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Abstract

The study examines the batch arrival queue-length-dependent bulk service with multiple vacations. Service provision is
that the batch depends upon the queue length. The study incorporates supplementary variables on account of variations in service
time (both high and low batch) and vacation periods. It derives the probability generating functions of queue length distributions
and explicit expressions of key performance indices. Numerical results are presented to validate the analytical findings.
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1. Introduction

In the manufacturing world, the raw materials play a
crucial role. When materials are insufficient it leads to
production halts and delay in delivering products to consumers.
Let us consider a car manufacturing factory that requires steel.
Without enough steel, car production will stop. This shortage
affects the entire supply chain, from production to the
dealership. These delays are significant. It creates problems for
both manufacturers and consumers. Manufacturers struggle to
do their jobs, while consumers grow frustrated with the
extended waiting times.

General reasons for raw material shortages: the
following are a few reasons for factories not having enough raw
materials.

Supplier Issues: Factories depend on suppliers for
raw materials. If supplier encounters any problems such as
production delays or shortages, then factories cannot run
manufacturing.

Transportation Challenges: Transporting materials
from suppliers to factory is similar to bringing groceries home.
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Again issues like delayed shipments or high transportation
costs can slow down the arrival of raw materials. If there is a
sudden surge in demand for a popular toy, factories might face
unexpectedly high demand for their products, leading to
shortages if they haven’t been adequately prepared. Production
with low raw materials: a solution that decreases waiting times.

When factories start making products again, even
with a low quantity of raw materials, it means the waiting time
for customers decreases. The customers get the products earlier.
Optimizing the skills that workers need can help ensure that
their skills are utilized effectively.

Restarting production with a low raw material stock
helps to minimize the financial strain on factories. While they
may not be making as much as usual, they are still generating
some income. It’s a bit like keeping the business engine
running, even if at a slower pace.

Meeting consumer demand: consumers are like
hungry guests at a dinner table - they want their products!
Restarting production, even with limited materials, allows
factories to meet consumer demand and keep them satisfied.

The model deals with having enough materials, while
stopping production and making people wait longer is common
in manufacturing industries. It shows how important for a
company it is to manage their materials well and make sure they
have enough materials to keep the work running smoothly. It
leads to customer satisfaction. Suppose, a manufacturing
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industry starts production with a low quantity: the proposed
model is described in this work.

The idea of starting production, even with a low
quantity of raw materials, emerges as a solution that can benefit
everyone involved. By this process, waiting times are reduced,
workers stay engaged, operational flow is maintained, available
resources are utilized wisely, financial strain is minimized, and
consumer demand is met. It is a practical approach that keeps
the wheels of production turning, ensuring that the products
will reach the customer, finding the way into their hands sooner
rather than later.

The versatile bulk service queuing system finds
applications across various domains. General Bulk Service
Rule (GBSR) with queue length is ‘r *, where

- When 0 <r <a-1, the server remains idle.

- For a<r<b-1, all customers are taken for service.

- If r = b, then the first ‘b’ customers are taken for
service.

Two different service patterns with a single vacation
were discussed by Thangaraj and Rajendran (2017). The bulk
service was offered if the queue length (Q) is less than or equal
to b; otherwise, the single service or single vacation is provided.
Under (a, ¢, and b) policy, Jeyakumar and Arumuganathan
(2008) investigated the case of two service nodes. When the
number of requests in the queue reaches ‘a’, the server provides
a single service. When the number of requests in the queue
reaches c’ (which is greater than ‘a”), the server provides a
batch service with a variable number of requests, up to a
maximum of “b> (which is greater than ‘c’). Only when there
are at least “a> customers in the queue does the server start the
service. The server transitions from single service to batch
service only during service initiation epochs, based on the
current queue length.

