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Abstract 
 

The study examines the batch arrival queue-length-dependent bulk service with multiple vacations. Service provision is 

that the batch depends upon the queue length. The study incorporates supplementary variables on account of variations in service 

time (both high and low batch) and vacation periods. It derives the probability generating functions of queue length distributions 

and explicit expressions of key performance indices. Numerical results are presented to validate the analytical findings. 
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1. Introduction  
 

In the manufacturing world, the raw materials play a 

crucial role. When materials are insufficient it leads to 

production halts and delay in delivering products to consumers. 

Let us consider a car manufacturing factory that requires steel. 

Without enough steel, car production will stop. This shortage 

affects the entire supply chain, from production to the 

dealership. These delays are significant. It creates problems for 

both manufacturers and consumers. Manufacturers struggle to 

do their jobs, while consumers grow frustrated with the 

extended waiting times. 

General reasons for raw material shortages: the 

following are a few reasons for factories not having enough raw 

materials. 

Supplier Issues: Factories depend on suppliers for 

raw materials. If supplier encounters any problems such as 

production delays or shortages, then factories cannot run 

manufacturing.  

Transportation Challenges: Transporting materials 

from suppliers to factory is similar to bringing groceries home. 

 
Again issues like delayed shipments or high transportation 

costs can slow down the arrival of raw materials. If there is a 

sudden surge in demand for a popular toy, factories might face 

unexpectedly high demand for their products, leading to 

shortages if they haven’t been adequately prepared. Production 

with low raw materials: a solution that decreases waiting times.  

When factories start making products again, even 

with a low quantity of raw materials, it means the waiting time 

for customers decreases. The customers get the products earlier. 

Optimizing the skills that workers need can help ensure that 

their skills are utilized effectively.  

Restarting production with a low raw material stock 

helps to minimize the financial strain on factories. While they 

may not be making as much as usual, they are still generating 

some income. It’s a bit like keeping the business engine 

running, even if at a slower pace. 

Meeting consumer demand: consumers are like 

hungry guests at a dinner table - they want their products! 

Restarting production, even with limited materials, allows 

factories to meet consumer demand and keep them satisfied.  

The model deals with having enough materials, while 

stopping production and making people wait longer is common 

in manufacturing industries. It shows how important for a 

company it is to manage their materials well and make sure they 

have enough materials to keep the work running smoothly. It 

leads   to   customer   satisfaction.   Suppose,   a   manufacturing 



264 S. Karpagam, & B. Somasundaram / Songklanakarin J. Sci. Technol. 47 (4), 263-272, 2025 

industry starts production with a low quantity: the proposed 

model is described in this work. 

The idea of starting production, even with a low 

quantity of raw materials, emerges as a solution that can benefit 

everyone involved. By this process, waiting times are reduced, 

workers stay engaged, operational flow is maintained, available 

resources are utilized wisely, financial strain is minimized, and 

consumer demand is met. It is a practical approach that keeps 

the wheels of production turning, ensuring that the products 

will reach the customer, finding the way into their hands sooner 

rather than later. 

The versatile bulk service queuing system finds 

applications across various domains. General Bulk Service 

Rule (GBSR) with queue length is ‘r ’, where 

- When 0 ≤ r ≤ a-1, the server remains idle.  

- For a ≤ r ≤ b-1, all customers are taken for service. 

- If r ≥ b, then the first ‘b’ customers are taken for 

service. 

Two different service patterns with a single vacation 

were discussed by Thangaraj and Rajendran (2017). The bulk 

service was offered if the queue length (Q) is less than or equal 

to b; otherwise, the single service or single vacation is provided. 

Under (a, c, and b) policy, Jeyakumar and Arumuganathan 

(2008) investigated the case of two service nodes. When the 

number of requests in the queue reaches ‘a’, the server provides 

a single service. When the number of requests in the queue 

reaches ‘c’ (which is greater than ‘a’), the server provides a 

batch service with a variable number of requests, up to a 

maximum of ‘b’ (which is greater than ‘c’). Only when there 

are at least ‘a’ customers in the queue does the server start the 

service. The server transitions from single service to batch 

service only during service initiation epochs, based on the 

current queue length. 

Bulk service queueing models are studied by various 

researchers. Recently, Achyutha Krishnamoorthy, Anu Nuthan 

Joshua and Vladimir Vishnevsky (2021), Gopal K Gupta, and 

Banerje (2021), Shanthi, Muthu Ganapathi Subramanian, and 

Gopal Sekar (2022) have investigated a single server bulk 

service queueing model with different contexts. Mohan 

Chaudhry and Jing Gai (2022) studied bulk service queueing 

system with multi-server. Shakila Devi and Vijiyalakshmi 

(2023) examined bulk queueing models with various service 

interruptions. Meanwhile, Chaudhry, Datta Banik, Barik, and 

Goswami (2023) developed an innovative computational 

procedure for analyzing the waiting-time distribution within 

bulk-service finite-buffer queues with Poisson input. Keerthiga 

and Indhira (2024) review bulk arrival and batch service 

queueing models, focusing on vacations, breakdowns, and 

performance measures to reduce congestion. 

