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Abstract

The current study proposes and presents a new regression model for the response variable following the Akash
distribution. The unknown parameters of the regression model are estimated using the maximum likelihood method. A simulation
study is conducted to evaluate the performance of the maximum likelihood estimates (MLEs). Additionally, a residual analysis is
performed for the proposed regression model. The log-Akash model is compared to several other models, including Weibull
regression and gamma regression, using various statistical criteria. The results show that the suggested model fits the data better
than these other models. It is anticipated that the model will have applications in fields such as economics, biological studies,
mortality and recovery rates, health, hazards, measuring sciences, medicine, and engineering.

Keywords: definition of Akash distribution, log Akash regression model, maximum likelihood, residual analysis, deviance and

martingale residual

1. Introduction

Several distributions have been used to model data in
various fields, including economics, biological studies,
mortality, recovery rates, health, risks, measurement sciences,
medicine, engineering, insurance, and finance. In recent years,
there have been studies that have attempted to provide
modeling of data based on its distributions. For example,
Cordeiro and Altun (2020) suggested the unit-improved
second-degree Lindley distribution for inference and regression
modeling. Gauss M. (Cordeiro & Altun, 2015) proposed the
log-generalized modified Weibull regression  model.
Mazucheli, Korkmaz, Menezes, and Leiva (2023) introduced a
new quantile regression for modeling bounded data using the
Birnbaum-Saunders distribution. Silva, Ortega, Cancho, and
Barreto (2008) introduced Log-Burr XII regression models.
Ortega, Cordeiro, and Kattan (2013) introduced the Log Beta
Generalized Weibull Regression Model for lifetime data.
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Mazucheli, Leiva, Alves, and Menezes (2021)
suggested the quantile regression modeling on the unit Burr-
XI1, Shahedul and Khan (2021) suggested the Exponentiated
Weibull regression, Silvio and Junior (2021) suggested the
Log-generalized inverse Weibull Regression Model, Daniele
and Granzotto (2018) introduced the Transmuted Weibull
Regression Model, Selasi, Kwaku, and Ocloo (2023) proposed
an extension of the Burr XII distribution with applications and
regression, Raid Al-Aqtash, and Selasi (2021) suggested the
Gumbel-Burr  XIl regression model, Altun, Yousof,
Chakraborty, and Handique (2023) proposed Zografos—
Balakrishnan Burr X1I regression model, Mazucheli, Korkmaz,
Menezes, and Leiva (2023) suggested Unit-Chen quantile
regression model, Josmar and Mazucheli (2023) suggested the
unit generalized half-normal quantile regression model, Silva,
Ortega, Cancho, and Barreto (2008) had Log-Burr XII
regression models with censored data.

Akash distribution can be characterized as over-
dispersed when (mu > sigma?), equi-dispersed when (mu =
sigma?), and under-dispersed when (mu < sigma?). Its hazard
rate function increases with (x) and when (beta) is involved. It
is considered superior to Lindley and exponential distributions
for modeling lifetime data in medical science and engineering.
Shanker introduced a quasi-Akash distribution to model
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lifetime data, discussing its statistical properties and potential
applications. Additionally, a comparative study of one-
parameter Akash, Lindley, and exponential distributions
showed that the Akash distribution sometimes provided a better
fit for certain datasets.

This article is organized as follows: Section 2
introduces the definition of Akash distribution, while Section 3
suggests a log Akash regression model of location-scale.
Section 4 employs the maximum likelihood method to estimate
the parameters, and Section 5 presents different types of
residual analysis. Section 6 is simulation study, Section 7 has
real data, and Section 8 presents conclusions.

2. Definition of Akash Distribution

The importance of modeling and lifetime data
analysis is emphasized in various fields, with several
continuous distributions being utilized to describe lifetime data.
The exponential, Lindley, gamma, lognormal, and Weibull
distributions are among the commonly used distributions for
modeling lifetime data. However, the gamma and lognormal
distributions' survival functions cannot be expressed in closed
form and require numerical integration, making the
exponential, Lindley, and Weibull distributions more popular
choices. One advantage of the Lindley distribution over the
exponential distribution is that the former has monotonically
decreasing danger rate, whereas the latter has a constant hazard
rate. This property makes the Lindley distribution more flexible
and realistic in modeling certain types of lifetime data. The
cumulative distribution function (c.d.f.) and probability density
function (p.d.f.) of the Lindley distribution, as introduced by
Lindley (1958), are given by:
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Although the Lindley distribution has been widely
used in modeling lifetime data and has been shown to be useful
in stress-strength reliability modeling by Hussain (2006), there
are still some limitations and restrictions when applying it to
real-world data. To address these issues, (Shanker et al., 2018)
proposed a new distribution that is a mixture of an exponential
distribution and a gamma distribution. This new distribution
has the advantage of being more flexible and can better fit
various types of lifetime data. The probability density function
(p.d.f.) of the new distribution is given by:
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Figure 1 illustrates the probability density function
(PDF) of the Akash distribution.

