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Abstract

This study evaluated the potential of statistical models to predict daily PM2s concentrations in Upper Thailand using
daily climate data on air pressure, temperature, humidity, rainfall, evaporation, wind speed, and direction, as predictors. Four
statistical methods were employed: Multiple Linear Regression (MLR), Quantile Regression (QR), Generalized Additive Models
(GAMs), and Support Vector Regression (SVR). Humidity emerged as the most influential climate factor on PM2s, especially in
cool and hot seasons. SVR outperformed other models in prediction accuracy, while GAMs showed promise in specific provinces.
Despite limitations indicated by R2 values, this research demonstrates the potential of utilizing statistical modeling and accessible
climate data for PM2s prediction in regions lacking air quality monitoring equipment, but with access to real-time or short-term

forecasted climate data.
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1. Introduction

Fine particulate matter (PMz2s), an invisible yet
insidious form of air pollution, poses a serious threat to human
health, with exposure directly linked to increased risks of
cardiovascular and respiratory diseases (Hayes et al., 2020; Liu
et al., 2017; Pope, Coleman, Pond, & Burnett, 2020; Pun,
Kazemiparkouhi, Manjourides & Suh, 2017; Ren et al., 2021,
Slama et al., 2019). While air quality monitoring stations offer
crucial real-time data on PM2.s concentrations, their geographic
coverage, particularly in regions like northern Thailand, is often
limited. Forecasting models present a promising solution for
predicting PM2s levels even in areas without extensive
monitoring infrastructure. Current models typically rely on a
combination of air quality data (e.g., sulfur dioxide, nitrogen
dioxide) and meteorological data (Bensalam, 2024; Gulati et
al., 2023; Sirithian & Thanatrakolsri, 2022; Zaman, Kanniah,
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Kaskaoutis & Latif, 2021). However, the availability of
detailed air quality data can be a constraint, especially in
regions like northern Thailand. In contrast, meteorological data
is widely accessible, often in real-time or short-term forecasts,
making it a valuable resource for timely PM2s predictions.

This study focuses on the upper region of northern
Thailand, which is particularly vulnerable to severe PM:s
episodes, especially during the hot season. We aim to evaluate
the effectiveness of four distinct models for predicting daily
PMz2s concentrations in this region using solely meteorological
data.

Multiple linear regression (MLR) is broadly used to
investigate the relationship between two or more variables. Due
to its simplicity and interpretability in capturing the relationship
between independent and dependent variables, MLR is often a
good starting point for air pollution prediction. It has been
successfully used in past studies to examine PMas
concentrations (Amnuaylojaroen, 2022; Bekesiene, Meidute-
Kavaliauskiene, & Vasiliauskiene, 2021; Kliengchuay et al.,
2021; Lesar, & Filip¢i¢, 2021). Another alternative type of
regression analysis is quantile regression (QR), which is useful
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when the focus is on capturing relationships beyond just the
mean values of the variables, such as the median or other
quantile, providing a more meticulous understanding of PMzs
variations. We also consider the models for nonlinearity.
Generalized additive models (GAMSs) offer greater flexibility
for modeling non-linear relationships and they have shown
promise in previous air pollution research (Zeng, Jaffe, Qiao,
Miao, & Tang, 2020). Finally, we apply support vector
regression (SVR), which is another powerful tool for non-linear
modeling. It has been successfully applied in air quality
prediction studies (Chen, Yang, Du, & Huang, 2021;
Mogollén-Sotelo et al., 2021; Weizhen et al., 2014; Zaman,
Kanniah, Kaskaoutis & Latif, 2021).

By investigating these models, this study seeks to
identify the most accurate and reliable approach for PMzs
prediction in the upper region of northern Thailand. The
findings will not only advance our understanding of the
relationship between climate and air pollution but also provide
critical information for public health interventions and
decision-making during periods of high PM2s levels.

2. Materials and Methods
2.1 Data

This study analyzes the relationship between PMzs
and various climate factors in Thailand's upper north region.
Daily average PM2s data (micrograms per cubic meter, pg/m?d)
were collected from the Pollution Control Department
(Ministry of Natural Resources and Environment). Climate
data, including air pressure (hPa), temperature (°C), relative
humidity (%), rainfall (mm), evaporation (mm), wind speed
(m/s), and wind direction (degrees), were obtained from the
Northern Meteorological Center (Ministry of Digital Economy
and Society).