The batch-size-dependent service queueing system 

was studied by Pradhan and Gupta (2019, 2022), Gupta, 

Banerjee and Gupta (2020), Sourav Pradhan (2020), Gupta and 

Banerjee (2019). Umesh Chandra Gupta, Nitin Kumar, Sourav 

Pradhan, Farida Parvez Barbhuiya and Chaudhry (2021), 

Tamrakar and Banerjee (2021), Tamrakar, Banerjee and Gupta 

(2022), and Nandy and Pradhan (2021, 2021a), using various 

parameters. In a study conducted by Pradhan Sourav and Karan 

Prasenjit (2023), a bulk service queue with server breakdown 

and multiple vacations was examined, incorporating batch-size 

dependence and an infinite buffer. Additionally, Panda and 

Goswami (2023) conducted a separate analysis of a discrete-

time queue, where a modified batch service policy and service 

dependency on batch size were considered. Pradhan, Nandy 

and Gupta (2024) studied bulk-service queueing systems with 

vacation policies, analyzing steady-state distributions and 

giving numerical examples for diverse applications. Niranjan 

and devi Latha (2024) investigated two-phase heterogeneous 

and batch service queuing system with breakdown in two 

phases, feedback, and vacation 

The following ways are employed in this work:  As a 

batch arrival queuing model with more practical significance, 

consider the bulk service concept. But in this modal the bulk 

service depends on queue length. If queue length (Q) is  

1. 𝑄 ≥ 𝑎   then the general bulk service rule is 

followed to serve the batch. 

2. 1 ≤ 𝑄 ≤ 𝑎 − 1 then the whole batch is taken for 

service with different service rates. 

3. Q=0 then the server starts its multiple vacation. 

The lack of existing research on batch arrival 

multiple vacations with the specified queue length dependent 

service motivated the creation of this work. 

The structure of the article is as follows: In Section 2, 

a real-world example of the queuing problem is presented and 

the system equations are formulated. Section 3 focuses on the 

distribution of queue sizes. In Section 4, the Probability 

Generating Function (PGF) for the equilibrium queue length 

distribution is established. Section 5 involves the computation 

of various performance metrics for the queuing system. Section 

6 introduces an analytical cost model. A numerical example is 

presented in Section 7. Finally, Section 8 provides the 

conclusion of the paper. 

 

2. Mathematical Description of the Model  
 

The analysis of a queuing system characterized by 

batch arrivals of customers is examined, where the server 

delivers bulk service influenced by the queue length and takes 

multiple vacations. The initiation of service to a batch by the 

server depends upon the queue length (𝑟), as detailed below: 

1 ≤ 𝑟 ≤ 𝑎 − 1 : all the customers are taken for 

service with Low-capacity service. 

1. 𝑎 ≤ 𝑟 ≤ 𝑏 − 1: all the customers are taken for 

service with High-capacity service.  

2. 𝑟 ≥ 𝑏 : then first ‘𝑏   customers are taken for 

service with High-capacity service.  

3. 𝑟 = 0 : then the server goes for multiple 

vacation. 

At the completion of multiple vacations, if the queue 

length is either equal to or exceeds ‘a , the server will provide 

batch service. The batch service offered is categorized as either 

High-capacity or Low-capacity service, depending on the 

queue length. If the queue length is less than ‘a , the server 

enters another vacation period. This utilizes the supplementary 

variable technique to derive the system state probabilities and 

formally define this model. Figure 1 (Pictorial representation of 

the model) depicts a diagram of the proposed model.   

 

2.1 Notation and probabilities 
 

The assumptions and notations and their descriptions 

used in this article are given in Table 1 Notations.  

The symbols for Cumulative Distribution Functions 

(CDF), Probability Density Function (PDF), and their Laplace-

Stieltjes Transform (LST) are given in Table 2  Symbols. 
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Figure 1. Pictorial representation of the model 

 
Table 1.  Notation 

 

Notation Description 

  

𝜆 

𝑔𝑘 = Pr(𝑋 = 𝑘), 
   𝑘 = 1,2,3, … 

Group arrival rate 

𝑋(𝑧) Probability Generating Function (PGF) of X 

𝑁1(𝑡) The number of customers who are being serviced at the station 

𝑁2(𝑡) The count of customers in the queue 

𝐻0(𝑡) Remaining High-capacity service time 

𝐿0(𝑡) Remaining Low-capacity service time  

𝑉0(𝑡) Remaining vacation time  
  

 

Table 2. Symbols 

 

Parameter   CDF   PDF   LST  
    

High-capacity Service time   H   ℎ(𝑤)   𝐻̃(𝜏)  
Low-capacity Service time   L   𝑙(𝑤)   𝐿̃(𝜏)  

Vacation   V   𝑣(𝑤)   𝑉̃(𝜏)  
    

 

𝜓(𝑡)= [1] means the server is busy in High-capacity batch service, 𝜓(𝑡)= [2] means the server is busy in Low-capacity batch 

service, 𝜓(𝑡)= [3] means the server is on vacation.  

𝐻𝑚,𝑛(𝑤, 𝑡)𝑑𝑡 = Pr {
𝑁1(𝑡) = 𝑚, 𝑁2(𝑡) = 𝑛, 𝑤 ≤ 𝐻0(𝑡) < 𝑤 + 𝑑𝑡,

𝜓(𝑡) = 1
}    𝑎 ≤ 𝑚 ≤ 𝑏, 𝑛 ≥ 1, 

𝐿𝑚,𝑛(𝑤, 𝑡)𝑑𝑡 = Pr {
𝑁1(𝑡) = 𝑚, 𝑁2(𝑡) = 𝑛, 𝑤 ≤ 𝐿0(𝑡) < 𝑤 + 𝑑𝑡,

𝜓(𝑡) = 2
}      1 ≤ 𝑚 ≤ 𝑎 − 1, 𝑛 ≥ 1, 

𝑉𝑘,𝑗(𝑤, 𝑡)𝑑𝑡 = Pr {𝑍(𝑡) = 𝑘, 𝑁2(𝑡) = 𝑗, 𝑤 ≤ 𝑉0(𝑡) < 𝑤 + 𝑑𝑡, 𝜓(𝑡) = 3}    𝑘 ≥ 1, 𝑗 ≥ 0. 

