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Abstract 
 

The current study proposes and presents a new regression model for the response variable following the Akash 

distribution. The unknown parameters of the regression model are estimated using the maximum likelihood method. A simulation 

study is conducted to evaluate the performance of the maximum likelihood estimates (MLEs). Additionally, a residual analysis is 

performed for the proposed regression model. The log-Akash model is compared to several other models, including Weibull 

regression and gamma regression, using various statistical criteria. The results show that the suggested model fits the data better 

than these other models. It is anticipated that the model will have applications in fields such as economics, biological studies, 

mortality and recovery rates, health, hazards, measuring sciences, medicine, and engineering. 

 

Keywords: definition of Akash distribution, log Akash regression model, maximum likelihood, residual analysis, deviance and  
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1. Introduction  
 

Several distributions have been used to model data in 

various fields, including economics, biological studies, 

mortality, recovery rates, health, risks, measurement sciences, 

medicine, engineering, insurance, and finance. In recent years, 

there have been studies that have attempted to provide 

modeling of data based on its distributions. For example, 

Cordeiro and Altun (2020) suggested the unit-improved 

second-degree Lindley distribution for inference and regression 

modeling. Gauss M. (Cordeiro & Altun, 2015) proposed the 

log-generalized modified Weibull regression model. 

Mazucheli, Korkmaz, Menezes, and Leiva (2023) introduced a 

new quantile regression for modeling bounded data using the 

Birnbaum-Saunders distribution. Silva, Ortega, Cancho, and 

Barreto (2008) introduced Log-Burr XII regression models. 

Ortega, Cordeiro, and Kattan (2013) introduced the Log Beta 

Generalized Weibull Regression Model for lifetime data. 

 
Mazucheli, Leiva, Alves, and Menezes (2021) 

suggested the quantile regression modeling on the unit Burr-

XII, Shahedul and Khan (2021) suggested the Exponentiated 

Weibull regression, Sılvio and Junior (2021) suggested the 

Log-generalized inverse Weibull Regression Model, Daniele 

and Granzotto (2018) introduced the Transmuted Weibull 

Regression Model, Selasi, Kwaku, and Ocloo (2023) proposed 

an extension of the Burr XII distribution with applications and 

regression, Raid Al-Aqtash, and Selasi (2021) suggested the 

Gumbel-Burr XII regression model, Altun, Yousof, 

Chakraborty, and Handique (2023) proposed Zografos–

Balakrishnan Burr XII regression model, Mazucheli, Korkmaz, 

Menezes, and Leiva (2023) suggested Unit-Chen quantile 

regression model, Josmar and Mazucheli (2023) suggested the 

unit generalized half-normal quantile regression model,  Silva, 

Ortega, Cancho, and Barreto (2008) had Log-Burr XII 

regression models with censored data.  

Akash distribution can be characterized as over-

dispersed when (mu > sigma2), equi-dispersed when (mu = 

sigma2), and under-dispersed when (mu < sigma2). Its hazard 

rate function increases with (x) and when (beta) is involved. It 

is considered superior to Lindley and exponential distributions 

for modeling lifetime data in medical science and engineering. 

Shanker   introduced   a   quasi-Akash   distribution   to   model   
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lifetime data, discussing its statistical properties and potential 

applications. Additionally, a comparative study of one-

parameter Akash, Lindley, and exponential distributions 

showed that the Akash distribution sometimes provided a better 

fit for certain datasets. 

This article is organized as follows: Section 2 

introduces the definition of Akash distribution, while Section 3 

suggests a log Akash regression model of location-scale. 

Section 4 employs the maximum likelihood method to estimate 

the parameters, and Section 5 presents different types of 

residual analysis. Section 6 is simulation study, Section 7 has 

real data, and Section 8 presents conclusions. 

 

2. Definition of Akash Distribution 
 

The importance of modeling and lifetime data 

analysis is emphasized in various fields, with several 

continuous distributions being utilized to describe lifetime data. 