Bulk service queueing models are studied by various
researchers. Recently, Achyutha Krishnamoorthy, Anu Nuthan
Joshua and Vladimir Vishnevsky (2021), Gopal K Gupta, and
Banerje (2021), Shanthi, Muthu Ganapathi Subramanian, and
Gopal Sekar (2022) have investigated a single server bulk
service queueing model with different contexts. Mohan
Chaudhry and Jing Gai (2022) studied bulk service queueing
system with multi-server. Shakila Devi and Vijiyalakshmi
(2023) examined bulk queueing models with various service
interruptions. Meanwhile, Chaudhry, Datta Banik, Barik, and
Goswami (2023) developed an innovative computational
procedure for analyzing the waiting-time distribution within
bulk-service finite-buffer queues with Poisson input. Keerthiga
and Indhira (2024) review bulk arrival and batch service
queueing models, focusing on vacations, breakdowns, and
performance measures to reduce congestion.

The batch-size-dependent service queueing system
was studied by Pradhan and Gupta (2019, 2022), Gupta,
Banerjee and Gupta (2020), Sourav Pradhan (2020), Gupta and
Banerjee (2019). Umesh Chandra Gupta, Nitin Kumar, Sourav
Pradhan, Farida Parvez Barbhuiya and Chaudhry (2021),
Tamrakar and Banerjee (2021), Tamrakar, Banerjee and Gupta
(2022), and Nandy and Pradhan (2021, 2021a), using various
parameters. In a study conducted by Pradhan Sourav and Karan
Prasenjit (2023), a bulk service queue with server breakdown
and multiple vacations was examined, incorporating batch-size
dependence and an infinite buffer. Additionally, Panda and
Goswami (2023) conducted a separate analysis of a discrete-
time queue, where a modified batch service policy and service

dependency on batch size were considered. Pradhan, Nandy
and Gupta (2024) studied bulk-service queueing systems with
vacation policies, analyzing steady-state distributions and
giving numerical examples for diverse applications. Niranjan
and devi Latha (2024) investigated two-phase heterogeneous
and batch service queuing system with breakdown in two
phases, feedback, and vacation

The following ways are employed in this work: Asa
batch arrival queuing model with more practical significance,
consider the bulk service concept. But in this modal the bulk
service depends on queue length. If queue length (Q) is

1. @ = a then the general bulk service rule is
followed to serve the batch.

2.1 < Q < a— 1then the whole batch is taken for
service with different service rates.

3. Q=0 then the server starts its multiple vacation.

The lack of existing research on batch arrival
multiple vacations with the specified queue length dependent
service motivated the creation of this work.

The structure of the article is as follows: In Section 2,
a real-world example of the queuing problem is presented and
the system equations are formulated. Section 3 focuses on the
distribution of queue sizes. In Section 4, the Probability
Generating Function (PGF) for the equilibrium queue length
distribution is established. Section 5 involves the computation
of various performance metrics for the queuing system. Section
6 introduces an analytical cost model. A numerical example is
presented in Section 7. Finally, Section 8 provides the
conclusion of the paper.

2. Mathematical Description of the Model

The analysis of a queuing system characterized by
batch arrivals of customers is examined, where the server
delivers bulk service influenced by the queue length and takes
multiple vacations. The initiation of service to a batch by the
server depends upon the queue length (r), as detailed below:

1 <r <a-—1:all the customers are taken for
service with Low-capacity service.

1. a<r <b-—1:all the customers are taken for

service with High-capacity service.

2. r =b: then first ‘b’ customers are taken for

service with High-capacity service.

3. r=0: then the server goes for multiple

vacation.

At the completion of multiple vacations, if the queue
length is either equal to or exceeds ‘a’, the server will provide
batch service. The batch service offered is categorized as either
High-capacity or Low-capacity service, depending on the
queue length. If the queue length is less than ‘a’, the server
enters another vacation period. This utilizes the supplementary
variable technique to derive the system state probabilities and
formally define this model. Figure 1 (Pictorial representation of
the model) depicts a diagram of the proposed model.

2.1 Notation and probabilities

The assumptions and notations and their descriptions
used in this article are given in Table 1 Notations.