The study focuses on eight provinces in the upper
north: Chiang Mai, Chiang Rai, Lampang, Lamphun, Mae
Hong Son, Nan, Phayao, and Phrae. Data from Uttaradit was
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excluded due to recent station installation, as shown in Figure
1. The timeframe spans from January 1%, 2018, to December
31%, 2022. Daily PM2sand climate data were merged based on
corresponding dates and locations. It's important to note that
some stations had missing data in early 2018, resulting in
variations in data points per province as shown in Table 1. The
analysis considers seasonal variations defined by the Thai
Meteorological Department: wet (June-October), cool
(November-February), and hot (March-May).

Figure 2 illustrates the seasonal variations in PM2s
concentrations across the eight provinces throughout the year.
It reveals that the hot season (red) exhibits a considerably
higher PM2s compared with the wet season (green). Notably,
Chiang Mai, Chiang Rai, and Mae Hong Son experience peak
PM2s of over 300 pg/m® during the hot season, which
substantially exceeds standard levels.
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Figure 1. Map of Thailand in which the highlighted regions are the
upper northern provinces
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Figure 2. Time series plot of daily average PM, s concentrations
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Table 1 also presents the descriptive statistics for
PM2s concentrations across eight provinces, grouped by
season. The mean and standard deviation of PM2.swere highest
during the hot season, exceeding those of the wet and cool
seasons. Air pollution is particularly severe during the hot or
dry season when farmers routinely burn agricultural fields,
resulting in trapping smoke and other pollutants close to the
ground.

2.2 Methodology
2.2.1 Correlation analysis

Correlation analysis is used to examine a linear
relationship between two variables: X and Y, and to assess the
relationship. For a given dataset x = (x, x5, ...,x,) andy =
(Y1, Y2, -, V), the sample correlation coefficient, r, is defined
as

. 2 (ki =0 — )
VI (g — 02X, (y; — 7)? '

and n is the number of observations. The correlation
coefficient defined in Equation (1) ranges from +1 to -1. A
value close to +1 indicates a strong positive correlation,
whereas a value near -1 indicates a strong negative correlation.
A value around 0 indicates a weak or negligible relationship
between the two variables.

i=1..,n (1)

2.2.2 Muultiple linear regression

Multiple linear regression (MLR) attempts to predict
a dependent variable, Y, by assuming a linear relationship with
independent variables, Xi,X,,...,X, . The model can be
expressed as
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Yi = Bo+ BiXin + o Bixyg o+ Pxpe t€, 1=
1oom, j=1,...k )

where x;; is the value of i observation of j
independent variable, y; is the value of i™" observation of the
dependent variable, Sy, B, ..., Br are regression coefficient
parameters, € is random error assumed to be €;~N(0,02) and
n is the number of observations. The regression parameters can
be estimated by the least squares and maximum likelihood
methods, yielding the fitted equation.

2.2.3 Quantile regression

We can use quantile regression to estimate the t
quantile of the dependent variable, called quantile regression
(QR). The 7 value shows the quantile and its value is between
0 and 1. The 0.5 quantile or T = 0.5 is the median regression
meaning that 50% of the data are less than the value of the
median. Similarly, the 0.25 and 0.75 quantiles are values such
that 25% and 75% of the data are smaller than these values,
respectively. The regression model for 7 quantile is defined as

Qr(y) = Bo(@) + B1(Dxi1 + -+ + Br(Dxi, ©))

where Q,.(.) is the estimated quantile point for the t
quantile. The By (t), B, (1), ..., By (7) are regression coefficient
parameters for t quantile regression and are estimated by
solving

min X1y pr(yi — Bo (@) — Xy Bi (D)), 4)

where p,(r) = tmax(r,0) + (1 — t) max(-r,0)
is referred to as a check function (Koenker, & Hallock, 2001).