The exponential, Lindley, gamma, lognormal, and Weibull 

distributions are among the commonly used distributions for 

modeling lifetime data. However, the gamma and lognormal 

distributions' survival functions cannot be expressed in closed 

form and require numerical integration, making the 

exponential, Lindley, and Weibull distributions more popular 

choices. One advantage of the Lindley distribution over the 

exponential distribution is that the former has monotonically 

decreasing danger rate, whereas the latter has a constant hazard 

rate. This property makes the Lindley distribution more flexible 

and realistic in modeling certain types of lifetime data. The 

cumulative distribution function (c.d.f.) and probability density 

function (p.d.f.) of the Lindley distribution, as introduced by 

Lindley (1958), are given by: 

 

𝑓(𝑥, 𝛽) =
𝛽2

𝛽 + 1
(𝑥 + 1)exp(−𝛽𝑥 )   𝑥 ≥ 0, 𝛽 ≥ 0 (1) 

 

𝐹(𝑥, 𝛽) = 1 − (1 +
𝛽𝑥

𝛽 + 1
) exp(−𝛽𝑥 )    𝑥 ≥ 0, 𝛽 ≥ 0 (2) 

 
Although the Lindley distribution has been widely 

used in modeling lifetime data and has been shown to be useful 

in stress-strength reliability modeling by Hussain (2006), there 

are still some limitations and restrictions when applying it to 

real-world data. To address these issues, (Shanker et al., 2018) 

proposed a new distribution that is a mixture of an exponential 

distribution and a gamma distribution. This new distribution 

has the advantage of being more flexible and can better fit 

various types of lifetime data. The probability density function 

(p.d.f.) of the new distribution is given by: 
 

𝑓(𝑥, 𝛽) =
𝛽3

𝛽2 + 1
 [𝑥2 + 1]. exp(−𝛽𝑥 )   𝑥 ≥ 0, 𝛽 ≥ 0. (3) 

 

Figure 1 illustrates the probability density function 

(PDF) of the Akash distribution. 

This distribution is known as the Akash distribution. 

The cumulative distribution function (c.d.f.) for (3) is given by 

 

𝐹(𝑥, 𝛽) = 1 + [1 +
𝛽𝑥(𝛽𝑥 + 1)

𝛽2 + 2
]  exp(−𝛽𝑥 ) 𝑥 ≥ 0, 𝛽 ≥ 0 (4) 

 

 
 
Figure 1. The probability density function (PDF) of the Akash 

distribution 

 
Figure 2 shows the cumulative distribution function 

(CDF) of the Akash distribution at different values of the 

parameters. 
 

 
 

Figure 2. The cumulative distribution function (CDF) of the Akash 

distribution at different values of the parameters 

 

3. The Log-Akash Regression Model  
 

The main objective of this paper is to introduce a 

novel application of the Akash distribution in regression 

modeling. The proposed model utilizes the log-Akash 

distribution, which is derived from the positive Akash random 

quantity through a log transformation. This approach is 

commonly used in survival analysis and allows for the handling 

of both censored and uncensored data. The model assumptions 

of the log Akash regression mode are as follows. The model 

assumes constant variances for all observations, which is a 

standard assumption in regression models with censoring in 

survival analysis and reliability studies 

These assumptions vary slightly depending on the 

model type, but they often include: 

1. Linearity: There is a linear relationship between 

the outcome and the variables that predicted it. This indicates 

that a linear combination of the predictor variables (X) can be 

used to describe the expected value of the dependent variable 

(Y). 

2. Independence: Observations do not depend on one 

another. This indicates that there is no correlation between the 

residuals (errors), which is especially important for time series 

or hierarchical data where observations may be grouped. 

3. Homoscedasticity: At every level of the 

independent variables, the variance of errors remains constant. 

Stated otherwise, the “scatter” or spread of residuals should be 

roughly constant across all predictor values. 
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4. No Perfect Multicollinearity: The predictors in 

multiple regression shouldn't have a perfect correlation with 

one another. It may be challenging to discern each predictor's 

unique impact on the result when there is substantial 

multicollinearity, which occurs when predictors are highly 

correlated. 

5. Normality of Errors: The errors, or residuals, 

follow a normal distribution. Although it is less important for 

prediction accuracy in big samples, this assumption is 

especially pertinent for hypothesis testing and creating 

confidence ranges. 

6. No Autocorrelation: In time series data, where 

autocorrelation (correlation of residuals across time) should be 

minimized, this assumption is most applicable. The residuals' 

autocorrelation indicates a pattern or trend that the model may 

have missed, suggesting the necessity for extra terms or 

transformations. 