3. Queue Size Distribution 
  

The Kolmogorov backward equation which describes the system is as follows: 

 

−𝐻𝑚,0
′ (𝑤) = −𝜆𝐻𝑚,0(𝑤) + ∑𝑎−1

𝑟=1 𝐿𝑟,𝑚(0)ℎ(𝑤) + ∑𝑏
𝑟=𝑎 𝐻𝑟,𝑚(0)ℎ(𝑤) + ∑∞

𝑘=1 𝑉𝑘,𝑚(0)ℎ(𝑤), 𝑎 ≤ 𝑚 ≤ 𝑏,  (1) 

 

−𝐻𝑚,𝑛
′ (𝑤) = −𝜆𝐻𝑚,𝑛(𝑤) + ∑𝑛

𝑑=1 𝐻𝑚,𝑛−𝑑(𝑤)𝜆𝑔𝑑 ,        𝑎 ≤ 𝑚 ≤ 𝑏 − 1, 𝑛 ≥ 1,  (2) 

 

−𝐻𝑏,𝑛
′ (𝑤) = −𝜆𝐻𝑏,𝑛(𝑤) + ∑𝑎−1

𝑟=1 𝐿𝑟,𝑏+𝑛(0)ℎ(𝑤) + ∑𝑏
𝑟=𝑎 𝐻𝑟,𝑏+𝑛(0)ℎ(𝑤) + ∑∞

𝑘=1 𝑉𝑘,𝑏+𝑛(0)ℎ(𝑤) + ∑𝑛
𝑑=1 𝐻𝑏,𝑛−𝑑(𝑤)𝜆𝑔𝑑 , 𝑛 ≥ 1,        (3) 

  

−𝐿𝑚,0
′ (𝑤) = −𝜆𝐿𝑚,0(𝑤) + ∑𝑎−1

𝑟=1 𝐿𝑟,𝑚(0)𝑙(𝑤) + ∑𝑏
𝑟=𝑎 𝐻𝑟,𝑚(0)𝑙(𝑤), 1 ≤ 𝑚 ≤ 𝑎 − 1, (4) 

 

−𝐿𝑚,𝑛
′ (𝑤) = −𝜆𝐿𝑚,𝑛(𝑤) + ∑𝑛

𝑑=1 𝐿𝑚,𝑛−𝑑(𝑤)𝜆𝑔𝑑 , 1 ≤ 𝑚 ≤ 𝑎 − 1, 𝑛 ≥ 1, (5) 

 

−𝑉1,0
′ (𝑤) = −𝜆𝑉1,0(𝑤) + ∑𝑎−1

𝑟=1 𝐿𝑟,0(0)𝑣(𝑤) + ∑𝑏
𝑟=𝑎 𝐻𝑟,0(0)𝑣(𝑤), (6) 

 

−𝑉1,𝑛
′ (𝑤) = −𝜆𝑉1,𝑛(𝑤) + ∑𝑛

𝑑=1 𝑉1,𝑛−𝑑(𝑤)𝜆𝑔𝑑 , 𝑛 ≥ 1, (7) 
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−𝑉𝑘,0
′ (𝑤) = −𝜆𝑉𝑘,0(𝑤) + 𝑉𝑘−1,0(0)𝑣(𝑤), 𝑘 ≥ 2, (8) 

 

−𝑉𝑘,𝑛
′ (𝑤) = −𝜆𝑉𝑘,𝑛(𝑤) + 𝑉𝑘−1,𝑛(0)𝑣(𝑤) + ∑𝑛

𝑑=1 𝑉𝑘,𝑛−𝑑(𝑤)𝜆𝑔𝑑 , 𝑘 ≥ 2,1 ≤ 𝑛 ≤ 𝑎 − 1, (9) 

 

−𝑉𝑘,𝑛
′ (𝑤) = −𝜆𝑉𝑘,𝑛(𝑤) + ∑𝑛

𝑑=1 𝑉𝑘,𝑛−𝑑(𝑤)𝜆𝑔𝑑 , 𝑘 ≥ 2, 𝑛 ≥ 𝑎. (10) 

 

While applying LST to the above equations (1) to (10), we get, 

 

𝜏𝐻̃𝑚,0(𝜏) − 𝐻𝑚,0(0) = 𝜆𝐻̃𝑚,0(𝜏) − ∑𝑎−1
𝑟=1 𝐿𝑟,𝑚(0)𝐻̃(𝜏) − ∑𝑏

𝑟=𝑎 𝐻𝑟,𝑚(0)𝐻̃(𝜏) − ∑∞
𝑘=1 𝑉𝑘,𝑚(0)𝐻̃(𝜏), 𝑎 ≤ 𝑚 ≤ 𝑏,                   (11) 

 

𝜏𝐻̃𝑚,𝑛(𝜏) − 𝐻𝑚,𝑛(0) = 𝜆𝐻̃𝑚,𝑛(𝜏) − ∑𝑛
𝑑=1 𝐻̃𝑚,𝑛−𝑑(𝜏)𝜆𝑔𝑑 , 𝑎 ≤ 𝑚 ≤ 𝑏 − 1, 𝑛 ≥ 1,             (12) 

 

𝜏𝐻̃𝑏,𝑛(𝜏) − 𝐻𝑏,𝑛(0) = 𝜆𝐻̃𝑏,𝑛(𝜏) − ∑𝑎−1
𝑟=1 𝐿𝑟,𝑏+𝑛(0)𝐻̃(𝜏) −  ∑𝑏

𝑟=𝑎 𝐻𝑟,𝑏+𝑛(0)𝐻̃(𝜏) −

∑∞
𝑘=1 𝑉𝑘,𝑏+𝑛(0)𝐻̃(𝜏) ∑𝑛

𝑑=1 𝐻̃𝑏,𝑛−𝑑(𝜏)𝜆𝑔𝑑 , 𝑛 ≥ 1, (13) 

