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Abstract

In using a fixed sample size sampling design for a rare population, a challenge encountered lies in the possible
production of an estimated population mean of zero by the sample. Inverse sampling is an efficient sampling method for
parameter estimation in a rare population. In this study, the covariance of Murthy estimates and its unbiased estimator are derived
under inverse sampling. Two ratio estimators of the population mean are proposed. The properties of these ratio estimators are
compared to an unbiased estimator of the population mean using a simulation study. Results indicate that the ratio estimators
exhibit higher efficiency compared to the unbiased estimator. Moreover, the biased size of the ratio estimator decreases when the
number of units of interest in the sample increases. Furthermore, the mean square error of the estimators decreases when the
number of units of interest in the sample increases. The efficiency of the two ratio estimators increases when the correlation
coefficient between the study and auxiliary variable increases. The proposed estimators are applied to estimate yield of off-

season rice in Thailand.
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1. Introduction

A rare population refers to a demographic group
comprising only a small number of units that exhibit the
characteristics of interest. A problem encountered in fixed
sample size sampling for the population lies in the production
of a zero estimate by the sample for the population mean or
total. In surveys targeting rare populations, the units can be
classified into two groups: those belonging to the class of
interest and the remaining units. The class to which a unit
belongs is assumed to remain unknown until the unit is
observed. Thus, inverse sampling can be regarded as an
efficient sampling methodology for estimating the parameters
of such populations. In inverse sampling, units are drawn until
a fixed number of units exhibiting the characteristics of
interest is realized.

Haldane (1945) introduced an inverse sampling
approach employing equal probability with replacement. An
unbiased estimator for the proportion of units of interest,
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along with its variance, was derived. However, no unbiased
estimator was provided for the variance itself. Finney (1949)
derived an unbiased estimator for the variance. Chistman and
Lan (2001) explored inverse sampling with and without
replacement, involving the selection of units with equal
probability in each draw. They introduced an unbiased
estimator for the population total and its variance, but failed to
provide a specific unbiased estimator for the variance. Salehi
and Seber (2001) proved that Murthy’s estimator can be
adapted for inverse sampling designs. Employing this method,
they derived an unbiased variance estimator for the estimator
proposed by Christman and Lan (2001). An inverse sampling
method with unequal probabilities with replacement was
developed to enhance estimation efficacy during the design
stage, yielding higher efficiency compared to sampling with
equal probabilities in certain conditions (Greco & Naddeo,
2007). Sangngam and Suwattee (2012) derived unbiased
estimators for the population mean and its variance under a
stratified inverse sampling design.

When one or more auxiliary variables are associated
with the study variable, using useful auxiliary information is a
way to improve the quality of the estimators. A ratio
estimator, which incorporates auxiliary information, is utilized
during the estimation stage. In simple random sampling,
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Murthy (1964) proposed that the ratio estimator outperforms
the unbiased estimator when the correlation coefficient
between the auxiliary and study variables is large. Sangngam
(2014) presented ratio estimators of population mean under
simple and stratified random sampling using the coefficients
of variation and correlation from the study and auxiliary
variables. Sungsuwan and Suwattee (2014) developed an
estimator for the total population using the model-assisted
approach within the inverse sampling framework. The results
indicated that in instances where the correlation coefficient
between the auxiliary and study variables is high, the model-
assisted estimator exhibits notably greater efficiency
compared to the unbiased estimator. Sharma and Kumar
(2021) introduced a class of ratio-cum-product type estimators
for estimating the population mean using an auxiliary variable
in two-phase sampling.

Estimators will be examined in this study using the
conventional approach. This study aims to introduce ratio
estimators for estimating the population mean under inverse
random sampling. The properties of these ratio estimators are
derived, and a simulation study is conducted to compare their
properties with those of the unbiased estimator. The proposed
ratio estimates are applied for estimating the yield of off-
season rice of Thailand in 2021.