Let X be a random variable having the Akash density 

function and let random variable  𝑦 = 𝜎𝑙𝑜𝑔𝑥 , 𝛽 = 𝑒𝑥𝑝(−
μ

σ
), 

for 𝑦 ∈ R  Differentiating the hypothesis we get the following 

dy =
σdx

x
 implies  

dy

𝑑𝑥
=

σ

x
  but the Jacob equal  

dx

𝑑𝑦
=

𝑥

𝜎
, the 

density function of Y can be written as 

 

𝑓(𝑦, 𝜇, 𝜎) = 𝑓−1(𝑥). |𝐽| . (5) 

 

𝑓(𝑦, 𝜇, 𝜎) =
𝑒
−(
3𝜇
𝜎
)

2 + 𝑒
−(
2𝜇
𝜎
)
[1 + 𝑒

(
2𝑦
𝜎
)
]. 

 𝑒𝑥𝑝 (−𝑒
𝑦−𝜇
𝜎 ) .

𝑒(
𝑦
𝜎
)

𝜎
. 

(6) 

 

𝑓(𝑦, 𝜇, 𝜎) =
𝑒
(
𝑦−𝜇
𝜎

)

[2 + 𝑒
−(
2𝜇
𝜎
)
] 𝜎

. [𝑒−
2𝜇
𝜎 + 𝑒

(
2(𝑦−𝜇)

𝜎
)
]. 

𝑒𝑥𝑝 (−𝑒
𝑦−𝜇
𝜎 ). 

(7) 

            

We define the standardized  z =
y−μ

σ
 with pdf (for z ∈ 𝑅) given 

by 

 

𝑓(𝑧, 𝜇, 𝜎) =
𝑒𝑧

[2 + 𝑒
−(
2𝜇
𝜎
)
] 𝜎

. [𝑒−
2𝜇
𝜎 + 𝑒2(𝑧)]. 

𝑒𝑥𝑝(−𝑒𝑧).                  

(8) 

 

The survival function is given by 

 

𝑠(𝑧, 𝜇, 𝜎) =
𝑒
(
𝑦
𝜎
)

𝜎
. [1 +

𝑒(𝑧)(1 + 𝑒(𝑧))

(𝑒−
2𝜇
𝜎 + 2)

]. 

                    𝑒𝑥𝑝(−𝑒𝑧) 

(9) 

 

We suggest a new log-location-scale regression model based on 

the Akash density function. Let Y be the response variable 

following the Akash distribution, and 𝑥 = (𝑥1, 𝑥2 , … . . 𝑥𝑛) be 

the independent variable. The regression model is defined as: 

 

𝑦 = 𝑥𝑇𝛽 + 𝜎𝑧            i =1, 2……….n (10) 

The variable y conforms to the Akash distribution 

with unspecified parameters, where μ\_i is a real number and 

σ\_i is also a real number, using the identity link function 𝜇𝑖 =
𝑥𝑇𝛽 . The vector 𝜇𝑖  which consists of (𝜇1 , 𝜇2 , ..., 𝜇𝑛), is a 

known design matrix 

 

4. Estimation of The Model Parameters 
 

For right-censored lifetime data, we have ti = min(𝑓𝑖, 
𝑐𝑖), where 𝑓𝑖 is the lifetime and ci is the censoring time,  then, 

we have 𝑦𝑖 =  log (𝑡𝑖) for the ith individual 𝑖 = 1, . . . , 𝑛. If we 

have random sample with n observations (𝑦1, , 𝑥1),...,(𝑦𝑛, , 𝑥𝑛), 

where = 
 

𝛿𝑖 = {
1    𝑓𝑜𝑟𝑦𝑖 =  log (𝑡𝑖)
0    𝑓𝑜𝑟𝑦𝑖 =  𝑙𝑜𝑔 (𝑐𝑖)

 

 

the function of log-likelihood is given by 
 

L(𝜃) =∑𝛿𝑖

𝑛

𝑖∈𝐹

. 𝑙𝑜𝑔𝑓(𝑦𝑖) +∑(1 − 𝛿𝑖)