 

𝜏𝐿̃𝑚,0(𝜏) − 𝐿𝑚,0(0) = 𝜆𝐿̃𝑚,0(𝜏) − ∑𝑎−1
𝑟=1 𝐿𝑟,𝑚(0)𝐿̃(𝜏) −  ∑𝑏

𝑟=𝑎 𝐻𝑟,𝑚(0)𝐿̃(𝜏),  1 ≤ 𝑚 ≤ 𝑎 − 1, (14) 

 

𝜏𝐿̃𝑚,𝑛(𝜏) − 𝐿𝑚,𝑛(0) = 𝜆𝐿̃𝑚,𝑛(𝜏) − ∑𝑛
𝑑=1 𝐿𝑚,𝑛−𝑑(𝜏)𝜆𝑔𝑑 , 1 ≤ 𝑚 ≤ 𝑎 − 1, 𝑛 ≥ 1, (15) 

 

𝜏𝑉̃1,0(𝜏) − 𝑉1,0(0) = 𝜆𝑉̃1,0(𝜏) − ∑𝑎−1
𝑟=1 𝐿𝑟,0(0)𝑉̃(𝜏) − ∑𝑏

𝑟=𝑎 𝐻𝑟,0(0)𝑉̃(𝜏), (16) 

 

𝜏𝑉̃1,𝑛(𝜏) − 𝑉1,𝑛(0) = 𝜆𝑉̃1,𝑛(𝜏) − ∑𝑛
𝑑=1 𝑉̃1,𝑛−𝑑(𝜏)𝜆𝑔𝑑 , 𝑛 ≥ 1, (17) 

 

𝜏𝑉̃𝑘,0(𝜏) − 𝑉𝑘,0(0) = 𝜆𝑉̃𝑘,0(𝜏) − 𝑉𝑘−1,0(0)𝑉̃(𝜏), 𝑘 ≥ 2, (18) 

 

𝜏𝑉̃𝑘,𝑛(𝜏) − 𝑉𝑘,𝑛(0) = 𝜆𝑉̃𝑘,𝑛(𝜏) − 𝑉𝑘−1,𝑛(0)𝑉̃(𝜏) − ∑𝑛
𝑑=1 𝑉̃𝑘,𝑛−𝑑(𝜏)𝜆𝑔𝑑 , 𝑘 ≥ 2, 1 ≤ 𝑛 ≤ 𝑎 − 1,      (19) 

 

𝜏𝑉̃𝑘,𝑛(𝜏) − 𝑉𝑘,𝑛(0) = 𝜆𝑉̃𝑘,𝑛(𝜏) − ∑𝑛
𝑑=1 𝑉̃𝑘,𝑛−𝑑(𝜏)𝜆𝑔𝑑 , 𝑘 ≥ 2, 𝑛 ≥ 𝑎. (20) 

 

Let us define the following PGFs: 

 

𝐻̃𝑚(z, 𝜏) = ∑∞
𝑛=0 𝐻̃𝑚,𝑛(𝜏)z𝑛,   𝐻𝑚(z, 0) = ∑∞

𝑛=0 𝐻𝑚,𝑛(0)z𝑛, 𝑎 ≤ 𝑚 ≤ 𝑏,  
 

𝐿̃𝑚(z, 𝜏) = ∑∞
𝑛=0 𝐿̃𝑚,𝑛(𝜏)z𝑛,   𝐿𝑚(z, 0) = ∑∞

𝑛=0 𝐿𝑚,𝑛(0)z𝑛, 1 ≤ 𝑚 ≤ 𝑎 − 1, (21) 

  

𝑉̃𝑘(z, 𝜏) = ∑∞
𝑛=0 𝑉̃𝑘,𝑛(𝜏)z𝑛,   𝑉𝑘(z, 0) = ∑∞

𝑛=0 𝑉𝑘,𝑛(0)z𝑛, 𝑘 ≥ 1.  
 

After some mathematical manipulations, we get, 

 

(𝜏 − 𝜙(z))𝐻̃𝑛(z, 𝜏) = 𝐻𝑛(z, 0) − 𝐻̃(𝜏)[∑𝑎−1
𝑟=1 𝐿𝑟,𝑛(0) + ∑𝑏

𝑟=𝑎 𝐻𝑟,𝑛(0) + ∑∞
𝑘=1 𝑉𝑘,𝑛(0)], 𝑎 ≤ 𝑛 ≤ 𝑏 − 1,                          (22) 

 

𝑧𝑏(𝜏 − 𝜙(z))𝐻̃𝑏(z, 𝜏) = (𝑧𝑏 − 𝐻̃(𝜏))𝐻𝑏(z, 0) − 𝐻̃(𝜏){∑𝑎−1
𝑟=1 𝐿𝑟(𝑧, 0) + ∑𝑏−1

𝑟=𝑎 𝐻𝑟(𝑧, 0)     + ∑∞
𝑘=1 𝑉𝑘(𝑧, 0) −

∑𝑏−1
𝑛=0 [∑𝑎−1

𝑟=1 𝐿𝑟,𝑛(0)𝑧𝑛 + ∑𝑏
𝑟=𝑎 𝐻𝑟,𝑛(0)𝑧𝑛 + ∑∞

𝑘=1 𝑉𝑘,𝑛(0)𝑧𝑛]},               (23) 

 