This distribution is known as the Akash distribution.
The cumulative distribution function (c.d.f.) for (3) is given by
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Figure 1. The probability density function (PDF) of the Akash
distribution

Figure 2 shows the cumulative distribution function
(CDF) of the Akash distribution at different values of the
parameters.

CDF of the Aksch Distribution for Different Parameter Values

Figure 2. The cumulative distribution function (CDF) of the Akash
distribution at different values of the parameters

3. The Log-Akash Regression Model

The main objective of this paper is to introduce a
novel application of the Akash distribution in regression
modeling. The proposed model utilizes the log-Akash
distribution, which is derived from the positive Akash random
quantity through a log transformation. This approach is
commonly used in survival analysis and allows for the handling
of both censored and uncensored data. The model assumptions
of the log Akash regression mode are as follows. The model
assumes constant variances for all observations, which is a
standard assumption in regression models with censoring in
survival analysis and reliability studies

These assumptions vary slightly depending on the
model type, but they often include:

1. Linearity: There is a linear relationship between
the outcome and the variables that predicted it. This indicates
that a linear combination of the predictor variables (X) can be
used to describe the expected value of the dependent variable
Y).

2. Independence: Observations do not depend on one
another. This indicates that there is no correlation between the
residuals (errors), which is especially important for time series
or hierarchical data where observations may be grouped.

3. Homoscedasticity: At every level of the
independent variables, the variance of errors remains constant.
Stated otherwise, the “scatter” or spread of residuals should be
roughly constant across all predictor values.
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4. No Perfect Multicollinearity: The predictors in
multiple regression shouldn't have a perfect correlation with
one another. It may be challenging to discern each predictor's
unique impact on the result when there is substantial
multicollinearity, which occurs when predictors are highly
correlated.

5. Normality of Errors: The errors, or residuals,
follow a normal distribution. Although it is less important for
prediction accuracy in big samples, this assumption is
especially pertinent for hypothesis testing and creating
confidence ranges.

6. No Autocorrelation: In time series data, where
autocorrelation (correlation of residuals across time) should be
minimized, this assumption is most applicable. The residuals'
autocorrelation indicates a pattern or trend that the model may
have missed, suggesting the necessity for extra terms or
transformations.

Let X be a random variable having the Akash density
function and let random variable y = alogx, B = exp(— %),
for y € R Differentiating the hypothesis we get the following

y o dx

odx . - d x
dy = - implies ot but the Jacob equal i the
density function of Y can be written as
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We define the standardized z = y%‘” with pdf (for z € R) given
by

z 2u
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We suggest a new log-location-scale regression model based on
the Akash density function. Let Y be the response variable
following the Akash distribution, and x = (x4, x5, .....x;,) be
the independent variable. The regression model is defined as:

y=xTB+o0z (10)
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The variable y conforms to the Akash distribution
with unspecified parameters, where p\_i is a real number and
o\ _i is also a real number, using the identity link function y; =
xTB. The vector p; which consists of (i1, iz, ..., 4p), is @
known design matrix

4. Estimation of The Model Parameters

For right-censored lifetime data, we have ti = min(f;,
c;), where f; is the lifetime and ci is the censoring time, then,
we have y; = log(t;) for the i individual i = 1, . . ., n. If we
have random sample with n observations (y1, , xX1),....(¥n, » Xn),
where =

5 = {1 fory; = log(t;)
f 0 fory; = log(cy)

the function of log-likelihood is given by

L() = )" 6:.logf () + ) (1 - 8)log(s())
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where f(y;) is the density function of Akash distribution and
s(y;) is survival function
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Substituting in the value u = f, + xB;, into the previous
equation, we get the following
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Estimate the coefficients of regression by minimizing the log-
likelihood function

lO) 0K, 0k,
—31?0 = 3_1?0 + 6_50 (18)
ol(e) _ 9K, 0k, 19)

36, 0B 0By

From the previous three equations, we obtain non-
linear equations by solving them using the software R, to obtain
the value of the regression coefficients.

