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Abstract 
 

In using a fixed sample size sampling design for a rare population, a challenge encountered lies in the possible 

production of an estimated population mean of zero by the sample. Inverse sampling is an efficient sampling method for 

parameter estimation in a rare population. In this study, the covariance of Murthy estimates and its unbiased estimator are derived 

under inverse sampling. Two ratio estimators of the population mean are proposed. The properties of these ratio estimators are 

compared to an unbiased estimator of the population mean using a simulation study. Results indicate that the ratio estimators 

exhibit higher efficiency compared to the unbiased estimator. Moreover, the biased size of the ratio estimator decreases when the 

number of units of interest in the sample increases. Furthermore, the mean square error of the estimators decreases when the 

number of units of interest in the sample increases. The efficiency of the two ratio estimators increases when the correlation 

coefficient between the study and auxiliary variable increases. The proposed estimators are applied to estimate yield of off-

season rice in Thailand. 
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1. Introduction  
 

A rare population refers to a demographic group 

comprising only a small number of units that exhibit the 

characteristics of interest. A problem encountered in fixed 

sample size sampling for the population lies in the production 

of a zero estimate by the sample for the population mean or 

total. In surveys targeting rare populations, the units can be 

classified into two groups: those belonging to the class of 

interest and the remaining units. The class to which a unit 

belongs is assumed to remain unknown until the unit is 

observed. Thus, inverse sampling can be regarded as an 

efficient sampling methodology for estimating the parameters 

of such populations. In inverse sampling, units are drawn until 

a fixed number of units exhibiting the characteristics of 

interest is realized.  

Haldane (1945) introduced an inverse sampling 

approach employing equal probability with replacement. An 

unbiased estimator for the proportion of units of interest, 

 
along with its variance, was derived. However, no unbiased 

estimator was provided for the variance itself. Finney (1949) 

derived an unbiased estimator for the variance. Chistman and 

Lan (2001) explored inverse sampling with and without 

replacement, involving the selection of units with equal 

probability in each draw. They introduced an unbiased 

estimator for the population total and its variance, but failed to 

provide a specific unbiased estimator for the variance. Salehi 

and Seber (2001) proved that Murthy’s estimator can be 

adapted for inverse sampling designs. Employing this method, 

they derived an unbiased variance estimator for the estimator 

proposed by Christman and Lan (2001). An inverse sampling 

method with unequal probabilities with replacement was 

developed to enhance estimation efficacy during the design 

stage, yielding higher efficiency compared to sampling with 

equal probabilities in certain conditions (Greco & Naddeo, 

2007). Sangngam and Suwattee (2012) derived unbiased 

estimators for the population mean and its variance under a 

stratified inverse sampling design.  

When one or more auxiliary variables are associated 

with the study variable, using useful auxiliary information is a 

way to improve the quality of the estimators. A ratio 

estimator, which incorporates auxiliary information, is utilized 

during the estimation stage. In simple random sampling, 
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Murthy (1964) proposed that the ratio estimator outperforms 

the unbiased estimator when the correlation coefficient 

between the auxiliary and study variables is large. Sangngam 

(2014) presented ratio estimators of population mean under 

simple and stratified random sampling using the coefficients 

of variation and correlation from the study and auxiliary 

variables. Sungsuwan and Suwattee (2014) developed an 

estimator for the total population using the model-assisted 

approach within the inverse sampling framework. The results 

indicated that in instances where the correlation coefficient 

between the auxiliary and study variables is high, the model-

assisted estimator exhibits notably greater efficiency 

compared to the unbiased estimator. Sharma and Kumar 

(2021) introduced a class of ratio-cum-product type estimators 

for estimating the population mean using an auxiliary variable 

in two-phase sampling. 

Estimators will be examined in this study using the 

conventional approach. This study aims to introduce ratio 

estimators for estimating the population mean under inverse 

random sampling. The properties of these ratio estimators are 

derived, and a simulation study is conducted to compare their 

properties with those of the unbiased estimator. The proposed 

ratio estimates are applied for estimating the yield of off-

season rice of Thailand in 2021. 