The symbols for Cumulative Distribution Functions
(CDF), Probability Density Function (PDF), and their Laplace-
Stieltjes Transform (LST) are given in Table 2 Symbols.
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Figure 1. Pictorial representation of the model

Table 1. Notation

Notation Description
A Group arrival rate
gk =Pr(X = k),
k=123,..
X(2) Probability Generating Function (PGF) of X
N, (t) The number of customers who are being serviced at the station
N, (t) The count of customers in the queue
HO(t) Remaining High-capacity service time
L°(t) Remaining Low-capacity service time
Vo (t) Remaining vacation time

Table 2. Symbols

Parameter CDF PDF LST
High-capacity Service time H h(w) H(1)
Low-capacity Service time L I(w) L(7)

Vacation \Y v(w) 40)

265

P(t)=[1] means the server is busy in High-capacity batch service, 1 (t)= [2] means the server is busy in Low-capacity batch

service, ¥ (t)= [3] means the server is on vacation.

Ny (t) =m,N,(t) =n,w < HO(t) <w + dt,

Hm_n(w,t)dt=Pr{ } as<m<bn=1,

Yt)=1
Ly n(w, t)dt = Pr{Nl(t) = m'NZ(t)wz(t’;"’:V ZS PO <w+ dt'} l<m<a-1n>1,

Vi,;(w,t)dt = Pr{Z(t) = k,N,(t) = j,w < V°(t) <w +dt, () =3} k=1,j=0.
3. Queue Size Distribution

The Kolmogorov backward equation which describes the system is as follows:
—Hpyo(W) = =AH,poW) + 2921 Lygn (AW + X2og Hypy (00A(W) + 372y Viem (0)h(w),a < m < b,
—HpnW) = =AHp W) + X2y HypeaWAgy, a<m<b-1n2>1,
~Hy W) = —=AHpn (W) + X721 Ly pin (AW + X2—g Hppin(00AW) + X521 Viepin (0VAW) + X1 HynaWIAga,n 2 1,
~LimoW) = =ALmoW) + Z21 Ly (OI(W) + XP_g Hym(0)IW), 1 <m < a—1,
~LynW) = =Ly (W) + X2 Linn-aW)Agg,1<m<a-1,n=1,
~VioW) = =AV;o(W) + ZF21 Ly o(0)v(W) + XP=q Hro(0)v(w),

—VinW) = =AV1n(W) + X1 Vin-aW)Agan = 1,

@
&)
©)
)
®)
(6)
(N
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~VioW) = =V o(W) + Vie_10(0)v(w), k = 2, (®)
“VienW) = =AWy W) + Vi1 2 (00vW) + Z0_; Vien-aWAga, k =221<n<a-1, 9)
Vin(W) = =AWVin(W) + Zi=y Vien-aW)Aga, k 2 2,n > a. (10)

While applying LST to the above equations (1) to (10), we get,
THy0(2) = Hino(0) = A (1) = ZP21 Ly (0)H(2) = X2 Hrm(0)H(©) — Xy Vigm (VH(D),a < m < b, (EX)
THmn(®) = Hpn(0) = A n () = X%y Hpnea(MAgga<m<b—-1n=1, 12)

Tﬁb,n(f) - Hb,n(o) = Aﬁb,n(f) - Zg;% Lr,b+n(0)ﬁ(7—') - Z?:a Hr,b+n(0)ﬁ(f) -

2i=1 Vip+n (0 H (@) Xy Hpn-a(DAgan 2 1, (13)
Lo (T) = Lino(0) = AL (1) = EF27 Lrm(OL() — EPog Hrm(0L(x), 1<m<a-1, (14
TLnn (@) = Linn(0) = ALy (0) = X2y Lipna(MAgg, 1 <m<a—1n =1, (15)
w,0(1) = V10(0) = AVy,0(2) = XF=1 Ly o0V () — X2y Hr o (0)V (2), (16)
(1) = Vin(0) = W10 (D) = Loy Vin-a(D)Agan 2 1, an
We0(t) = Vio(0) = AV o(T) = Vie_1,0(0)V (2), k = 2, (18)
Wien (@) = Vin(0) = AWy (@) = Vi1 0OV (@) = 22y Vin—a(MAga,k 22, 1<n<a-1, (19)
Wien(©) = Vin(0) = AVin (@) = X221 Vien—a(DAga, k = 2,n = a. (20)