Table 1.  Descriptive statistics of PM2.5 concentrations

Province Start date Season Number of observations Mean SD Min Max
Chiang Mai Jan 1, 2018 Cool 537 32.05 14.53 12 83
Hot 457 49.74 34.38 8 219

Wet 633 13.81 5.27 7 35

Chiang Rai Jul 18, 2018 Cool 539 27.94 13.79 7 94
Hot 366 68.94 60.38 7 308

Wet 691 12.27 7.89 4 74

Lampang Jan 1, 2018 Cool 540 33.53 21.49 6 167
Hot 460 40.42 26.23 6 143

Wet 640 10.10 451 4 33

Lamphun Jul 20, 2018 Cool 468 35.38 14.13 11 91
Hot 360 39.55 27.60 3 183

Wet 538 13.80 6.27 3 38

Mae Hong Son Jul 21, 2018 Cool 478 26.27 23.15 4 168
Hot 355 69.08 60.68 4 323

Wet 588 6.97 3.78 2 25

Nan Jan 1, 2018 Cool 538 27.26 13.44 6 85
Hot 453 44.22 33.56 4 200

Wet 636 10.73 5.08 4 34

Phayao Oct 17, 2018 Cool 469 34.50 18.52 5 99
Hot 275 42.48 33.83 5 246

Wet 456 10.12 5.14 3 32

Phrae Oct 17, 2018 Cool 475 37.65 22.18 8 151
Hot 339 41.64 26.57 6 158

Wet 378 11.01 5.38 3 36
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2.2.4 Generalized additive model

A generalized additive model (GAM) eases the
assumption of normality and linearity between dependent and
independent variables required in the MLR. GAM assumes that
the mean of the dependent variable depends on independent
variables through a non-linear function. It uses smoothing
techniques to model the shape of a relationship which is not
entitled to take a particular form such as linear or exponential.

The GAM model is defined as

Vi = 510x1) +5,0x2) + -+ s (), P=1,.0,m, ®)

where s;() is a smoothing function which
corresponds to an associated independent variable x; for j =
1,..,k. The s;() function or smoothing terms are spline
functions of a single independent variable with smoothing
parameters (Binder & Tutz, 2008).

2.2.5 Support vector regression

Support vector regression (SVR) is a machine
learning technique used for regression tasks. It is useful when
dealing with non-linear relationships between independent and
dependen variables. For a given dataset {(xy, 1), .., (Xn, V) }
where x; = (x4, ..., X) is @ vector of independent variables
for ith observation. The SVR creates a hyperplane

yi=f(x)=wlx; +b, (6)

where w is a coefficient vector and b is an intercept.
The two boundary lines are constructed from the hyperplane
with margin t+e. The distances between the data points outside
the boundary lines and the boundary lines are denoted by ¢ and
&*. The SVR aims to find a function f(x) that minimizes w™w
while having a maximum deviation of & from the actual targets
for all the data

minimize %WTW +CYL (8D, (7)
constraints y; —w” x; — b < £+ §;, (8)
wlix;+b—y; < e+ &, ©
§i,§0 20 (10)

(Awad, & Khanna, 2015).

2.2.6 Packages and programming

This work utilizes R for statistical analysis,
employing various model fitting techniques. The function Im
from base R is used to fit a linear model and estimate the
coefficients for the MLR. Unlike traditional regression, we use
the rg function from the quantreg package to perform QR
analysis for various quantiles of the dependent variable,
providing a more comprehensive picture. We employ the gam
function to fit a GAM, allowing for the capture of non-linear
relationships using a smoothing function. The svm function
from the e1071 package implements SVR, a kernel-based
method suitable for handling non-linear relationships and
potentially high-dimensional data depending on the hyperplane
used in the analysis.

3. Results and Discussion

This study employed models; MLR, QR with 7 = 0.5
and 7 = 0.75 denoted QRO.5 and QRO.75, respectively, GAM
and SVR are employed to predict the daily PM2 s concentrations
in eight provinces across three seasons in Upper Thailand.
Daily climate data on air pressure, temperature, humidity,
rainfall, evaporation, wind speed, and wind direction served as
independent variables or inputs. A total of 120 models (5
models x 8 provinces x 3 seasons) were generated. Prior to
model interpretation, multicollinearity among climate variables
was assessed as it can lead to unreliable coefficient estimates
and significance levels, especially when the independent
variables are highly correlated. The Variance Inflation Factor
(VIF) was calculated for each climate variable, with a VIF > 5
indicating a potential issue. In this study, the maximum VIF
observed was 2.5, suggesting no substantial multicollinearity
among the climate variables included in our models.