 

2. Materials and Methods 
 

2.1 Conventional estimators 
 

Suppose that a finite population comprises N 

distinct units labeled 1, 2,…, N and is associated with study 

and auxiliary values (y1, x1), (y2, x2),…, (yn, xn). The parameter 

of interest is the population mean: 

 

1
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i

i

Y y
N 
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Under simple random sampling without 

replacement, an unbiased estimator of the population mean is 

represented by the sample mean: 

 

1

1 n

i

i

y y
n 

 
 

 

. 

 

The variance of the unbiased estimator is  
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A typical ratio estimator is  

 

R

X
y y

x
  

 

, 

 

where X  and X  are the population and sample means of the 

auxiliary variable, respectively.  

The efficiency of the ratio estimator depends on the 

coefficient of variation of the auxiliary variable (Cx) and the 

coefficient of variation of the study variable (CY). According 

to Murthy (1964), if 
2

X

Y

C

C
   and the correlation coefficient 

is positive, then the ratio estimator outperforms the unbiased 

estimator where ρ is the correlation coefficient between x and 

y.  

The approximate bias and mean square error (MSE) 

of the ratio estimator are as follows (Cochran, 1977, p. 154): 
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The sample estimate of the MSE,  ˆ
RMSE y , is 

calculated as follows: 
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Assume the division of population units into two 

classes according to whether the study values satisfy a 

condition. A common form of the condition is {y : y > c}, 

where c is a given constant. Class C is the class of units in 

which the study values satisfy the condition, while C’ is the 

class of the remaining units. The cardinalities of classes C and 

C’ are M and N - M, respectively.  

In inverse random sampling, units are individually 

drawn with equal probabilities and without replacement until 

the sample comprises m units from the class C. Let the sample 

size be denoted by n. The sample s  can be partitioned into 

two parts: part 
Cs  is the set of sample units from class C and 

sc’ is the set of sample units from C’ with cardinalities m and 

n-m, respectively, where 
C Cs s    and 

C Cs s s  . 

Under inverse random sampling, an unbiased estimator of Y  

is provided by the following: 
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This estimator is Murthy’s estimator, which was 

derived by Salehi and Seber (2001). The “M” subscript 

denotes that the quantity is a Murthy’s estimator. The variance 

of 
My  is given by 
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where  ˆV P  is the variance of estimator P̂  for estimating the 

parameter M
P

N
 ,  
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An unbiased estimator of the variance is 
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All of the formulas in this study can be developed 

similarly for the auxiliary variable, x, to derive the proposed 

ratio estimators. 

 

2.2 Simulation study 
 

Smith et al. (1995) provided the data on ring-necked 

ducks, which was used as the study population. This 

population is rare and clustered. The population comprises      

N = 200 units. The number of ring-necked ducks is used as the 

study variable (y). The true value of the population mean is 

equal to 116.665Y  . Auxiliary variables (x’s) correlated to 

the study variable are created with correlation coefficients (ρ) 

equal to 0.1, 0.3, 0.5, 0.7, and 0.9. Simulations of sampling 

from this population were conducted to examine the properties 

of the proposed ratio estimators compared to the unbiased 

estimator. The condition {y : y > 0} was selected for dividing 

the units into class C or C’. Inverse random sampling was 

employed to draw the population units. The numbers of units 

of interest in the sample (m) are 3, 4, 5, 6, and 7. The 

estimates of bias and MSE of the proposed ratio estimators 

were compared to those of the unbiased estimator. 

 

3. Results and Discussion 
 

3.1 Proposed ratio estimators 
 

Under inverse random sampling, two ways are 

available for constructing a ratio estimator of the population 

mean. The first ratio estimator is derived from the unbiased 

estimators of the population mean of the study and auxiliary 

variables. The ratio estimator of Y  is given by 

.       
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R
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y
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x
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The estimator requires a knowledge of the entire population 

mean of the auxiliary variable, X .  