Let us define the following PGFs:

H,(z1) =Y, ﬁm,n(r)zn, Hn(z,0) = Y5 g Hnn(0)z",a <m < b,

L(z,7) = X%, Zm_n(‘c)zn, Lin(z,0) = X530 Lpn(0)zZM,1<m<a-—1, (21)
Vie(z7) = o Vien (2", Vie(z,0) = Xzp Vien(0)2" k = 1.

After some mathematical manipulations, we get,

(T = $@)An(2,7) = Hy(2,0) — HD[LE} Lyn(0) + X2eg Hrn(0) + Bfmy Vi@l aSn<b—1, (22)
28 (1 = p@)Ap(2,7) = (2° — A(D)Hy(z,0) = AD(EES] Lr(2,0) + 5224 Ho(2,0)  + ey Vie(2,0) -

P24 (8921 Lin(0)2" + $heg Hyn(0)2" + Xicy Vien (02"}, (23)
(= ¢@)Ln(@ 1) = Ly(2,0) = LO[ZE Lrn(0) + 52 Hp(O] 1S n<a -1, (24)
(= $@I(27) = Vi (2,0) = VD[] Lyo(0) + 52y Hro(0)] (25)
(T = $@IWe(z 7) = Vie(,0) = V(D)[LZ} Vie-1,0(0)2"], k = 2. (26)

where ¢(z) = 1 — 1X(2).
Substitute T = ¢(z) in (22) to (26), to get,
Hy(2,0) = A(¢(@) [} Lyn(0) + Xoog Hyn(0) + B2y Vin (0], a <n<b -1, @7

H — _ % _ _
Hb(Zr 0) = %{Z;}:% LT(Z, 0) + Z?lz:zlz Hr(z’ 0) + Zl:l Vk(z' 0) - Z_I’leé Zgzll Lr,n(o)zn + Z?:a Hr,n(o)zn +

Y11 Vien(0)27]}, (28)
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Ly(z,0) = Z(¢(Z)) [21@;% Lyy(0) + Z?:a Hyn(0)]lsn<a-1, (29)
Vi(z,0) = V(¢p(@)[EF=1 Lr,o(0) + X2=q Hro(0)], (30)
Vie(z,0) = V(@) [Zaz6 Vie-1,0(0)z"], k = 2. (31

After the substitution of (27) to (31) in (22) to (26) respectively then substitute 7 = 0, to get,

f,(z0) =%(dn+qn),a <n<b-1, 32)

(1-A(¢@))

o — T a-1 o b-1 7 a-1 n

Ay 0) = o Sy BN EZh o+ @) Thzk (e + 400 + PG o + EAZh 4u™)

+ X025 (dpz™ + quz™) (33)
Ln(z0) =%dn,l <n<a-1, (34)
7,(2,0) = %do, (35)
Te(z,0) = D50t v, 0(0)2" k > 2 (36)

where X221 Ly (0) + X2-g Hyn(0) = dy and XiZ; Vin(0) = gn.
4. Probability Generating Function of the Queue Size

Consider P(z) as the function representing the probability of having a specific number of customers in the queue at any
random time in the proposed model. Then,

P(2) = 2821 Lr(2,0) + XP=q H,(2,0) + Xi-y Vi(2,0). (37
The probability generating function is obtained as:
[(zP-H (P @) +L(P(2))(1-2")) TE=] dn+(1-H(¢(2))) ThzE (2P -2")pn

P(z) = +H(ZP-D(A-T (@@ [do+2425 anz™-(1-H($(2)) T4Z1 dnz™] (38)
P@(zP-H(P@))) '

A particular case: whena = b = 1 and no Low-batch service, then probability generating function of the proposed queueing
model becomes

_ -DO-T($@)([de+a0)
P(z) = $@E-A@)

This coincides with M*1 /G /1 queueing system with multiple vacations. The result coincides with the queue size distribution of
Lee et al. (1994) with N=1.

