.486 
 QR0.75 15.987 12.581 51.451 18.320 14.162 53.785 4.187 3.276 37.561 

 GAM 13.029 9.389 33.823 14.820 11.147 37.773 3.458 2.496 25.640 

 SVR 12.867 8.588 28.211 14.471 10.145 31.557 3.523 2.280 21.258 
Lamphun   

 MLR 12.099 8.878 28.799 19.600 13.836 49.891 5.293 4.206 36.689 

 QR0.5 12.192 8.735 27.237 20.114 13.231 42.092 5.420 4.173 34.721 
 QR0.75 13.672 10.709 38.150 22.345 16.850 67.044 6.404 5.201 52.607 

 GAM 11.848 8.795 28.750 17.971 12.808 45.561 4.862 3.854 33.569 

 SVR 10.961 7.596 24.331 17.431 11.026 36.576 4.882 3.665 30.219 
Mae Hong Son   

 MLR 15.847 10.435 50.459 35.324 25.575 71.474 3.534 2.739 46.975 

 QR0.5 16.963 9.522 38.746 36.606 24.691 60.352 3.669 2.651 39.584 
 QR0.75 16.992 12.012 62.875 39.143 30.046 91.782 3.967 3.320 66.724 

 GAM 15.011 9.561 43.167 34.144 24.131 71.600 3.404 2.569 43.708 

 SVR 14.657 7.999 33.090 34.798 21.226 46.937 3.295 2.290 34.457 
Nan   

 MLR 10.620 8.298 35.311 23.714 16.450 50.136 4.048 3.080 31.252 

 QR0.5 10.897 8.154 31.999 24.342 15.907 43.558 4.184 3.003 28.194 

 QR0.75 12.594 10.241 49.123 26.014 19.971 70.075 4.696 3.847 44.572 

 GAM 10.302 7.980 33.723 20.816 15.358 50.673 4.007 3.021 30.475 

Phayao SVR 9.828 6.828 26.976 22.569 14.268 39.103 3.817 2.727 25.317 
   

 MLR 13.851 10.284 35.010 22.105 15.155 50.239 4.161 3.128 33.884 

 QR0.5 14.056 10.149 32.424 22.479 14.762 44.214 4.350 3.011 29.397 
 QR0.75 16.791 13.096 51.786 24.792 18.335 72.380 4.826 3.940 48.872 

 GAM 13.266 9.945 34.278 21.136 14.489 46.778 3.709 2.791 30.166 

 SVR 13.501 9.456 30.211 21.827 13.153 37.035 3.721 2.426 23.075 
Phrae   

 MLR 17.278 12.666 39.179 18.710 13.818 44.651 4.350 3.315 33.258 

 QR0.5 17.945 12.163 33.513 19.378 13.326 38.152 4.500 3.204 29.675 
 QR0.75 19.511 15.565 55.429 21.455 16.957 63.527 4.886 3.967 45.258 

 GAM 16.423 11.938 36.909 17.527 13.058 41.881 4.013 3.055 30.730 

 SVR 16.135 10.283 27.865 17.486 11.586 31.656 4.099 2.791 25.360 
           

 

The performance of all models, based on R2, in the 

wet  season  was poor  compared  with  the cool and hot seasons. 

Although all models performed poorly in the wet season, it may 

not be a priority to overcome this issue because in Thailand, 

PM2.5 concentrations in are generally low and mostly at safe 

levels during the wet season, while it is more severe in the cool 

and hot seasons. SVR consistently outperformed other models 

in terms of predictive accuracy, and GAM also showed 

promising results in some provinces, while MLR and QR were 

inferior. This indicates that the non-linear approaches offered 

by SVR and GAM are more suitable than linear models.  
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