In order to find the approximate mean square error 

of 
1Ry , it can be represented that the covariance of 

My  and 
Mx  

is  
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Proof of (2): Apply the variance of 
My  to the variate 

i i iu y x  . The population mean of u is U Y X  , and the 

variance of the estimator, 
M M Mu x y   of U , is  
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The quadratic terms are expanded as follows:  
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in equation (3), the variance  MV y  with a similar relation 

 MV x  will be canceled. Therefore, the result of Equation (2) 

follows form the cross-product terms. 

To find an estimator of  1RMSE y , the unbiased 

estimator of (2) will be derived. An unbiased estimator of the 

covariance is given by 
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where   
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Proof of (3): Given the sample size, n, let E1 and E2 be the 

unconditional and conditional expectations, respectively. 

Considering the sample size, the inverse random sampling 

scheme is similar to the stratified random sampling with two 

strata, C and C’, where the m and n - m units are selected form 

the first and second strata, respectively. In addition, the 

samples from two strata are independent (Greco and Naddeo, 

2007).  
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Taking the expectation of (3) and using algebra, the 

unbiased property is proven.  

Using a Taylor series approximately, so that the 

terms of degrees greater than two are ignored, the bias of 
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also be derived using the first order Taylor expansion. The 

MSE of 
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The bias of 
2Ry  for estimating Y  is equal to the 

following: 
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Given the sample size, n, let V1 and V2 be the 

unconditional and conditional variances, respectively. As 

m , the bias of 
2Ry  is close to zero, that is, 

 2 |RC RCE y n Y  and  2 |RC RCE y n Y  . The approximate 

MSE of 
2Ry  is given by 

       

       2 2 1 2 2 1 2 2R R R RMSE y V y EV y V E y    

               
 12 2 2 2

1

1
ˆ 2YC C XC C XYC

f
E P S R S R S

m

  
   

 

        

 
 

 
2

2 2 2 2

1

1
ˆ1 2YC C XC C XYC

f
E P S R S R S

n m
    

  
    

   

  1
ˆ ˆ1C CV PY P Y    , 
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 
 

 2
1 22 2 2

1

1 1
ˆ ˆ1RC RC

f f
E P S P S

m n m


   
   

   

    
 1

ˆ
C C CV P Y Y Y 

   
 

,      

   
 

 
2

2 1 2

1

1
ˆ ˆRC

C C

f S
Y Y V P E P

m



  

 

    
  

2

2
ˆ ˆ1 1

1

RCS
E P P f

m

    
 

,              (10) 

 

where 2 2 2 2 2RC YC C XC C XYCS S R S R S     

and 2 2 2 2 2RC YC C XC C XYCS S R S R S        . 

The sample estimates comprise 2 2 2 2ˆ ˆ ˆ ˆˆ ˆ2RC YC C XC C XYCS S R S R S   
2 2 2 2ˆ ˆ ˆ ˆˆ ˆ2RC YC C XC C XYCS S R S R S    and 2 2 2 2ˆ ˆ ˆ ˆˆ ˆ2RC YC C XC C XYCS S R S R S        , where 

ˆ C
C

C

y
R

x
  and ˆ C

C

C

y
R

x






 , to find the sample estimate of the 

 2RMSE y . Under inverse random sampling, 

 
2

2 2

2 | 1 RC
RC C

Sm
E y n Y

M m

 
   

 

,  
2

2 2

2 | 1 RC
RC C

Sn m
E y n Y

N M n m


 

 
   

  

. 

In addition, when the sample size was given, 

 2 2

2
ˆ |RC RCE S n S  and  2 2

2
ˆ |RC RCE S n S  . For the sample 

estimate of the  2RMSE y , the sample estimate can be 

substituted as follows:  

 

     2

2
ˆ ˆ ˆ

R RC RCMSE y y y V P 
2

*
ˆ

ˆ ˆRCS m
P P

m N

 
  

   

  

   
2

ˆ ˆ ˆ ˆ1 ˆ1ˆ
1

RC

P P V PP
S

m N n m


     
  
 

.        (11)

 

 