5. Residual Analysis

After fitting a model, it is essential to evaluate its
suitability and ensure that it meets certain assumptions. One
way to do this is by analyzing residuals, which can help identify
any issues with the model's fit. In survival analysis, which
involves right-censored data, martingale residuals can be used
to assess the quality of fit and leverage of the model.

5.1 Martingale residuals

Martingale residuals are defined as the difference
between the counting process and the integrated density
function (also known as the hazard rate function) in parametric
lifetime models. This method was introduced by Barlow and
Prentice (2014) and has been used by researchers such as
Therneau (2020), Commenges and Rondeau (2000), and
Elgmati (2015).

y
™ = 6; +f k(uw)du. i=123 (20)
0

where §;=1 or 0, one when observation is censored and 0 when
observation is uncensored, the r,; reduce to
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5.2 Deviance residual

In statistics and machine learning, the deviance
residual measures the discrepancy between a model's
predictions and the actual values of the response variable. It
assesses how well a model fits the data. In regression analysis,
the deviance residual is calculated as the difference between the
observed response variable and the predicted response variable,
raised to a power, known as the deviance exponent. The
deviance residual is used to evaluate a model's fit, with lower
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values indicating a better fit. The formula for deviance residual
is:

Deviance residual = (observed response - predicted
response)”™(deviance exponent)

The deviance exponent is usually set to 2, which
means that the deviance residual is calculated as the squared
difference between the observed and predicted responses. This
makes the residuals have a mean of 0 and a variance of 1,
facilitating result interpretation. Deviance residuals have
various applications, such as in model selection. Deviance
residuals can be used to compare the fit of different models. In
summary the deviance residual is a measure of the difference
between a model's predictions and the actual values, used to
compare different models. Deviance residuals for the Cox
model without time-dependent explanatory variables were
proposed by Therneau et al. (1997) as follows
rp. = sign(ry)[=2(ry + &; +1og(8; — my)]'/2 (24)
From the martingale residual, rp; is more symmetrically about
zero in this case. Consequently, the residual deviation for
Akash is defined as follows

p
1
sign(ry)[—2(ry + 6; +log(6; — )]z 6;=1

1
sign(n)[—2(ry + 6; +log(6; —ry)]2 6§=0

(25)

5.3 Modified martingale-type residual

We have proposed a change in the martingale-type
residual, and it can be written as
ryp = (1= 6;) + 1p,. (26)
where &i = 0 denotes censored observation and & = 1
uncensored and rpi is the martingale type residual that is defined

in Section 5.2. In the log-Akash regression models, the
modified martingale-type residual is defined by

TMmD

_ sign(ry)[—20ry + 6; + log(6; — rM)]% 6 =1 27)

1
1+ sign(rny)[—20y +8; +log(6;—ny)]z 6=0
5.4 Pearson residuals

The Pearson residual is widely used for detecting
outliers in data. It is based on the idea of subtracting the mean
and dividing by the standard deviation, which helps to identify
potential outliers by comparing the relative distances of each
data point from the mean. This method is particularly useful in
linear regression, where it can help assess the fit of the model
and detect any observations that do not conform to the overall
pattern.

yi — mean(y;)

Vvar(y:)

=

(28)
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where x; is following Akash distribution, and mean(y;) = .
This approach enables researchers to readily identify the
extreme values that arise in the data due to measurement errors
or data collection, as well as the values that do not conform to
the overall pattern of the data. The Pearson residual is
considered a vital tool in evaluating the precision of the model
and its stability.

6. Simulation Study

In this section, a simulation study is given to evaluate
the MLEs of the parameters of Akash regression model. Three
censoring rates t =(10%, 20%, 30%) and sample sizes (n = 20;
50; 100) are used. The simulation replication is N = 1,000. The
lifetimes are generated by using the function of the Akash
distribution The following parameter vector is used (B0=0.6,
B:1=1.6, o=1). For each generated sample size, the biases,
average of estimates (AEs) and MSEs are calculated. The
simulation results are reported in Table 1.

bais = ¥, (B~ B) MSE = ~3.(B - B)?

Table 1.  Bias for log Akash regression model
Model Log Akash regression model
T n B Bo o
0.20 20 0.013 0.012 0.014
50 0.214 0.231 0.112
100 0.430 0.341 0.352
0.30 20 0.012 0.011 0.013
50 0.118 0.113 0.121
100 0.214 0.301 0.254
0.50 20 0.001 0.002 0.001
50 0.191 0.201 0.203
100 0.291 0.301 0.342

The simulation results presented in Table 1 indicate
that the biases and MSEs approach zero as the sample size
decreases. This suggests that the lack of bias is minimal at small
sample sizes, with the smallest value of 1=(20%, 30%, 50%)
corresponding to the smallest sample size.