2. Materials and Methods
2.1 Conventional estimators

Suppose that a finite population comprises N
distinct units labeled 1, 2,..., N and is associated with study

and auxiliary values (y1, 1), (Y2, X2)...., (Yn, Xn). The parameter
of interest is the population mean:

_ o1y
Y== )
N;y.
Under simple random sampling  without

replacement, an unbiased estimator of the population mean is
represented by the sample mean:
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The variance of the unbiased estimator is
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A typical ratio estimator is
X
Yr = y;’
where X and X are the population and sample means of the
auxiliary variable, respectively.
The efficiency of the ratio estimator depends on the

coefficient of variation of the auxiliary variable (Cx) and the
coefficient of variation of the study variable (Cy). According

C
to Murthy (1964), if p >f and the correlation coefficient

Y

is positive, then the ratio estimator outperforms the unbiased
estimator where p is the correlation coefficient between x and
y.
The approximate bias and mean square error (MSE)
of the ratio estimator are as follows (Cochran, 1977, p. 154):
1
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where R=

The sample estimate of the MSE, M§E(7R), is
calculated as follows:
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Assume the division of population units into two
classes according to whether the study values satisfy a
condition. A common form of the condition is {y : y > c},
where ¢ is a given constant. Class C is the class of units in
which the study values satisfy the condition, while C” is the
class of the remaining units. The cardinalities of classes C and
C’are Mand N - M, respectively.

In inverse random sampling, units are individually
drawn with equal probabilities and without replacement until
the sample comprises m units from the class C. Let the sample
size be denoted by n. The sample S can be partitioned into

two parts: part S.. is the set of sample units from class C and
s¢ is the set of sample units from C’ with cardinalities m and
n-m, respectively, where S NS, = ¢ and S US. =S.

Under inverse random sampling, an unbiased estimator of Y
is provided by the following:

y = Ai +(1_I5)7c'y
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where P = 1

This estimator is Murthy’s estimator, which was
derived by Salehi and Seber (2001). The “M” subscript
denotes that the quantity is a Murthy’s estimator. The variance

of y,, isgiven by
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where v (|:3) is the variance of estimator P for estimating the

M 1 _
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parameter p —
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An unbiased estimator of the variance is
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All of the formulas in this study can be developed
similarly for the auxiliary variable, x, to derive the proposed
ratio estimators.

2.2 Simulation study

Smith et al. (1995) provided the data on ring-necked
ducks, which was used as the study population. This
population is rare and clustered. The population comprises
N = 200 units. The number of ring-necked ducks is used as the
study variable (y). The true value of the population mean is
equal to Y =116.665. Auxiliary variables (x’s) correlated to
the study variable are created with correlation coefficients (p)
equal to 0.1, 0.3, 0.5, 0.7, and 0.9. Simulations of sampling
from this population were conducted to examine the properties
of the proposed ratio estimators compared to the unbiased
estimator. The condition {y : y > 0} was selected for dividing
the units into class C or C’. Inverse random sampling was
employed to draw the population units. The numbers of units
of interest in the sample (m) are 3, 4, 5, 6, and 7. The
estimates of bias and MSE of the proposed ratio estimators
were compared to those of the unbiased estimator.

3. Results and Discussion

3.1 Proposed ratio estimators

Under inverse random sampling, two ways are
available for constructing a ratio estimator of the population
mean. The first ratio estimator is derived from the unbiased
estimators of the population mean of the study and auxiliary
variables. The ratio estimator of Y is given by

Va1 = X . 1)

|
x| |~<|
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The estimator requires a knowledge of the entire population
mean of the auxiliary variable, X .

In order to find the approximate mean square error
of Ve it can be represented that the covariance of y and x,

is

e}
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where

Proof of (2): Apply the variance of y to the variate
u, =y, +x- The population mean of uis U=Y + X, and the

variance of the estimator, 0, =%, +Y, ofU, is

2
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The quadratic terms are expanded as follows:
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Substituting E(U—U)ZY (0. _Uc,)z, S5 and S2.,
in equation (3), the variance V(yM) with a similar relation
\ (XM ) will be canceled. Therefore, the result of Equation (2)

follows form the cross-product terms.
To find an estimator of MSE(le), the unbiased

estimator of (2) will be derived. An unbiased estimator of the
covariance is given by

COV( Ty % ) = (% =% ) (Ve — Ve V (P) +SXYC[F;*_%FA,)
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Proof of (3): Given the sample size, n, let E1 and E2 be the
unconditional and conditional expectations, respectively.
Considering the sample size, the inverse random sampling
scheme is similar to the stratified random sampling with two
strata, C and C’, where the m and n - m units are selected form
the first and second strata, respectively. In addition, the
samples from two strata are independent (Greco and Naddeo,
2007).