4.1 Steady state condition

The PGF of the queue length has to satisfy P(1) = 1, for which we apply L’ Hospital’s rule and evaluating lirr} P(z) z1P(2),
z—

then equating to 1, we have, N = D". Since d,, p,, and g, represents the probabilities of ‘r’ customers waiting in the queue, it
follows that N must be positive. Thus P(1) = 1 is satisfied iff D" > 0. The inequality
_ AX,E(H)

20 <1 (39)

is the stability condition for the proposed model.
4.2 Computational aspects

Equation (38) has b + a unknowns dy, dy,...,da—1,90,--+»qa—1, aNd Py, Pas1,---»Pp—1 - We can express q;(i =
0,1,...,a — 1) in terms of d, so that the numerator has only b constants. Now from equation (38) which is PGF of number of
customers involving b unknowns. By Rouches’s theorem (z” — H(¢(z))) has one zero on the boundary and b-1 inside the unit
circle. Due to P(z) being analytic, the numerator must vanish at that points and give b equations with b unknowns, which can be
solved by a numerical technique.
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4.3 Result

Let g, can be expressed in terms of d, as
_ Bn do+ r=1 Brn-r
A-B) " (A-By '

n n=12,...,a—-1,

Bo
where gg = ———d
, qo 1- B, 0
B;s are the probabilities of the 'i' customers arriving during multiple vacation times.

4.4 PGF of queue size at various completion epochs

Low-capacity batch service: Let P; (z) be the probability that the server is in the busy Low-capacity batch service at time t.
From equation (34)

1-L ald,

High-capacity batch service: Let Py (z) be the probability that the server is in the busy High-capacity batch service at time t.
From equations (32) and (33)

1-A(p@N[(P-H(9(2)) L2ipr+L(9(2) X2Zi dyy
Py(z) = +H($(2) 2223 pr+7 (0 (@) [do+5823 anz™1- 252 puz™] (41)
H (@) (zP-H(¢p(2))) '

Service completion: Let Ps(z) be the probability that the server’s service completion at time t.
From equations (32), (33) and (34)

(P -B@@N(A-L($ @) Tt dr+((A-B (@) £2E pr]
+(1-H(@NL(P(2) T8} dy+H(p(2)) 22 pr— T84 prz™ 42)
P (Z) — +V(p(2)[do+Zazt anz"1}]
s D@ (2P -H(P@))

Vacation completion: Let Py (z) be the probability that the server is on vacation at time t. From equations (35) and (36)

1-V .
Po(2) = S5 B2 do + TAZH uz™). 43)

4.5 Probability of various server states
The server on vacation:

lim 7(2,0) = P(V) = EQV)[do + Z42} 4az". (44)

The server is busy:

~ ~ a-1 b— a-1 n a-1 _yb-1
lim 2421 £,(2, 0) £223 A (7, 0)] = P(B) = M Zid Gt st ) 0 Cot B 0 ) Bk ) (45)
z— 1=t

4.6 Performance measures

The expected length of the idle period: Let | is the random variable denoting the Idle period due to multiple vacation process’.
Let Y be the random variable defined by

y = {0 if the server finds atleast 'a’customers after the first vacation
T L 1 if the server finds less 'a’customers after the first vacation
Now
E(l) =E(I/Y=0PY =0+ E(I/Y =1PY =1)
=EWV)PY =0+ (E(WV)+ ED))PY =1)
Solving for E(I), we get

EV) _ E(WV)