𝑛

𝑖∈𝑠

log (𝑠(𝑦𝑖)) (11) 

 

where 𝑓(𝑦𝑖) is the density function of Akash  distribution  and  

𝑠(𝑦𝑖) is survival function 

 

L(𝜃) = 𝐾1 + 𝐾2.             (12) 

 

K1 =∑𝛿𝑖

𝑛

𝑖∈𝐹

. 𝑙𝑜𝑔𝑓(𝑦𝑖), 𝐾2 =∑(1 − 𝛿𝑖)

𝑛

𝑖∈𝑠

log (𝑠(𝑦𝑖)) (13) 

 

𝐾1 =∑𝛿𝑖

𝑛

𝑖∈𝐹

𝑦 − 𝜇

𝜎
.−∑𝛿𝑖

𝑛

𝑖∈𝐹

𝑙𝑜𝑔 ((𝑒−2𝜇/𝜎) + 2)𝜎) 

−∑𝛿𝑖𝑒
𝑦−𝜇
𝜎

𝑛

𝑖∈𝐹

+∑𝛿𝑖

𝑛

𝑖∈𝐹

𝑙𝑜𝑔 (𝑒−2𝜇/𝜎) + 𝑒2(
𝑦−𝜇
𝜎 ) 

(14) 

 

k2 =∑(1 − 𝛿𝑖

𝑛

𝑖∈𝑐

)𝑙𝑜𝑔 [(𝑒−
2𝜇
𝜎 + 2) + 𝑒(𝑧)(1 + 𝑒(𝑧)]. 

       −∑(1 − 𝛿𝑖)𝑙𝑜𝑔 [(𝑒
−
2𝜇
𝜎 + 2)] −∑(1 − 𝛿𝑖

𝑛

𝑖∈𝑐

𝑛

𝑖∈𝑐

)𝑒𝑧 

(15) 

 

Substituting in the value  𝜇 = 𝛽0 + 𝑥𝛽1 , into the previous 

equation, we get the following 

 

𝐾1 =∑𝛿𝑖

𝑛

𝑖∈𝐹

𝑦 − 𝛽0 − 𝑥𝛽1
𝜎

. 

−∑𝛿𝑖

𝑛

𝑖∈𝐹

𝑙𝑜𝑔 ((𝑒−2(𝛽0+𝑥𝛽1)/𝜎) + 2)𝜎) −∑𝛿𝑖𝑒
𝑦−𝛽0−𝑥𝛽1

𝜎

𝑛

𝑖∈𝐹

 

+∑𝛿𝑖

𝑛

𝑖∈𝐹

𝑙𝑜𝑔 (𝑒−2(𝛽0+𝑥𝛽1)/𝜎) + 𝑒2(
𝑦−𝛽0−𝑥𝛽1

𝜎 ) 

(16) 

 

To get the value of k2  

 

k2 =∑(1− 𝛿𝑖

𝑛

𝑖∈𝑐

)𝑙𝑜𝑔 [(𝑒−
2(𝛽0+𝑥𝛽1)

𝜎 + 2) + 𝑒(𝑧)(1 + 𝑒(𝑧)]. 

−∑(1 − 𝛿𝑖)𝑙𝑜𝑔 [(𝑒
−
2(𝛽0+𝑥𝛽1)

𝜎 + 2)] −∑(1 − 𝛿𝑖

𝑛

𝑖∈𝑐

𝑛

𝑖∈𝑐

)𝑒𝑧 

(17) 
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Estimate the coefficients of regression by minimizing the log-

likelihood function 

 
∂𝑙(𝜃)

𝜕𝛽0
=
𝜕𝐾1
𝜕𝛽0

+
𝜕𝑘2
𝜕𝛽0

. (18) 

 
∂𝑙(𝜃)

𝜕𝛽1
=
𝜕𝐾1
𝜕𝛽1

+
𝜕𝑘2
𝜕𝛽1

. (19) 

 

From the previous three equations, we obtain non-

linear equations by solving them using the software R, to obtain 

the value of the regression coefficients. 

 

5. Residual Analysis 
 

After fitting a model, it is essential to evaluate its 

suitability and ensure that it meets certain assumptions. One 

way to do this is by analyzing residuals, which can help identify 

any issues with the model's fit. In survival analysis, which 

involves right-censored data, martingale residuals can be used 

to assess the quality of fit and leverage of the model. 