E(P)=P: E(P")=P* E,(V:In)=Yc.
E, (Yo In)=Ye E, (éxvc |n): Sxve

E, (éxYC’ | n) =Sy and E, (ycyc | n) :Y?:YT: :
Taking the expectation of (3) and using algebra, the

unbiased property is proven.
Using a Taylor series approximately, so that the

terms of degrees greater than two are ignored, the bias of Y,
is given by

(o]
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B(7) =RV ) CaTu)
where R:Z-
X

The approximate MSE of the estimator Y., can
also be derived using the first order Taylor expansion. The
MSE of Yy, is given by

MSE (V) =V (T ) + RV (X, ) —2RCOV(V,, %, ) - (6)

In practice, the MSE will remain unknown but can
be estimated from the sample data. For a sample estimate of

the MSE(VRl), the sample estimate can be substituted as
follows:

MSE (Viy ) =V (Vi )+ RV (X ) —2RCOV (Y %y ) ()

where R :Z_M.
M
An alternative ratio estimator is derived from

X

separate ratio estimators of v_ and Y. Let y_. :__C)?C

= Yo o ; ; - -
and Vec === X be the ratio estimators of v, and Y,
-
respectively. These ratio estimates are weighted to provide an
estimate of the population mean. The second ratio estimator of
Y is given by

x
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Information on X and X is required for this ratio estimate.

m n—-m

Let flzm and f,= N be the sampling

fractions in classes C and C’, respectively. Meanwhile, let
B(Ygc ) denote the bias of . for estimating the parameter

Y, . Similarly, B(Vge ) denotes the bias of Y., in Y.

estimation. When the sample size is fixed, the approximate
biases are given by

S S 1
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S2, S ) 1 =
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The bias of Y, for estimating Y is equal to the
following:

E
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The bias of Y, is combined, forming the biases of Ve and

Voo If m—oo,then B(VRZ)—>O.

Given the sample size, n, let Vi and V2 be the
unconditional and conditional variances, respectively. As

m-—oo, the bias of Y., is close to zero, that is,
EZ(yRC |n):Vcm and Ez(yRc'm):Y;c“ The apprOXimate
MSE of Y., is given by

MSE(VRz) zV(yrzz) =BV, (VR2)+V1E2(7R2)
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The sample estimates comprise $2. =S +R2S2.

_2§CSAXYC and SAéc' = SA?C + éééic - ZQC’SAXYC’ , Where
5 _Yeo and R.— Yo , to find the sample estimate of the
RC — C’ -
X Xe:
MSE V¢, )- Under inverse random sampling,
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In addition, when the sample size was given,

Ez(éécm)zséc and E2(§§C,|n)z5§c,. For the sample
estimate of the MSE (¥x, ) the sample estimate can be
substituted as follows:
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3.2 Application to real data

To clearly illustrate the application with real data,
the yield data of off-season rice in 2021 reported by Center of
Agricultural Information, Office of Agricultural Economics
was gathered from the publicly available official website
https://www.o0ae.go.th and was used for the application. This
dataset includes the yield of off-season rice and the cultivated
area from only 71 provinces with off-season rice cultivation in
Thailand in 2021. Hence, the population included 71
provinces in Thailand. The study variable (y) and the auxiliary
variable (x) are the yield of off-season rice (ton) and the
cultivated area (rai), respectively. A unit is defined in class C
if the rice product of the unit is greater than or equal to
150,000 tons, that is, C = {ui; yi, > 150,000} fori=1,2, ...
71. The means of the cultivated area in classes C and C’ are
403,117 and 58,273 rai, respectively. The mean of the overall
cultivated area is 116,557 rai. Inverse random sampling with
m = 3 is used to draw the units. Suppose that the sample
comprises three units of interest at the 10-th draw. Table 1
represents the values of y and x.

As shown in Table 1, the sample comprising s = {1,
2, ..., 10} is partitioned into two parts: part sc = {4, 9, 10} and
se = {1, 2, 3,5, 6, 7, 8% with 3 and 7 units for each part
respectively.

Table 2 represents the population mean estimate of
the cultivated area and the yield of off-season rice in class

C;(yc),(yc) and C’;(YC,),(VC,), respectively. These values
were used to calculate the unbiased estimate Yu): the first
ratio estimate (Veo)+ and the second ratio estimate (Veo) »

which are equal to 54,755.56, 70,182.48, and 78,975.98 tons,
respectively.