The results can be divided into two main subsections.
In Subsection 3.1, we show and discuss the relationship
between PM2s and climate data using correlation coefficients.
In Subsection 3.2, we assess the performance of models across
the different provinces and seasons. To evaluate the predictive
performance, the root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage error
(MAPE) are calculated to assess the model's accuracy. The
coefficient of determination (R? is used to evaluate the
goodness of fit.

3.1 Correlation

Studies have revealed that climate factors can
influence PM2s concentrations, with both positive and negative
correlations observed. These effects can exhibit substantial
variation depending on the region and season, making it a
necessity to incorporate these factors into any analysis.

As an initial step, scatterplots can be used to visualize
the relationships between climate factors and PMazs. For
instance, Figures 3 and 4 illustrate the relationships between
humidity and evaporation, respectively, with humidity
generally showing a positive correlation and evaporation
showing a negative correlation. In addition, during the hot
season, PMz2.s concentrations appear more dispersed compared
to the cool and wet seasons, likely due to the wider range of
PM2s values observed during this period. However, the
relationships between climate variables and PM2s seem to be
non-linear, with no clear trend across all three seasons.

To explore the relationships among all factors
comprehensively, we present the coefficients of correlation and
significance of the test in Table 2. The relationship between
PM2s and climate variables differs across seasons. The wet
season shows the weakest relationship, while the cool and hot
seasons show stronger relationships. Relative humidity is the
most strongly correlated climatic factor with PMa2s levels
during both the cool and hot seasons, exhibiting correlation
coefficients of -0.55 and -0.51, respectively. This suggests an
inverse relationship, where higher relative humidity
corresponds to lower PMz2s concentrations during these
seasons. However, relative humidity shows no noticeable
correlation with PM2s levels during the wet season, suggesting
their relationship is minimal under such climatic conditions.
Furthermore, evaporation emerges as the second most
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Figure 3. Scatterplots of PM, s concentrations and relative humidity
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Figure 4. Scatterplots of PM, s concentrations and evaporation

correlated variable with PMzs in the cool season, with a
correlation value of 0.27, but shows no discernible relationship
during the hot and wet seasons. Conversely, rainfall amount is
the second most correlated variable with PM2s in the hot
seasons with a correlation coefficient of -0.23, yet exhibits no
appreciable association in the cool and wet seasons. Moreover,
air pressure and temperature demonstrate notable correlations
with PM2sduring the wet season, with values of 0.28 and 0.13,
respectively. Finally, wind speed and wind direction exhibit
relatively weak relationships with PMzs across all three
Seasons.

When considering seasonal variations, we observe
that the correlations between PM2s concentrations and climate
variables differ across seasons. During the cool season, relative
humidity and evaporation emerge as the most influential
climatic variables related to PM2s. Relative humidity exhibits
a moderate negative correlation, while evaporation shows a
weak positive correlation. These results suggest that low
relative humidity and high evaporation rates contribute to

elevated PM2s during the cool season. In the hot season,
relative humidity and rainfall amount are the most strongly
correlated variables associated with PM2s, both displaying
negative correlations. This implies that low relative humidity
and low precipitation levels lead to increased PMas
concentrations during this period.

Conversely, in the wet season, air pressure stands out
as the primary climatic variable related to PMzs, exhibiting a
moderate positive correlation. Consequently, higher air
pressure values correspond to higher PM2s levels. It is
noteworthy that the wet season is generally considered the off-
season for PMz2s, characterized by the lowest concentrations
and the least variation compared to the cool and hot seasons.
Hence, PM2s during the wet season are less influenced by
climatic factors, resulting in no or weak relationships between
most climatic variables and PMzs levels. Therefore, it is
recommended to model PM2s separately for each season, as the
correlations with climate variables vary across different times
of the year.
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Table 2 also presents the correlations among climate
variables. It appears that some climate variables are not related,
while others seem to have a relationship, but it differs in
different seasons. For instance, air pressure and temperature are
correlated in the cool and hot seasons, but not in the wet season.
On the other hand, temperature and humidity are correlated in
the hot and wet seasons, but not in the cool season, which is
similar to the relationship between temperature and rain amount
in the cool season. However, humidity and evaporation exhibit
a relatively strong relationship in every season.