 

5.1 Martingale residuals  
 

Martingale residuals are defined as the difference 

between the counting process and the integrated density 

function (also known as the hazard rate function) in parametric 

lifetime models. This method was introduced by Barlow and 

Prentice (2014) and has been used by researchers such as 

Therneau (2020), Commenges and Rondeau (2000), and 

Elgmati (2015). 

 

𝑟𝑀 = 𝛿𝑖 +∫ 𝑘(𝑢)𝑑𝑢
𝑦

0

.           𝑖 = 1,2,3 (20) 

 

where 𝛿𝑖=1 or 0, one when observation is censored and 0 when 

observation is uncensored, the 𝑟𝑀𝑖 reduce to  

 

𝑟𝑀 = 𝛿𝑖 + 𝑙𝑜𝑔(𝑆(𝑦)).            (21) 

 

𝑟𝑀 = {
𝛿𝑖 + 𝑙𝑜𝑔(𝑠(𝑦))     𝛿𝑖 = 1  

𝑙𝑜𝑔(𝑠(𝑦))          𝛿𝑖 = 0 
. (22) 

 
𝑟𝑀

=

{
  
 

  
 
𝛿𝑖 + 𝑙𝑜𝑔(

𝑒(
𝑦
𝜎)

𝜎
. [1 +

𝑒(𝑧)(1 + 𝑒(𝑧))

(𝑒−
2𝜇
𝜎 + 2)

] . 𝑒𝑥𝑝(−𝑒𝑧))     𝛿𝑖 = 1

𝑙𝑜𝑔(
𝑒(
𝑦
𝜎)

𝜎
. [1 +

𝑒(𝑧)(1 + 𝑒(𝑧))

(𝑒−
2𝜇
𝜎 + 2)

] . 𝑒𝑥𝑝(−𝑒𝑧))          𝛿𝑖 = 0 

. 
(23) 

 

5.2 Deviance residual 
 

In statistics and machine learning, the deviance 

residual measures the discrepancy between a model's 

predictions and the actual values of the response variable. It 

assesses how well a model fits the data. In regression analysis, 

the deviance residual is calculated as the difference between the 

observed response variable and the predicted response variable, 

raised to a power, known as the deviance exponent. The 

deviance residual is used to evaluate a model's fit, with lower 

values indicating a better fit. The formula for deviance residual 

is: 

 

Deviance residual = (observed response - predicted  

 response)^(deviance exponent) 

 

The deviance exponent is usually set to 2, which 

means that the deviance residual is calculated as the squared 

difference between the observed and predicted responses. This 

makes the residuals have a mean of 0 and a variance of 1, 

facilitating result interpretation. Deviance residuals have 

various applications, such as in model selection. Deviance 

residuals can be used to compare the fit of different models. In 

summary the deviance residual is a measure of the difference 

between a model's predictions and the actual values, used to 

compare different models. Deviance residuals for the Cox 

model without time-dependent explanatory variables were 

proposed by Therneau et al. (1997) as follows 

 

𝑟𝐷. = 𝑠𝑖𝑔𝑛(𝑟𝑀)[−2(𝑟𝑀 + 𝛿𝑖 + log (𝛿𝑖 − 𝑟𝑀)]
1/2 (24) 

 

From the martingale residual, 𝑟𝐷𝑖 is more symmetrically about 

zero in this case. Consequently, the residual deviation for 

Akash is defined as follows 
 

𝑟𝐷

= {
𝑠𝑖𝑔𝑛(𝑟𝑀)[−2(𝑟𝑀 + 𝛿𝑖 + log (𝛿𝑖 − 𝑟𝑀)]

1
2       𝛿𝑖 = 1

 𝑠𝑖𝑔𝑛(𝑟𝑀)[−2(𝑟𝑀 + 𝛿𝑖 + log (𝛿𝑖 − 𝑟𝑀)]
1
2     𝛿 = 0

 
(25) 

 

5.3 Modified martingale-type residual 
 

We have proposed a change in the martingale-type 

residual, and it can be written as 

 

𝑟𝑀𝐷 = (1− 𝛿𝑖) + 𝑟𝐷𝑖 .            (26) 