Table 2. MSE for log Akash regression model
Model Log Akash regression model
T n Bo By o

0.20 20 0.0215 0.0057 0.0020
50 0.4412 0.2611 0.1184
100 0.7836 0.3029 0.1866
0.30 20 0.0136 0.0020 0.0001
50 0.2186 0.0008 0.0080
100 0.4214 0.2504 0.0722
0.50 20 0.0030 0.0061 0.0027
50 0.0236 0.1559 0.3145
100 0.2911 0.2145 0.0262

By extrapolating the previous figure, we can observe that the
MSE is as small as possible at the small sample size, as well as
at the smallest value.

mu=1.8,sigma=0.6
mu=1.7,sigma=0.6
mu=1.6,sigma=0.6
mu=1.5,sigma=0.5
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Probability density function of the Akash distribution at
different values of the parameters
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Figure 4. The survival function of the Akash distribution at different
values of the parameters
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Figure 5. Box plots for the independent variables and the dependent
variable
7. Real Data

The data in the following experiment consists of four
variables, which are categorized into one dependent variable
and three independent variables. It is noted that the data scale
used in the current study is continuous data. The dependent
variable is the patient's satisfaction, while the independent
variables are the patient's age (x1), anxiety level (x3), and
disease severity (x2, an index). The study focuses on the
relationship between the dependent variable, patient
satisfaction, and the independent variable, patient age. There
are 200 observation records. The descriptive data for the two
variables are as follows.
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Table 3. Descriptive statistics for the dependent and independent
variables
Variable Min. Max Median Mean Q1
y 26 92 60 37 49
X1 22 55 62 38 31
Table 4. Goodness-of —fit (test and criteria)
Goodness-of —fit (criteria) Akash Weibull Gamma
Akaike Information 52.24356  56.23672  58.23147
Criterion (AIC)
Bayesian Information 51.23456 54.32466  56.23146
Criterion (BIC)
Quinn Information 55.21432 56.23142  57.32451
Criterion (HQIC)
Table5. Goodness-of fit (test)
Goodness-of it Akash Weibull Gamma
(criteria)
Kolmogorov-Smirnov 0.0871768 0.0988232  0.164698
Statistic
Cramer-Von-Mises 0.0171432  0.0976642  0.056378
Statistic
Anderson-Darling 0.1463242  0.6248354  0.309834
Statistic

8. Results and Discussion

From Table 4, we notice that the statistical criteria
Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), and Quinn Information Criterion (HQIC) for
the Akash distribution have values less than those for the
Gamma distribution and the Weibull distribution. Therefore,
these results suggests that the Akash distribution is a good fit
for the data to a large degree.

From Table 5, we notice that the values of the
Cramer-Von Mises statistic, the Kolmogorov-Smirnov statistic,
and the Anderson-Darling statistic for the Akash distribution
are smaller than those for the other distributions, indicating that
the data are more consistent with the proposed distribution.

By extrapolating Table 6, we can verify whether the
data follow a normal distribution or not, by using two tests: the
Kolmogorov-Smirnov test and the Shapiro-Wilk test. The
results of both tests indicate that the p-value is less than 0.05,
which suggests that the data do not follow a normal distribution.

Table 6. Normality test for data
Goodness-of —fit (criteria) Value test p-value
Kolmogorov-Smirnov test 1 0.0271
shapiro.test 0.97302 2.2e-16

9. Fitted Regression Model

In this section, after determining the appropriate
model for the data, it is necessary to compare the proposed
model with other models in light of some evaluation criteria
from the model selection process. The next table shows the BIC
and AIC criteria for the proposed model

Extrapolating from Table 7 we notice that the AIC
and BIC for the Akash regression are less than those for the
Weibull regression and the Gamma regression — therefore, the
Akash regression is better than the Weibull regression and the
Gamma regression.

10. Conclusions

The current study proposed a new regression model
called the Akash regression model. The maximum log-
likelihood estimation method was employed to estimate the
unknown parameters. A simulation study demonstrated that the
maximum log-likelihood method outperformed other methods
in the case of small samples. The study relied on some tools to
test the suitability of the data used in the research under study,
including Kolmogorov-Smirnov, Cramer-Von-Mises, and
Anderson-Darling statistics, as all the previous measures were
smaller in the case of the distribution under study. The
suggested regression model was compared with sub-models,
specifically the Weibull regression model and the gamma
regression model, using the AIC and BIC criteria. According to
the results, the proposed regression model had a better
performance than the other models.
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