3.2 Predictive performance

To evaluate the predictive performance of the five
models, we analyze the agreement between predicted and
observed PM2s concentrations using the test dataset. Figures 5-
7 display the plots between predicted and observed PM2s for
the three seasons. It is important to highlight that the QR0.75
models specifically forecast the third quantile of PMas.
Consequently, their predicted values tend to be higher
compared to those generated by other models.

In Figure 6, during the hot season, there is notable
agreement between model predictions and observed values, as
evidenced by the scattering of dots along the diagonal for all
provinces. This observation aligns with the average R? values
presented in Table 3, where a higher R? value, closer to 1,
signifies a superior fit for the model. Essentially, this suggests
that climate variables account for a larger portion of the
variability in PM2s concentrations. Moreover, the range of R?
values across all models spans from 0.32 to 0.69 with SVR
demonstrating the highest R? values ranging from 0.54 to 0.69,
positioning it as the top-performing model. However, the other
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models also exhibit relatively strong performance. Moreover,
the predictions for the cool season are similar to those of the hot
season, but with slightly lower degrees of agreement. The R?
for the SVR model ranges from 0.362 to 0.634, which is the
highest among the models evaluated.

In contrast to the hot and cool seasons, the wet season
exhibits the least agreement between model predictions and
observed values, as shown in Figure 7. Here, the dots scatter
along the diagonal primarily for a low range of PM2s. However,
the models tend to underestimate the high PM2s level. This
discrepancy suggests a challenge in accurately predicting PMzs
levels during the wet season.

Overall, the prediction results in three seasons reveal
that the predicted values for high PM2s concentration regions
are consistently lower than the observed values across all
models. This suggests that our models consistently
underestimate high PM2s values.

To evaluate the predictive errors, Table 4 presents the
root mean squared error (RMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE) scores for
assessing the predictive performance of the models. Smaller
values for these metrics indicate better model performance.
During the cool season, the SVR generally outperforms other
models across most provinces, except for Phayao. In Phayao,
the RMSE of GAM is lower than that of SVR. In the hot season,
the assessments indicate that SVR performs better than other
models in most provinces, except for Mae Hon Son, Nan, and
Phayao. In these provinces, the RMSEs of GAM are lower than
those of SVR. In the wet season, considering RMSEs, GAM
and SVR exhibit similar performance, both surpassing MLR,
QRO0.5, and QRO0.75. However, MAE and MAPE consistently
show that SVR outperforms other models across all provinces.

Table 2.  Correlation coefficients and significance of the correlation test
Cool PM;s AvgPress AvgTemp  AvgHumid  Rainamnt Evapor WindSpeed  WindDirection
PM;s 1.00
AvgPress -0.15%* 1.00
AvgTemp -0.01 -0.43* 1.00
AvgHumid -0.55%* 0.18* 0.02 1.00
Rainamnt -0.09* -0.06* 0.01 0.23* 1.00
Evapor 0.27* -0.23* 0.31* -0.54* -0.06* 1.00
WindSpeed 0.07* -0.11* -0.05* -0.32* 0.14* 0.25* 1.00
WindDirection 0.11* -0.15* 0.06* -0.14* 0.01 0.12* 0.03 1.00
Hot PM;s AvgPress AvgTemp  AvgHumid  Rainamnt Evapor WindSpeed ~ WindDirection
PM;s 1.00
AvgPress 0.09* 1.00
AvgTemp -0.05* -0.49* 1.00
AvgHumid -0.51%* 0.13* -0.43* 1.00
Rainamnt -0.23* 0.06* -0.20* 0.39* 1.00
Evapor -0.05* -0.30* 0.65* -0.47* -0.04* 1.00
WindSpeed -0.20* -0.14* 0.05* 0.04* 0.31* 0.23* 1.00
WindDirection -0.08* -0.15* 0.08* -0.09* -0.05* 0.08* 0.16* 1.00
Wet PM;s AvgPress AvgTemp  AvgHumid  Rainamnt Evapor WindSpeed ~ WindDirection
PM;s 1.00
AvgPress 0.28* 1.00
AvgTemp -0.13* -0.23* 1.00
AvgHumid -0.10* 0.07* -0.64* 1.00
Rainamnt -0.13* -0.15* -0.19* 0.36* 1.00
Evapor 0.03* -0.10* 0.55* -0.54* -0.10* 1.00
WindSpeed 0.01 -0.22* -0.14* -0.05* 0.12* 0.13* 1.00
WindDirection -0.02 -0.26* 0.03* -0.08* -0.01 0.07* 0.19* 1.00

*means significance at level 0.05
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Figure 5. Predicted and observed PM,s concentrations in the test set for the cool season
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Figure 6. Predicted and observed PM,s concentrations in the test set for the hot season

In summary, SVR models consistently produce the
smallest errors (RMSE, MAE, and MAPE) across all three
seasons, while GAM may occasionally outperform SVR.
Moreover, the ranges of RMSE, MAE, and MAPE in the hot
season are higher than in the cool and wet seasons, in all
provinces.