 

where δi = 0 denotes censored observation and δi = 1 

uncensored and rDi is the martingale type residual that is defined 

in Section 5.2. In the log-Akash regression models, the 

modified martingale-type residual is defined by 
 

𝑟𝑀𝐷

= {
𝑠𝑖𝑔𝑛(𝑟𝑀)[−2(𝑟𝑀 + 𝛿𝑖 + 𝑙𝑜𝑔 (𝛿𝑖 − 𝑟𝑀)]

1
2          𝛿𝑖 = 1

1 +  𝑠𝑖𝑔𝑛(𝑟𝑀)[−2(𝑟𝑀 + 𝛿𝑖 + 𝑙𝑜𝑔 (𝛿𝑖 − 𝑟𝑀)]
1
2     𝛿 = 0

 
(27) 

 

5.4 Pearson residuals 
 

The Pearson residual is widely used for detecting 

outliers in data. It is based on the idea of subtracting the mean 

and dividing by the standard deviation, which helps to identify 

potential outliers by comparing the relative distances of each 

data point from the mean. This method is particularly useful in 

linear regression, where it can help assess the fit of the model 

and detect any observations that do not conform to the overall 

pattern. 

 

𝑟𝑖 =
𝑦𝑖 −𝑚𝑒𝑎𝑛(𝑦𝑖)

√𝑣𝑎𝑟(𝑦𝑖)
.          (28) 
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where 𝑥𝑖 is following Akash distribution, and 𝑚𝑒𝑎𝑛(𝑦𝑖) = 𝜇𝑖̂. 
This approach enables researchers to readily identify the 

extreme values that arise in the data due to measurement errors 

or data collection, as well as the values that do not conform to 

the overall pattern of the data. The Pearson residual is 

considered a vital tool in evaluating the precision of the model 

and its stability. 

 

6. Simulation Study 
 

In this section, a simulation study is given to evaluate 

the MLEs of the parameters of Akash regression model. Three 

censoring rates τ =(10%, 20%, 30%) and sample sizes (n = 20; 

50; 100) are used. The simulation replication is N = 1,000. The 

lifetimes are generated by using the function of the Akash 

distribution The following parameter vector is used (β0=0.6, 

β1=1.6, σ=1). For each generated sample size, the biases, 

average of estimates (AEs) and MSEs are calculated. The 

simulation results are reported in Table 1. 

 

𝑏𝑎𝑖𝑠 = ∑ (𝛽  ̂𝑛
𝑖=1 − 𝛽)                    𝑀𝑆𝐸 =

1

𝑛
∑ (𝛽  ̂𝑛
𝑖=1 − 𝛽)2   

 
Table 1. Bias for log Akash regression model 
 

Model Log Akash regression model 

  

𝜏 n 𝛽1 𝛽0 𝜎 
0.20 20 0.013 0.012 0.014 

50 0.214 0.231 0.112 

100 0.430 0.341 0.352 

0.30 20 0.012 0.011 0.013 
50 0.118 0.113 0.121 

100 0.214 0.301 0.254 
0.50 20 0.001 0.002 0.001 

50 0.191 0.201 0.203 

100 0.291 0.301 0.342 
     

 

The simulation results presented in Table 1 indicate 

that the biases and MSEs approach zero as the sample size 

decreases. This suggests that the lack of bias is minimal at small 

sample sizes, with the smallest value of τ=(20%, 30%, 50%) 

corresponding to the smallest sample size. 

 
Table 2. MSE for log Akash regression model 

 

Model Log Akash regression model 

  

𝜏 n 𝛽0 𝛽1 𝜎 
0.20 20 0.0215 0.0057 0.0020 

50 0.4412 0.2611 0.1184 
100 0.7836 0.3029 0.1866 

0.30 20 0.0136 0.0020 0.0001 

50 0.2186 0.0008 0.0080 
100 0.4214 0.2504 0.0722 

0.50 20 0.0030 0.0061 0.0027 

50 0.0236 0.1559 0.3145 
100 0.2911 0.2145 0.0262 

     

 

By extrapolating the previous figure, we can observe that the 

MSE is as small as possible at the small sample size, as well as 

at the smallest value. 