3.2 Application to real data 
 

To clearly illustrate the application with real data, 

the yield data of off-season rice in 2021 reported by Center of 

Agricultural Information, Office of Agricultural Economics 

was gathered from the publicly available official website 

https://www.oae.go.th and was used for the application. This 

dataset includes the yield of off-season rice and the cultivated 

area from only 71 provinces with off-season rice cultivation in 

Thailand in 2021. Hence, the population included 71 

provinces in Thailand. The study variable (y) and the auxiliary 

variable (x) are the yield of off-season rice (ton) and the 

cultivated area (rai), respectively. A unit is defined in class C 

if the rice product of the unit is greater than or equal to 

150,000 tons, that is, C = {ui; yi, ≥ 150,000} for i = 1, 2, … 

71. The means of the cultivated area in classes C and C’ are 

403,117 and 58,273 rai, respectively. The mean of the overall 

cultivated area is 116,557 rai. Inverse random sampling with 

m = 3 is used to draw the units. Suppose that the sample 

comprises three units of interest at the 10-th draw. Table 1 

represents the values of y and x. 

As shown in Table 1, the sample comprising s = {1, 

2, …, 10} is partitioned into two parts: part sc = {4, 9, 10} and 

sc’ = {1, 2, 3, 5, 6, 7, 8} with 3 and 7 units for each part 

respectively.  

Table 2 represents the population mean estimate of 

the cultivated area and the yield of off-season rice in class 

C;  Cx ,  Cy  and C ;  Cx 
,  Cy 

, respectively. These values 

were used to calculate the unbiased estimate ( )My , the first 

ratio estimate 
1( )Ry , and the second ratio estimate 

2( )Ry , 

which are equal to 54,755.56, 70,182.48, and 78,975.98 tons, 

respectively. 

 
Table 1. The values form the units under inverse random sample 

 

i-th draw Cultivated area (x) Rice product (y) 

   

1 500 193 

2 19,233 11,440 
3 23,582 10,189 

4 450,946 285,077 

5 2,433 1,535 
6 17,160 10,084 

7 40,494 23,460 

8 16,902 8,295 
9 343,078 195,499 

10 288,160 180,894 
   

 

Table 2. Sample mean of the cultivated area and the rice product in  

class C and C’ 
 

Statistics 
Sc’ Sc’ 

x (rai) y(ton) x(rai) y(ton) 

     

Number of units m = 3  n-m = 7  

Sample mean 360,728 220,490 13,853 7,403 
     

 

3.3 Simulation study 
 

The simulation study comprises 50,000 replications. 

The population mean (Y ) was estimated for each sample. The 

values of the estimates  y  and the final sample size (n) are 

averaged in each simulation time. The averages were 

interpreted as expected values, that is, 

 
50,000

1

1

50,000
i

i

E y y


    and   
50,000

1

1

50,000
i

i

E n n


  . 

The MSE estimate is calculated as follows:  

 

   
50,000

2

1

1

50,000
i

i

MSE y y Y


  . 

 

The bias of an estimator is given by  

 

   B y E y Y  . 

 

The relative efficiency of the estimator is calculated 

as follows:  

 
 

 
MMSE y

eff y
MSE y

 , 

where 
My  is the unbiased estimator, and y  stands for 

1Ry  

and 2Ry . 

 For the case m = 5, the estimates from the three 

estimators were used to create histogram plots, as shown in 

Figures 1–3. These figures represent the histogram of the 
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My  

a) Correlation coefficient = 0.3 

 

My  

b) Correlation coefficient = 0.7 
 

Figure 1. The histrogram of  
My  with m = 5 (a)  with correlation coefficient 0.3 between y and x, and (b)  with correlation coefficient 0.7 

between y and x 
 

 

1Ry  

a) Correlation coefficient = 0.3 

 

1Ry  

b) Correlation coefficient = 0.7 
 

Figure 2. The histrogram of  
1Ry  with m = 5 (a)  with correlation coefficient 0.3 between y and x, and (b)  with correlation coefficient 0.7 

between y and x 
 

 

2Ry  

a) Correlation coefficient = 0.3 

 