E(I) = =
0 1-P(Y=1)  1-%32§Bnd,

(46)
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The mean queue length: The mean queue length: The expected length of the queue E(Q) at an arbitrary time epoch, is obtained by
differentiating P(z) at z=1 and is given by lin’ll P(z) = E(Q)
VAsd

N7 UID p (D _ (D - (1ID)

EQ) = 3(DrDy2 ’ “n
where

NrUD = —(2bL, — 2H,) X721 d, — 2H, X222 (b — 1)py — 2bVi(do + X425 Gn),
NP0 = —(Hy + 3(bLy + b(b — DLy)) T} dy + (H3 94 dy + 3(H, 2821 rd, + Hy 3821 r(r = 1)d,) )

—3(H, ¥b2% (—1)pr + Hy X223 (b(b — 1) — r(r — 1))p,) — 6bV; 2324 g,
—=3(bV; + b(b — 1)Vy)(do + X225 qn),

DrD = —3AX,(b — H,),

DrdM = —3(3X,(b — H;) + AX;[b(b — 1) — H,]}.

5. Cost Model

The cost function incorporates the following cost components per unit of time, which are given in Table 3.

Table 3.  Cost components per unit of time

C, The operating cost per unit of time

c, The holding cost per unit time for each unit of the system.
C, The reward per unit of time due to vacation

Cs The start-up cost

Cs—CrE(D)
E(Tc)

where expected length of cycle E(T,) =

Total Average Cost = + CLE(Q)+ Cyp (48)

O E(L) - E(H)] + —)

1-3428 Bndo [do+Z3Z5 qn]’
6. Numerical lllustration

Numerical methods are employed to estimate the unknown chances of different queue sizes.The roots of the equation
(2P — H(¢(2))) are obtained and solved in MATLAB. A numerical example is presented with these assumptions:

1. The arrivals come in batches with a geometric distribution and an average of 2.

2. The service time for both low and high-capacity batches follows a 2-Erlang distribution

3. The vacation time follows an exponential distribution with a parameter y =5.

The effects on performance characteristics from varying the system parameters, arrival rate (1), server’s service rate ()
with u, # 0 and p, = 0 are analyzed. The service times for both low and high-capacity batches follow a 2-Erlang distribution
and Server’s vacation time follows an exponential distribution.

The results have been analyzed in tabular forms and two-dimensional graphs. The stability condition is satisfied for
arbitrary chosen values with a minimum service capacity a=5, maximum service capacity b=10.

The effect of increasing arrival rate (1) is shown in Table 4 and Figures 2 and 3. Thus, if the arrival rate increases the
stability condition (p), mean queue length (E(Q)), mean waiting time (E(W)) are increasing and mean Idle time E(l) is decreasing.

Table 4.  Arrival rate influences performance measures (Let u; = 25,4, = 15and y = 5)

% p E(Q) E(W) E(I)
10.0 0.160 57.8939 2.8947 0.6023
10.5 0.168 62.3707 2.9700 0.5650
11.0 0.176 67.0076 3.0458 0.5330
115 0.184 71.8137 3.1223 0.5051
12.0 0.192 76.8001 3.2000 0.4807
125 0.200 81.9785 3.2791 0.4591
13.0 0.208 87.3615 3.3601 0.4399
135 0.216 92.9628 3.4431 0.4227
14.0 0.224 98.7973 3.5285 0.4072
145 0.232 104.8810 3.6166 0.3931
15.0 0.240 111.2320 3.7077 0.3804
155 0.248 117.8690 3.8022 0.3687
16.0 0.256 124.8130 3.9004 0.3581
16.5 0.264 132.0880 4.0027 0.3482

17.0 0.272 139.7170 4.1093 0.3392
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Figure 2. Performance measures vs. arrival rate Figure 3. E(Q) vs. arrival rate

The increase in the server’s service rate (i) with u, # 0 leads to decreases of p, E(Q), E(W) and increases E(1) as given
in Table 5 and Figures 4 and 5. Similarly, Table 6 and Figures 6 and 7 depict that server’s service rate () with pz = 0 leads to
decreases of p, E(Q), E(W) and increases E(l).