(𝜏 − 𝜙(z))𝐿̃𝑛(z, 𝜏) = 𝐿𝑛(z, 0) − 𝐿̃(𝜏)[∑𝑎−1
𝑟=1 𝐿𝑟,𝑛(0) + ∑𝑏

𝑟=𝑎 𝐻𝑟,𝑛(0)], 1 ≤ 𝑛 ≤ 𝑎 − 1,             (24) 

 

(𝜏 − 𝜙(z))𝑉̃1(z, 𝜏) = 𝑉1(z, 0) − 𝑉̃(𝜏)[∑𝑎−1
𝑟=1 𝐿𝑟,0(0) + ∑𝑏

𝑟=𝑎 𝐻𝑟,0(0)],              (25) 

 

(𝜏 − 𝜙(z))𝑉̃𝑘(z, 𝜏) = 𝑉𝑘(z, 0) − 𝑉̃(𝜏)[∑𝑎−1
𝑛=0 𝑉𝑘−1,0(0)𝑧𝑛], 𝑘 ≥ 2.               (26) 

where 𝜙(z) = 𝜆 − 𝜆𝑋(z). 
 

Substitute 𝜏 = 𝜙(z) in (22) to (26), to get,  

 

𝐻𝑛(z, 0) = 𝐻̃(𝜙(z))[∑𝑎−1
𝑟=1 𝐿𝑟,𝑛(0) + ∑𝑏

𝑟=𝑎 𝐻𝑟,𝑛(0) + ∑∞
𝑙=1 𝑉𝑘,𝑛(0)], 𝑎 ≤ 𝑛 ≤ 𝑏 − 1,             (27) 

 

𝐻𝑏(z, 0) =
𝐻̃(𝜙(z))

(𝑧𝑏−𝐻̃(𝜙(z)))
{∑𝑎−1

𝑟=1 𝐿𝑟(𝑧, 0) + ∑𝑏−1
𝑟=𝑎 𝐻𝑟(𝑧, 0) + ∑∞

𝑙=1 𝑉𝑘(𝑧, 0) − ∑𝑏−1
𝑛=0 [∑𝑎−1

𝑟=1 𝐿𝑟,𝑛(0)𝑧𝑛 + ∑𝑏
𝑟=𝑎 𝐻𝑟,𝑛(0)𝑧𝑛 +

∑∞
𝑙=1 𝑉𝑘,𝑛(0)𝑧𝑛]},                    (28) 
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𝐿𝑛(z, 0) = 𝐿̃(𝜙(z))[∑𝑎−1
𝑟=1 𝐿𝑟,𝑛(0) + ∑𝑏

𝑟=𝑎 𝐻𝑟,𝑛(0)],1 ≤ 𝑛 ≤ 𝑎 − 1,                (29) 

 

𝑉1(z, 0) = 𝑉̃(𝜙(z))[∑𝑎−1
𝑟=1 𝐿𝑟,0(0) + ∑𝑏

𝑟=𝑎 𝐻𝑟,0(0)],                (30) 

 

𝑉𝑘(z, 0) = 𝑉̃(𝜙(z))[∑𝑎−1
𝑛=0 𝑉𝑘−1,0(0)𝑧𝑛], 𝑘 ≥ 2.                  (31) 

 

After the substitution of (27) to (31) in (22) to (26) respectively then substitute 𝜏 = 0, to get,  

 

𝐻̃𝑛(z, 0) =
1−𝐻̃(𝜙(z))

𝜙(z)
(𝑑𝑛 + 𝑞𝑛), 𝑎 ≤ 𝑛 ≤ 𝑏 − 1,                 (32) 

 

𝐻̃𝑏(z, 0) =
(1−𝐻̃(𝜙(z)))

(𝜙(z))(𝑧𝑏−𝐻̃(𝜙(z)))
{𝐿̃(𝜙(z)) ∑𝑎−1

𝑛=1 𝑑𝑛 + 𝐻̃(𝜙(z)) ∑𝑏−1
𝑛=𝑎 (𝑑𝑛 + 𝑞𝑛) + 𝑉̃(𝜙(z))(𝑑0 + ∑𝑎−1

𝑛=0 𝑞𝑛𝑧𝑛)  

+ ∑𝑏−1
𝑛=0 (𝑑𝑛𝑧𝑛 + 𝑞𝑛𝑧𝑛)                   (33) 

 

𝐿̃𝑛(z, 0) =
1−𝐿̃(𝜙(z))

𝜙(z)
𝑑𝑛 , 1 ≤ 𝑛 ≤ 𝑎 − 1,                   (34) 

 

𝑉̃1(z, 0) =
1−𝑉(𝜙(z))

𝜙(z)
𝑑0,                   (35) 

 

𝑉̃𝑘(z, 0) =
1−𝑉(𝜙(z))

𝜙(z)
∑𝑎−1

𝑛=0 𝑉𝑘−1,0(0)𝑧𝑛 , 𝑘 ≥ 2.                 (36) 

where ∑𝑎−1
𝑟=1 𝐿𝑟,𝑛(0) + ∑𝑏

𝑟=𝑎 𝐻𝑟,𝑛(0) = 𝑑𝑛  and ∑∞
𝑙=1 𝑉𝑘,𝑛(0) = 𝑞𝑛.  