2Ry  

b) Correlation coeffieint = 0.7 
 

Figure 3. The histrogram of  
2Ry  with m = 5 (a)  with correlation coefficient 0.3 between y and x, and (b)  with correlation coefficient 0.7 

between y and x 

 

estimators 
1 2, ,M R Ry y y  with skewness coefficient. The 

findings indicate that the distributions of all estimators were 

right-skewed. From Figure 1, when the correlation coefficient 

increases it can be observed that the skewness coefficient of 

the estimator 
My  remains constant. This is attributed to the 

fact that the estimator 
My  does not incorporate the auxiliary 

variable in the estimation process. From Figures 2 and 3, it 

can be observed that as the correlation coefficient increases, 

the skewness coefficient decreases.  When the correlation 

coefficient is held constant, the estimator 
1Ry  exhibits the 

lowest skewness, followed by the estimator 
2Ry , and 

subsequently 
My . 

Table 3 demonstrates an increase in m as the 

average sample size rises. The average values of the unbiased 

estimator are close to the true population mean for all 

situations. As a result, the estimated biases of the unbiased 

estimator are close to zero. The results are consistent with the 

property of an unbiased estimator. Given the coefficient of 

correlation and the number of units of interest in the sample, 

the biased sizes of the estimator 
2Ry  are larger than those of 

the estimator 
1Ry . 

 

The biased sizes of two ratio estimators are small 

when the correlation coefficient between auxiliary and study 

variables is equal to 0.1. Given the number of units of interest 

Skewness = 2.713 Skewness = 2.713 

Skewness = 2.682 Skewness = 2.626 

Skewness = 2.694 Skewness = 2.666 
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in the sample, m, the biased size of the two ratio estimators 

increases with the correlation coefficient. For ρ ≥ 0.7, the 

biased size of the estimator 
2Ry  decreases as the number of 

units of interest in the sample increases. 

Table 4 shows that the MSE of the estimator 
2Ry  is 

the lowest in all scenarios. The MSEs of estimator 
1Ry  are 

lower than those of the unbiased estimator 
My . When the 

correlation coefficient was given, the MSE of the three 

estimators decreased as the number of units of interest in the 

sample increased. Similarly, given the number of units of 

interest in the sample, the MSE of both ratio estimators 

decreases when the correlation coefficient increases.  

The relative efficacies of estimators 
1Ry  and 

2Ry  

are greater than 1. Therefore, both ratio estimators yield 

higher efficiency compared with the unbiased estimator. 

When the correlation coefficient is provided, the relative 

efficiencies of the two ratio estimators decrease as the number 

of units of interest in the sample increases. When the number 

of units of interest in the sample is fixed, an increase in the 

correlation coefficient leads to a rise in the relative 

efficiencies of both ratio estimators.  

 
Table 3. The average values of the estimates and the estimate biases of the estimator 

 

ρ m  E n
 

 ME y
 

 1RE y
 

 2RE y
 

 MB y
 

 1RB y
 

 2RB y
 

         

0.1 3 21.50 116.11 115.94 115.19 -0.556 -0.727 -1.474 

4 28.69 117.05 116.94 116.37 0.387 0.275 -0.294 
5 35.80 117.42 117.34 116.93 0.756 0.676 0.261 

6 43.03 116.62 116.57 116.23 -0.042 -0.097 -0.431 

7 50.26 116.19 116.15 115.86 -0.478 -0.518 -0.806 
0.3 3 21.50 116.11 115.51 113.35 -0.556 -1.151 -3.312 

4 28.69 117.05 116.66 115.04 0.387 -0.004 -1.629 

5 35.80 117.42 117.14 115.89 0.756 0.478 -0.777 
6 43.03 116.62 116.42 115.42 -0.042 -0.245 -1.249 

7 50.26 116.19 116.03 115.20 -0.478 -0.633 -1.469 

0.5 3 21.50 116.11 115.01 111.27 -0.556 -1.654 -5.391 
4 28.69 117.05 116.33 113.50 0.387 -0.338 -3.161 