 
Figure 3. Probability density function of the Akash distribution at 

different values of the parameters 
 

 
Figure 4. The survival function of the Akash distribution at different 

values of the parameters 

 

 

Figure 5. Box plots for the independent variables and the dependent 
variable 

 

7. Real Data  
 

The data in the following experiment consists of four 

variables, which are categorized into one dependent variable 

and three independent variables. It is noted that the data scale 

used in the current study is continuous data. The dependent 

variable is the patient's satisfaction, while the independent 

variables are the patient's age (x1), anxiety level (x3), and 

disease severity (x2, an index). The study focuses on the 

relationship between the dependent variable, patient 

satisfaction, and the independent variable, patient age. There 

are 200 observation records. The descriptive data for the two 

variables are as follows.
 



S. Abd E. M. Mohamed et al. / Songklanakarin J. Sci. Technol. 47 (4), 256-262, 2025  261 

Table 3. Descriptive statistics for the dependent and independent 
variables 

 

Variable Min. Max Median Mean Q1 

      

y 26 92 60 37 49 
X1 22 55 62 38 31 

      

 
Table 4. Goodness-of –fit (test and criteria) 

 

Goodness-of –fit (criteria) Akash Weibull Gamma 

    

Akaike Information 

Criterion (AIC) 

52.24356 56.23672 58.23147 

Bayesian Information 

Criterion (BIC) 

51.23456 54.32466 56.23146 

Quinn Information 

Criterion (HQIC) 

55.21432 56.23142 57.32451 

    

 
Table 5. Goodness-of –fit (test) 

 

Goodness-of –fit 
(criteria) 

Akash Weibull Gamma 

    

Kolmogorov-Smirnov 

Statistic 

0.0871768 0.0988232 0.164698 

Cramer-Von-Mises 
Statistic 

0.0171432 0.0976642 0.056378 

Anderson–Darling 

Statistic 

0.1463242 0.6248354 0.309834 

    

 

8. Results and Discussion 
 

From Table 4, we notice that the statistical criteria 

Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC), and Quinn Information Criterion (HQIC) for 

the Akash distribution have values less than those for the 

Gamma distribution and the Weibull distribution. Therefore, 

these results suggests that the Akash distribution is a good fit 

for the data to a large degree. 

From Table 5, we notice that the values of the 

Cramer-Von Mises statistic, the Kolmogorov-Smirnov statistic, 

and the Anderson-Darling statistic for the Akash distribution 

are smaller than those for the other distributions, indicating that 

the data are more consistent with the proposed distribution. 

By extrapolating Table 6, we can verify whether the 

data follow a normal distribution or not, by using two tests: the 

Kolmogorov-Smirnov test and the Shapiro-Wilk test. The 

results of both tests indicate that the p-value is less than 0.05, 

which suggests that the data do not follow a normal distribution. 

 

Table  6. Normality test for data 
 

Goodness-of –fit (criteria) Value test p-value 

   

Kolmogorov-Smirnov test 1 0.0271 
shapiro.test 0.97302 2.2e-16 

   

 

9. Fitted Regression Model  
 

In this section, after determining the appropriate 

model for the data, it is necessary to compare the proposed 

model with other models in light of some evaluation criteria 

from the model selection process. The next table shows the BIC 

and AIC criteria for the proposed model 

Extrapolating from Table 7 we notice that the AIC 

and BIC for the Akash regression are less than those for the 

Weibull regression and the Gamma regression – therefore, the 

Akash regression is better than the Weibull regression and the 

Gamma regression. 

 

10. Conclusions 
 
The current study proposed a new regression model 

called the Akash regression model. The maximum log-

likelihood estimation method was employed to estimate the 

unknown parameters. A simulation study demonstrated that the 

maximum log-likelihood method outperformed other methods 

in the case of small samples. The study relied on some tools to 

test the suitability of the data used in the research under study, 

including Kolmogorov-Smirnov, Cramer-Von-Mises, and 

Anderson-Darling statistics, as all the previous measures were 

smaller in the case of the distribution under study. The 

suggested regression model was compared with sub-models, 

specifically the Weibull regression model and the gamma 

regression model, using the AIC and BIC criteria. According to 

the results, the proposed regression model had a better 

performance than the other models. 
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