 

4. Probability Generating Function of the Queue Size 
 

Consider P(z) as the function representing the probability of having a specific number of customers in the queue at any 

random time in the proposed model. Then,  

 

𝑃(𝑧) = ∑𝑎−1
𝑟=1 𝐿̃𝑟(𝑧, 0) + ∑𝑏

𝑟=𝑎 𝐻̃𝑟(𝑧, 0) + ∑∞
𝑘=1 𝑉̃𝑘(𝑧, 0).                         (37) 

 

The probability generating function is obtained as:  

 

𝑃(𝑧) =

[((𝑧𝑏−𝐻̃(𝜙(z)))+𝐿̃(𝜙(z))(1−𝑧𝑏)) ∑𝑎−1
𝑛=1 𝑑𝑛+(1−𝐻̃(𝜙(z))) ∑𝑏−1

𝑛=𝑎 (𝑧𝑏−𝑧𝑛)𝑝𝑛

+(𝑧𝑏−1)(1−𝑉(𝜙(z)))[𝑑0+∑𝑎−1
𝑛=0 𝑞𝑛𝑧𝑛]−(1−𝐻̃(𝜙(z))) ∑𝑎−1

𝑛=1 𝑑𝑛𝑧𝑛]

𝜙(z)(𝑧𝑏−𝐻̃(𝜙(z)))
.
              (38) 

 

A particular case: when 𝑎 =  𝑏 =  1 and no Low-batch service, then probability generating function of the proposed queueing 

model becomes 

 𝑃(𝑧) =
(z−1)(1−𝑉(𝜙(z)))(d0+𝑞0)

𝜙(z)(z−𝐻̃(𝜙(z)))
. 

 

This coincides with 𝑀[𝑋]/𝐺/1 queueing system with multiple vacations. The result coincides with the queue size distribution of 

Lee et al. (1994) with N=1. 

 

4.1 Steady state condition 
 

The PGF of the queue length has to satisfy P(1) = 1, for which we apply L  Hospital s rule and evaluating lim
𝑧→1

𝑃(𝑧)  z1P(z), 

then equating to 1, we have, 𝑁′′ =  𝐷′′. Since 𝑑𝑟, 𝑝𝑟, and 𝑞𝑟 represents the probabilities of ‘r  customers waiting in the queue, it 

follows that 𝑁′′ must be positive. Thus P(1) = 1 is satisfied iff 𝐷′′ > 0. The inequality 

𝜌 =
𝜆𝑋1𝐸(𝐻)

𝑏
< 1                    (39) 

is the stability condition for the proposed model.  
 

4.2 Computational aspects 
 

Equation (38)   has 𝑏 + 𝑎  unknowns 𝑑0, 𝑑1, . . . , 𝑑𝑎−1, 𝑞0, . . . , 𝑞𝑎−1,  and 𝑝𝑎, 𝑝𝑎+1, . . . , 𝑝𝑏−1 . We can express 𝑞𝑖(𝑖 =
0,1, . . . , 𝑎 − 1) in terms of 𝑑0 so that the numerator has only b constants. Now from equation (38) which is PGF of number of 

customers involving b unknowns. By Rouches s theorem (𝑧𝑏 − 𝐻̃(𝜙(z))) has one zero on the boundary and b-1 inside the unit 

circle. Due to P(z) being analytic, the numerator must vanish at that points and give b equations with b unknowns, which can be 

solved by a numerical technique. 
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4.3 Result 
 

Let 𝑞𝑛 can be expressed in terms of 𝑑0 as  

𝑞𝑛 =
𝛽𝑛

(1 − 𝛽0)
𝑑0 +

∑𝑛
𝑟=1 𝛽𝑟𝑞𝑛−𝑟

(1 − 𝛽0)
, 𝑛 = 1,2, . . . , 𝑎 − 1, 

where 𝑞0 =
𝛽0

1 − 𝛽0
𝑑0 

 𝛽𝑖
′𝑠 are the probabilities of the 'i' customers arriving during multiple vacation times.  

  

4.4 PGF of queue size at various completion epochs 
 

Low-capacity batch service:  Let 𝑃𝐿(𝑧) be the probability that the server is in the busy Low-capacity batch service at time t.  

From equation (34)  

 

𝑃𝐿(𝑧) =
(1−𝐿̃(𝜙(z)))[∑𝑎−1

𝑟=1 𝑑𝑟]

𝜙(z)
.                 (40) 

 

High-capacity batch service: Let 𝑃𝐻(𝑧) be the probability that the server is in the busy High-capacity batch service at time t. 

From equations (32) and (33)  

 

𝑃𝐻(𝑧) =

(1−𝐻̃(𝜙(z)))[(𝑧𝑏−𝐻̃(𝜙(z))) ∑𝑏−1
𝑟=𝑎 𝑝𝑟+𝐿̃(𝜙(z)) ∑𝑎−1

𝑛=1 𝑑𝑛

+𝐻̃(𝜙(z)) ∑𝑏−1
𝑟=𝑎 𝑝𝑟+𝑉(𝜙(z))[𝑑0+∑𝑎−1

𝑛=0 𝑞𝑛𝑧𝑛]−∑𝑏−1
𝑛=0 𝑝𝑛𝑧𝑛]

𝜙(z)(𝑧𝑏−𝐻̃(𝜙(z)))
.
               (41) 

 

Service completion: Let 𝑃𝑆(𝑧) be the probability that the server s service completion  at time t.  