Table 1.  The values form the units under inverse random sample
i-th draw Cultivated area (x) Rice product (y)
1 500 193
2 19,233 11,440
3 23,582 10,189
4 450,946 285,077
5 2,433 1,535
6 17,160 10,084
7 40,494 23,460
8 16,902 8,295
9 343,078 195,499
10 288,160 180,894
Table 2. Sample mean of the cultivated area and the rice product in
class C and C’
Se- S
Statistics
X (rai) y(ton) X(rai) y(ton)
Number of units m=3 n-m=7
Sample mean 360,728 220,490 13,853 7,403

3.3 Simulation study

The simulation study comprises 50,000 replications.
The population mean (Y ) was estimated for each sample. The

values of the estimates () and the final sample size (n) are

averaged in each simulation time. The averages were
interpreted as expected values, that is,

50,000
E(V)= y and E(n)= n
(y) 50,000 Z‘ i ( ) 50,000 ,Z:;‘ '
The MSE estimate is calculated as follows:

50,000

1 50,000

2.
50,000 Zl: v.-Y)

MSE(y)=

The bias of an estimator is given by

The relative efficiency of the estimator is calculated
as follows:

where y,, is the unbiased estimator, and y stands for y,,

and Vg, .

For the case m = 5, the estimates from the three
estimators were used to create histogram plots, as shown in
Figures 1-3. These figures represent the histogram of the
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Figure 1. The histrogram of Yu with m = 5 (a) with correlation coefficient 0.3 between y and x, and (b) with correlation coefficient 0.7

between y and x
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Figure 2. The histrogram of Yy, with m =5 (a) with correlation coefficient 0.3 between y and x, and (b) with correlation coefficient 0.7

between y and x
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Figure 3. The histrogram of Vo with m = 5 (a) with correlation coefficient 0.3 between y and x, and (b) with correlation coefficient 0.7

between y and x

estimators  y, , Vq,, Vg, With skewness coefficient. The

findings indicate that the distributions of all estimators were
right-skewed. From Figure 1, when the correlation coefficient
increases it can be observed that the skewness coefficient of
the estimator y,, remains constant. This is attributed to the

fact that the estimator y,, does not incorporate the auxiliary

variable in the estimation process. From Figures 2 and 3, it
can be observed that as the correlation coefficient increases,
the skewness coefficient decreases. When the correlation
coefficient is held constant, the estimator Ve exhibits the

lowest skewness, followed by the estimator Vo and
subsequently y,, .

Table 3 demonstrates an increase in m as the
average sample size rises. The average values of the unbiased
estimator are close to the true population mean for all
situations. As a result, the estimated biases of the unbiased
estimator are close to zero. The results are consistent with the
property of an unbiased estimator. Given the coefficient of
correlation and the number of units of interest in the sample,
the biased sizes of the estimator Vg, are larger than those of

the estimator y,, .

The biased sizes of two ratio estimators are small
when the correlation coefficient between auxiliary and study
variables is equal to 0.1. Given the number of units of interest
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in the sample, m, the biased size of the two ratio estimators
increases with the correlation coefficient. For p > 0.7, the
biased size of the estimator Voo decreases as the number of

units of interest in the sample increases.

Table 4 shows that the MSE of the estimator y__ is
the lowest in all scenarios. The MSEs of estimator y,, are
lower than those of the unbiased estimator y, . When the

correlation coefficient was given, the MSE of the three
estimators decreased as the number of units of interest in the
sample increased. Similarly, given the number of units of

P. Sangngam & W. Laoarun / Songklanakarin J. Sci. Technol. 47 (3), 192-199, 2025

interest in the sample, the MSE of both ratio estimators
decreases when the correlation coefficient increases.
The relative efficacies of estimators y., and y_,

are greater than 1. Therefore, both ratio estimators yield
higher efficiency compared with the unbiased estimator.
When the correlation coefficient is provided, the relative
efficiencies of the two ratio estimators decrease as the number
of units of interest in the sample increases. When the number
of units of interest in the sample is fixed, an increase in the
correlation coefficient leads to a rise in the relative
efficiencies of both ratio estimators.