Table 5 assumes a low-capacity batch service, while Table 6 assumes no low-capacity batch service. The numerical
results show that as the service rate increases, both queue length and waiting time decrease in Table 5, being lower than in Table

6.

Table 5. High-capacity batch service rate influences performance measures (Let A = 10, u, = 15and y = 5)
Uy p EQ EW EIl
18.00 0.2222 47.1218 2.3561 0.4905
18.25 0.2192 46.8030 2.3402 0.4951
18.50 0.2162 46.4992 2.3250 0.4997
18.75 0.2133 46.2093 2.3105 0.5042
19.00 0.2105 45.9324 2.2966 0.5087
19.25 0.2078 45.6679 2.2834 0.5131
19.50 0.2051 45.4148 2.2707 0.5175
19.75 0.2025 45.1726 2.2586 0.5218
20.00 0.2000 44.9405 2.2470 0.5261
20.25 0.1975 44,7181 2.2359 0.5303
20.50 0.1951 44.5047 2.2252 0.5345
20.75 0.1928 44.2998 2.2150 0.5386
21.00 0.1905 44,1030 2.2052 0.5427
21.25 0.1882 43.9138 2.1957 0.5468
21.50 0.1860 43.7318 2.1866 0.5508
21.75 0.1839 43.5566 2.1778 0.5547
22.00 0.1818 43.3878 2.1694 0.5586
22.25 0.1798 43.2252 2.1613 0.5625
22.50 0.1778 43.0684 2.1534 0.5663
22.75 0.1758 429171 2.1459 0.5701
23.00 0.1739 42.7710 2.1386 0.5738
23.25 0.1720 42.6299 2.1315 0.5775
23.50 0.1702 42.4935 2.1247 0.5812
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Figure 4. Performance measures vs. service rate (u,) Figure 5. E(Q) vs. service rate (1)
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Table 6. High-capacity batch service rate influences performance measures (Let A = 10,4, = 0 andy = 5)

h p EQ EW EI
18.00 0.2222 69.9624 3.4981 11.4185
18.25 0.2192 69.3820 3.4691 12.4678
18.50 0.2162 68.8272 34414 13.6738
18.75 0.2133 68.2956 3.4148 15.0631
19.00 0.2105 67.7866 3.3893 16.6930
19.25 0.2078 67.2987 3.3649 18.6266
19.50 0.2051 66.8308 3.3415 20.9651
19.75 0.2025 66.3809 3.3191 23.8061
20.00 0.2000 65.9491 3.2975 27.3888
20.25 0.1975 65.5338 3.2767 32.0033
20.50 0.1951 65.1339 3.2567 38.1495
20.75 0.1928 64.7495 3.2375 46.8538
21.00 0.1905 64.3786 3.2189 59.8671
21.25 0.1882 64.0213 3.2011 81.7738
21.50 0.1860 63.6764 3.1838 125.7630
21.75 0.1839 63.3440 3.1672 262.7660
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Figure 6. Performance measures vs. service rate (u,)

7. Conclusions

The bulk service queuing system with queue length-
dependent service and multiple vacations using the
supplementary variable technique was investigated. A
probability-generating function for the queue length, expected
busy period, idle period, and waiting time was derived.
MATLAB software was used for detailed numerical
illustrations.

The analysis done assessed mean queue length, mean
waiting time, and mean idle period. Table 5 assumes a low-
capacity batch service, Table 6 assumes no low-capacity batch
service. The numerical results show that as the service rate
increases both queue length and waiting time decrease with the
expected queue length and waiting time in Table 5 being lower
than in Table 6.

In manufacturing industries, low quantities of raw
materials delay the production, increasing the consumer
waiting time. Providing low-capacity batch service can reduce
queue length and waiting time, making this model applicable to
real-world scenarios with similar complexities.
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