From equations (32), (33) and (34)  

 

𝑃𝑆(𝑧) =

[(𝑧𝑏−𝐻̃(𝜙(z)))[(1−𝐿̃(𝜙(z))) ∑𝑎−1
𝑟=1 𝑑𝑟+((1−𝐻̃(𝜙(z)))) ∑𝑏−1

𝑟=𝑎 𝑝𝑟]

+(1−𝐻̃(𝜙(z))){𝐿̃(𝜙(z)) ∑𝑎−1
𝑛=1 𝑑𝑛+𝐻̃(𝜙(z)) ∑𝑏−1

𝑟=𝑎 𝑝𝑟−∑𝑏−1
𝑛=0 𝑝𝑛𝑧𝑛

+𝑉(𝜙(z))[𝑑0+∑𝑎−1
𝑛=0 𝑞𝑛𝑧𝑛]}]

𝜙(z)(𝑧𝑏−𝐻̃(𝜙(z)))
.
              (42) 

 

Vacation completion:  Let 𝑃𝑉(𝑧) be the probability that the server is on vacation at time t. From equations (35) and (36)  

 

𝑃𝑉(𝑧) =
(1−𝑉(𝜙(z)))

𝜙(z))
[𝑑0 + ∑𝑎−1

𝑛=0 𝑞𝑛𝑧𝑛].                 (43) 

 

4.5 Probability of various server states 
 

The server on vacation:  

 

lim
𝑧→1

𝑉̃(𝑧, 0) =  𝑃(𝑉) = 𝐸(𝑉)[𝑑0 + ∑𝑎−1
𝑛=0 𝑞𝑛𝑧𝑛].                (44) 

 

The server is busy:  

 

lim
𝑧→1

[∑ 𝐿̃𝑟(𝑧, 0)𝑎−1
𝑟=1 ∑ 𝐻̃𝑟(𝑧, 0)𝑏−1

𝑟=𝑎 ] = 𝑃(𝐵)  =
𝑏(𝐿1 ∑𝑎−1

𝑟=1 𝑑𝑟+𝐻1 ∑𝑏−1
𝑟=𝑎 𝑝𝑟)+𝐻1{𝑉1(𝑑0+∑𝑎−1

𝑛=0 𝑞𝑛𝑧𝑛)+∑𝑎−1
𝑛=0 𝑛𝑞𝑛−∑𝑏−1

𝑛=0 𝑛𝑝𝑛}

𝜆𝑋1(𝑏−𝐶1)
           (45) 

 

4.6 Performance measures 
 

The expected length of the idle period: Let I is the random variable denoting the ‘Idle period due to multiple vacation process . 

Let Y be the random variable defined by 

 

𝑌 = {
0  𝑖𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑓𝑖𝑛𝑑𝑠 𝑎𝑡𝑙𝑒𝑎𝑠𝑡 ′𝑎′𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛 

1  𝑖𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑓𝑖𝑛𝑑𝑠 𝑙𝑒𝑠𝑠 ′𝑎′𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛
 

Now 

𝐸(𝐼)  =  𝐸(𝐼 / 𝑌 =  0) 𝑃(𝑌 =  0)  +  𝐸(𝐼 / 𝑌 =  1) 𝑃(𝑌 =  1) 

       =  𝐸(𝑉) 𝑃(𝑌 =  0)  +  (𝐸(𝑉)  +  𝐸(𝐼)) 𝑃(𝑌 =  1) 

Solving for 𝐸(𝐼), we get 

 

𝐸(𝐼) =
𝐸(𝑉)

1−𝑃(𝑌 = 1)
=

𝐸(𝑉)

1−∑𝑎−1
𝑛=0 𝛽𝑛𝑑0

                  (46) 
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The mean queue length: The mean queue length: The expected length of the queue E(Q) at an arbitrary time epoch, is obtained by 

differentiating P(z) at z=1 and is given by lim
𝑧→1

𝑃(𝑧) = 𝐸(𝑄)    

 

𝐸(𝑄) =
𝑁𝑟(𝐼𝐼𝐼)𝐷𝑟(𝐼𝐼)−𝑁𝑟(𝐼𝐼)𝐷𝑟(𝐼𝐼𝐼)

3(𝐷𝑟(𝐼𝐼))2
,                  (47) 

where  

𝑁𝑟(𝐼𝐼) = −(2𝑏𝐿1 − 2𝐻1) ∑𝑎−1
𝑟=1 𝑑𝑟 − 2𝐻1 ∑𝑏−1

𝑟=𝑎 (𝑏 − 𝑟)𝑝𝑟 − 2𝑏𝑉1(𝑑0 + ∑𝑎−1
𝑛=0 𝑞𝑛),  

𝑁𝑟(𝐼𝐼𝐼) = −(𝐻2 + 3(𝑏𝐿2 + 𝑏(𝑏 − 1)𝐿1)) ∑𝑎−1
𝑟=1 𝑑𝑟 + (𝐻3 ∑𝑎−1

𝑟=1 𝑑𝑟 + 3(𝐻2 ∑𝑎−1
𝑟=1 𝑟𝑑𝑟 + 𝐻1 ∑𝑎−1

𝑟=1 𝑟(𝑟 − 1)𝑑𝑟))   

  −3(𝐻2 ∑𝑏−1
𝑟=𝑎 (−𝑟)𝑝𝑟 + 𝐻1 ∑𝑏−1

𝑟=𝑎 (𝑏(𝑏 − 1) − 𝑟(𝑟 − 1))𝑝𝑟) − 6𝑏𝑉1 ∑𝑎−1
𝑟=0 𝑟𝑞𝑟  

  −3(𝑏𝑉2 + 𝑏(𝑏 − 1)𝑉1)(𝑑0 + ∑𝑎−1
𝑛=0 𝑞𝑛),  

𝐷𝑟(𝐼𝐼) = −𝜆𝑋1(𝑏 − 𝐻1), 
𝐷𝑟(𝐼𝐼𝐼) = −3{𝜆𝑋2(𝑏 − 𝐻1) + 𝜆𝑋1[𝑏(𝑏 − 1) − 𝐻2]}. 

 

5. Cost Model 
 

The cost function incorporates the following cost components per unit of time, which are given in Table 3.  
 

Table 3. Cost components per unit of time 
 

  

𝐶0 The operating cost per unit of time 

𝐶ℎ The holding cost per unit time for each unit of the system. 