4. Conclusions

In this study, we used climate data, including air
pressure, temperature, relative humidity, evaporation, rainfall,

wind speed, and wind direction, as predictors to forecast PM2s
concentrations for eight provinces in Upper Northern Thailand
from 2018 to 2022. The analysis accounted for seasonal
variations (cool, hot, and wet seasons) and employed multiple
linear regression (MLR), quantile regression, generalized
additive models (GAM), and support vector regression (SVR)
to model and predict PM2s levels. The evaluation metrics
RMSE, MAE, MAPE, and R? were used to assess model
performance.

Our correlation analysis revealed that the relationship
between PM2s and climatic variables varied across seasons,
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Table 3.  Average R? in 5-fold cross validation
Season Province MLR QRO0.5 QRO0.75 GAM SVR
Cool
Chiang Mai 0.199 0.156 -0.158 0.224 0.362
Chiang Rai 0.360 0.329 0.141 0.418 0.485
Lampang 0.589 0.574 0.437 0.626 0.634
Lamphun 0.255 0.244 0.039 0.282 0.385
Mae Hong Son 0.526 0.461 0.455 0.574 0.592
Nan 0.370 0.337 0.108 0.406 0.457
Phayao 0.430 0.413 0.157 0.474 0.452
Phrae 0.371 0.326 0.186 0.422 0.454
Hot
Chiang Mai 0.580 0.566 0.448 0.587 0.601
Chiang Rai 0.538 0.506 0.447 0.597 0.628
Lampang 0.631 0.619 0.496 0.677 0.689
Lamphun 0.484 0.461 0.319 0.564 0.592
Mae Hong Son 0.653 0.630 0.571 0.669 0.664
Nan 0.498 0.473 0.389 0.606 0.544
Phayao 0.546 0.533 0.408 0.584 0.558
Phrae 0.498 0.462 0.337 0.559 0.560
Wet
Chiang Mai 0.194 0.167 -0.021 0.280 0.336
Chiang Rai 0.026 -0.084 -0.042 0.098 0.066
Lampang 0.243 0.200 0.117 0.400 0.380
Lamphun 0.273 0.240 -0.079 0.383 0.383
Mae Hong Son 0.121 0.053 -0.111 0.169 0.233
Nan 0.347 0.307 0.101 0.361 0.418
Phayao 0.333 0.273 0.101 0.469 0.467
Phrae 0.339 0.295 0.163 0.435 0.409
Model MLR QRO.5 QRO.75 GAM SVR
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Figure 7. Predicted and observed PM, s concentrations in the test set for the wet season

aligning with previous research demonstrating seasonal
patterns in PMzs levels and meteorological conditions (Saiohai
et al, 2023). Relative humidity was the most strongly
correlated factor, exhibiting a negative relationship with PMzs,
particularly during the cool and hot seasons. This finding aligns

with previous studies that reported a strong inverse relationship
between relative humidity and PMa2s concentrations
(Amnuaylojaroen, 2022; Sirithian & Thanatrakolsri, 2022).
Furthermore, we observed a positive correlation between PM2s
and temperature throughout the study period.
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Table 4. Average RMSE, MAE, and MAPE in 5-fold cross validation
Cool Hot Wet
Province Model
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
Chiang Mai

MLR 12.942 9.927 34.138 22.089 15.626 40.209 4.698 3.476 26.411
QRO.5 13.298 9.508 29.344 22.480 15.305 36.272 4782 3.382 24.074
QRO0.75 15.493 12.406 48.279 25.138 18.973 54.818 5.261 4.276 36.152
GAM 12.715 9.785 34.049 21.837 15.338 38.975 4.424 3.292 24.882
SVR 11.515 8.155 26.075 21.493 13.948 30.955 4.250 2.922 20.512