5 35.80 117.42 116.90 114.69 0.756 0.239 -1.978 

6 43.03 116.62 116.24 114.46 -0.042 -0.422 -2.201 
7 50.26 116.19 115.89 114.42 -0.478 -0.770 -2.244 

0.7 3 21.50 116.11 114.21 108.17 -0.556 -2.458 -8.495 

4 28.69 117.05 115.79 111.17 0.387 -0.876 -5.490 
5 35.80 117.42 116.52 112.84 0.756 -0.149 -3.826 

6 43.03 116.62 115.95 112.99 -0.042 -0.712 -3.677 

7 50.26 116.19 115.67 113.21 -0.478 -0.995 -3.452 
0.9 3 21.50 116.11 112.12 101.17 -0.556 -4.548 -15.491 

4 28.69 117.05 114.36 105.72 0.387 -2.306 -10.941 

5 35.80 117.42 115.47 108.41 0.756 -1.191 -8.252 
6 43.03 116.62 115.17 109.40 -0.042 -1.496 -7.268 

7 50.26 116.19 115.06 110.24 -0.478 -1.606 -6.426 
         

 

Table 4. The estimates of MSE and relative efficacy of estimators 
 

ρ m  MMSE y   1RMSE y   2RMSE y   1Reff y   2Reff y  

       

0.1 3 62014.97 61519.21 60382.08 1.008 1.027 

4 40489.32 40278.28 39665.31 1.005 1.021 

5 28701.78 28591.80 28257.94 1.004 1.016 
6 21359.83 21308.39 21092.33 1.002 1.013 

7 16534.05 16506.95 16348.24 1.002 1.011 

0.3 3 62014.97 60399.85 57366.86 1.027 1.081 
4 40489.32 39808.48 38186.90 1.017 1.060 

5 28701.78 28365.93 27409.68 1.012 1.047 

6 21359.83 21181.35 20565.52 1.008 1.039 
7 16534.05 16430.53 15997.90 1.006 1.034 

0.5 3 62014.97 59101.33 54066.92 1.049 1.147 

4 40489.32 39254.93 36530.81 1.031 1.108 
5 28701.78 28097.06 26446.49 1.022 1.085 

6 21359.83 21029.44 19961.79 1.016 1.070 

7 16534.05 16338.80 15593.69 1.012 1.060 
0.7 3 62014.97 57094.99 49356.94 1.086 1.256 

4 40489.32 38381.19 34093.07 1.055 1.188 

5 28701.78 27666.65 25002.49 1.037 1.148 
6 21359.83 20784.64 19045.18 1.028 1.122 

7 16534.05 16190.18 14974.34 1.021 1.104 
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Table 4. Continued. 
 

ρ m  MMSE y   1RMSE y   2RMSE y   1Reff y   2Reff y  

       

0.9 3 62014.97 52233.39 39663.27 1.187 1.564 
4 40489.32 36167.40 28764.69 1.119 1.408 

5 28701.78 26542.61 21727.36 1.081 1.321 

6 21359.83 20135.99 16911.32 1.061 1.263 
7 16534.05 15791.66 13504.29 1.047 1.224 

       

 

4. Conclusions 
 

Two ratio estimators of the population mean were 

developed in this study under inverse random sampling. The 

first ratio estimator utilizes the information from the values of 

the auxiliary variable in the sample combined with the entire 

population mean of the auxiliary variable. The second ratio 

estimator utilizes the information from the values of the 

auxiliary variable in the sample with the population mean in 

each class of population. In the simulation study, the second 

ratio estimator yields higher biases than those of the first ratio 

estimator. This result may be attributed to the bias of the 

second ratio estimator is associated with the biases of two 

ratio estimators of the population mean in each class. The 

developed ratio estimators yield a smaller MSE than the 

unbiased estimator. The second ratio estimator reveals the 

highest relative efficiency, especially when the correlation 

coefficient is high. This finding is probably attributable to the 

use of additional information by the second ratio estimator. 

The results of this study can be used when employing 

auxiliary variables to improve parameter estimates for rare 

populations. 
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