Table 3. The average values of the estimates and the estimate biases of the estimator
P m E(n) E(VM) E(VRI) E(VRz) B(Vm) B(ym) B(yﬂz)
0.1 3 21.50 116.11 115.94 115.19 -0.556 -0.727 -1.474
4 28.69 117.05 116.94 116.37 0.387 0.275 -0.294
5 35.80 117.42 117.34 116.93 0.756 0.676 0.261
6 43.03 116.62 116.57 116.23 -0.042 -0.097 -0.431
7 50.26 116.19 116.15 115.86 -0.478 -0.518 -0.806
0.3 3 21.50 116.11 115.51 113.35 -0.556 -1.151 -3.312
4 28.69 117.05 116.66 115.04 0.387 -0.004 -1.629
5 35.80 117.42 117.14 115.89 0.756 0.478 -0.777
6 43.03 116.62 116.42 115.42 -0.042 -0.245 -1.249
7 50.26 116.19 116.03 115.20 -0.478 -0.633 -1.469
0.5 3 21.50 116.11 115.01 111.27 -0.556 -1.654 -5.391
4 28.69 117.05 116.33 113.50 0.387 -0.338 -3.161
5 35.80 117.42 116.90 114.69 0.756 0.239 -1.978
6 43.03 116.62 116.24 114.46 -0.042 -0.422 -2.201
7 50.26 116.19 115.89 114.42 -0.478 -0.770 -2.244
0.7 3 21.50 116.11 114.21 108.17 -0.556 -2.458 -8.495
4 28.69 117.05 115.79 111.17 0.387 -0.876 -5.490
5 35.80 117.42 116.52 112.84 0.756 -0.149 -3.826
6 43.03 116.62 115.95 112.99 -0.042 -0.712 -3.677
7 50.26 116.19 115.67 113.21 -0.478 -0.995 -3.452
0.9 3 21.50 116.11 112.12 101.17 -0.556 -4.548 -15.491
4 28.69 117.05 114.36 105.72 0.387 -2.306 -10.941
5 35.80 117.42 115.47 108.41 0.756 -1.191 -8.252
6 43.03 116.62 115.17 109.40 -0.042 -1.496 -7.268
7 50.26 116.19 115.06 110.24 -0.478 -1.606 -6.426
Table 4. The estimates of MSE and relative efficacy of estimators
P m MSE (Y ) MSE () MSE(Ve,)  eff (V) eff (Vio)
0.1 3 62014.97 61519.21 60382.08 1.008 1.027
4 40489.32 40278.28 39665.31 1.005 1.021
5 28701.78 28591.80 28257.94 1.004 1.016
6 21359.83 21308.39 21092.33 1.002 1.013
7 16534.05 16506.95 16348.24 1.002 1.011
0.3 3 62014.97 60399.85 57366.86 1.027 1.081
4 40489.32 39808.48 38186.90 1.017 1.060
5 28701.78 28365.93 27409.68 1.012 1.047
6 21359.83 21181.35 20565.52 1.008 1.039
7 16534.05 16430.53 15997.90 1.006 1.034
0.5 3 62014.97 59101.33 54066.92 1.049 1.147
4 40489.32 39254.93 36530.81 1.031 1.108
5 28701.78 28097.06 26446.49 1.022 1.085
6 21359.83 21029.44 19961.79 1.016 1.070
7 16534.05 16338.80 15593.69 1.012 1.060
0.7 3 62014.97 57094.99 49356.94 1.086 1.256
4 40489.32 38381.19 34093.07 1.055 1.188
5 28701.78 27666.65 25002.49 1.037 1.148
6 21359.83 20784.64 19045.18 1.028 1.122
7 16534.05 16190.18 14974.34 1.021 1.104
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Table 4. Continued.

p m MSE (7 ) MSE (Ve:) MSE(Ve,)  eff (Veu)  €ff (Vr2)

0.9 3 62014.97 52233.39 39663.27 1.187 1.564
4 40489.32 36167.40 28764.69 1.119 1.408
5 28701.78 26542.61 21727.36 1.081 1.321
6 21359.83 20135.99 16911.32 1.061 1.263
7 16534.05 15791.66 13504.29 1.047 1.224

4. Conclusions

Two ratio estimators of the population mean were
developed in this study under inverse random sampling. The
first ratio estimator utilizes the information from the values of
the auxiliary variable in the sample combined with the entire
population mean of the auxiliary variable. The second ratio
estimator utilizes the information from the values of the
auxiliary variable in the sample with the population mean in
each class of population. In the simulation study, the second
ratio estimator yields higher biases than those of the first ratio
estimator. This result may be attributed to the bias of the
second ratio estimator is associated with the biases of two
ratio estimators of the population mean in each class. The
developed ratio estimators yield a smaller MSE than the
unbiased estimator. The second ratio estimator reveals the
highest relative efficiency, especially when the correlation
coefficient is high. This finding is probably attributable to the
use of additional information by the second ratio estimator.
The results of this study can be used when employing
auxiliary variables to improve parameter estimates for rare
populations.
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