Chiang Rai
MLR 10.978 8.408 35.399 40.759 28.565 67.587 7.714 4.752 40.957
QRO.5 11.245 8.232 32.232 42.202 27.246 54.069 8.145 3.995 26.421
QRO0.75 12.731 10.326 49.604 44503 33.365 87.653 7.987 4.862 42512
GAM 10.468 8.024 33.787 38.091 26.505 65.083 7.412 4.653 40.199
SVR 9.836 7.128 28.698 36.535 22.713 44.868 7.566 3.631 24.327

Lampang
MLR 13.682 10.241 36.974 15.837 11.727 39.561 3.892 2.762 28.676
QRO0.5 13.949 10.068 33.660 16.111 11.441 35.388 4.008 2.668 25.486
QRO0.75 15.987 12.581 51.451 18.320 14.162 53.785 4.187 3.276 37.561
GAM 13.029 9.389 33.823 14.820 11.147 37.773 3.458 2.496 25.640
SVR 12.867 8.588 28.211 14.471 10.145 31.557 3.523 2.280 21.258

Lamphun
MLR 12.099 8.878 28.799 19.600 13.836 49.891 5.293 4.206 36.689
QRO.5 12.192 8.735 27.237 20.114 13.231 42.092 5.420 4.173 34.721
QRO0.75 13.672 10.709 38.150 22.345 16.850 67.044 6.404 5.201 52.607
GAM 11.848 8.795 28.750 17.971 12.808 45.561 4.862 3.854 33.569
SVR 10.961 7.596 24.331 17.431 11.026 36.576 4.882 3.665 30.219

Mae Hong Son
MLR 15.847 10.435 50.459 35.324 25.575 71.474 3.534 2.739 46.975
QRO.5 16.963 9.522 38.746 36.606 24.691 60.352 3.669 2.651 39.584
QRO0.75 16.992 12.012 62.875 39.143 30.046 91.782 3.967 3.320 66.724
GAM 15.011 9.561 43.167 34.144 24.131 71.600 3.404 2.569 43.708
SVR 14.657 7.999 33.090 34.798 21.226 46.937 3.295 2.290 34.457
Nan
MLR 10.620 8.298 35.311 23.714 16.450 50.136 4.048 3.080 31.252
QRO0.5 10.897 8.154 31.999 24.342 15.907 43.558 4.184 3.003 28.194
QRO0.75 12.594 10.241 49.123 26.014 19.971 70.075 4.696 3.847 44572
GAM 10.302 7.980 33.723 20.816 15.358 50.673 4.007 3.021 30.475
Phayao SVR 9.828 6.828 26.976 22.569 14.268 39.103 3.817 2.727 25.317
MLR 13.851 10.284 35.010 22.105 15.155 50.239 4.161 3.128 33.884
QRO0.5 14.056 10.149 32.424 22.479 14.762 44214 4.350 3.011 29.397
QRO0.75 16.791 13.096 51.786 24.792 18.335 72.380 4.826 3.940 48.872
GAM 13.266 9.945 34.278 21.136 14.489 46.778 3.709 2.791 30.166
SVR 13.501 9.456 30.211 21.827 13.153 37.035 3.721 2.426 23.075
Phrae

MLR 17.278 12.666 39.179 18.710 13.818 44.651 4.350 3.315 33.258
QRO0.5 17.945 12.163 33.513 19.378 13.326 38.152 4.500 3.204 29.675
QRO0.75 19.511 15.565 55.429 21.455 16.957 63.527 4.886 3.967 45.258
GAM 16.423 11.938 36.909 17.527 13.058 41.881 4.013 3.055 30.730
SVR 16.135 10.283 27.865 17.486 11.586 31.656 4.099 2.791 25.360

The performance of all models, based on R?, in the
wet season was poor compared with the cool and hot seasons.
Although all models performed poorly in the wet season, it may
not be a priority to overcome this issue because in Thailand,
PM2.s concentrations in are generally low and mostly at safe
levels during the wet season, while it is more severe in the cool
and hot seasons. SVR consistently outperformed other models
in terms of predictive accuracy, and GAM also showed
promising results in some provinces, while MLR and QR were
inferior. This indicates that the non-linear approaches offered
by SVR and GAM are more suitable than linear models.
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