𝐶𝑟 The reward per unit of time due to vacation 

𝐶𝑠 The start-up cost 
  

 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑠𝑡 =
𝐶𝑠−𝐶𝑟𝐸(𝐼)

𝐸(𝑇𝑐)
+ 𝐶ℎ𝐸(𝑄) + 𝐶0𝜌                (48) 

where expected length of cycle 𝐸(𝑇𝑐) =
𝐸(𝑉)

1−∑𝑎−1
𝑛=0 𝛽𝑛𝑑0

+ [𝐸(𝐿) − 𝐸(𝐻)] +
𝐸(𝐻)

[𝑑0+∑𝑎−1
𝑛=0 𝑞𝑛]

. 

 

6. Numerical Illustration 
 

Numerical methods are employed to estimate the unknown chances of different queue sizes.The roots of the equation 

(𝑧𝑏 − 𝐻̃(𝜙(z))) are obtained and solved in MATLAB. A numerical example is presented with these assumptions:   

1. The arrivals come in batches with a geometric distribution and an average of 2.  

2.  The service time for both low and high-capacity batches follows a 2-Erlang distribution 

3.  The vacation time follows an exponential distribution with a parameter 𝛾 = 5.  

The effects on performance characteristics from varying the system parameters, arrival rate (λ), server’s service rate (µ1) 

with 𝜇2 ≠ 0 and µ2  =  0 are analyzed. The service times for both low and high-capacity batches follow a 2-Erlang distribution 

and Server’s vacation time follows an exponential distribution.  

The results have been analyzed in tabular forms and two-dimensional graphs. The stability condition is satisfied for 

arbitrary chosen values with a minimum service capacity a=5, maximum service capacity b=10. 

The effect of increasing arrival rate (λ) is shown in Table 4 and Figures 2 and 3. Thus, if the arrival rate increases the 

stability condition (ρ), mean queue length (E(Q)), mean waiting time (E(W)) are increasing and mean Idle time E(I) is decreasing. 
  

Table 4. Arrival rate influences performance measures (Let 𝜇1 = 25, 𝜇2 = 15 𝑎𝑛𝑑 𝛾 = 5) 
 

𝜆 𝜌 𝐸(𝑄) 𝐸(𝑊) 𝐸(𝐼) 
     

10.0 0.160 57.8939 2.8947 0.6023 

10.5 0.168 62.3707 2.9700 0.5650 

11.0 0.176 67.0076 3.0458 0.5330 
11.5 0.184 71.8137 3.1223 0.5051 

12.0 0.192 76.8001 3.2000 0.4807 

12.5 0.200 81.9785 3.2791 0.4591 

13.0 0.208 87.3615 3.3601 0.4399 

13.5 0.216 92.9628 3.4431 0.4227 

14.0 0.224 98.7973 3.5285 0.4072 
14.5 0.232 104.8810 3.6166 0.3931 

15.0 0.240 111.2320 3.7077 0.3804 

15.5 0.248 117.8690 3.8022 0.3687 
16.0 0.256 124.8130 3.9004 0.3581 

16.5 0.264 132.0880 4.0027 0.3482 

17.0 0.272 139.7170 4.1093 0.3392 
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Figure 2. Performance measures vs. arrival rate Figure 3. 𝐸(𝑄) vs. arrival rate 

 

The increase in the server s service rate (µ1) with 𝜇2 ≠ 0  leads to decreases of ρ, E(Q), E(W) and increases E(I) as given 

in Table 5 and Figures 4 and 5. Similarly, Table 6 and Figures 6 and 7 depict that server’s service rate (µ1) with µ2 = 0 leads to 

decreases of ρ, E(Q), E(W) and increases E(I).   

Table 5 assumes a low-capacity batch service, while Table 6 assumes no low-capacity batch service. The numerical 

results show that as the service rate increases, both queue length and waiting time decrease in Table 5, being lower than in Table 

6. 
 

Table 5. High-capacity batch service rate influences performance measures (Let 𝜆 = 10, 𝜇2 = 15 and 𝛾 = 5) 
 

   𝜇1    𝜌    𝐸𝑄    𝐸𝑊    𝐸𝐼  

     

 18.00   0.2222   47.1218   2.3561   0.4905  

 18.25   0.2192   46.8030   2.3402   0.4951  

 18.50   0.2162   46.4992   2.3250   0.4997  
 18.75   0.2133   46.2093   2.3105   0.5042  

 19.00   0.2105   45.9324   2.2966   0.5087  
 19.25   0.2078   45.6679   2.2834   0.5131  

 19.50   0.2051   45.4148   2.2707   0.5175  

 19.75   0.2025   45.1726   2.2586   0.5218  
 20.00   0.2000   44.9405   2.2470   0.5261  

 20.25   0.1975   44.7181   2.2359   0.5303  

 20.50   0.1951   44.5047   2.2252   0.5345  
 20.75   0.1928   44.2998   2.2150   0.5386  

 21.00   0.1905   44.1030   2.2052   0.5427  

 21.25   0.1882   43.9138   2.1957   0.5468  
 21.50   0.1860   43.7318   2.1866   0.5508  

 21.75   0.1839   43.5566   2.1778   0.5547  

 22.00   0.1818   43.3878   2.1694   0.5586  
 22.25   0.1798   43.2252   2.1613   0.5625  

 22.50   0.1778   43.0684   2.1534   0.5663  

 22.75   0.1758   42.9171   2.1459   0.5701  
 23.00   0.1739   42.7710   2.1386   0.5738  

 23.25   0.1720   42.6299   2.1315   0.5775  

 23.50   0.1702   42.4935   2.1247   0.5812  
     

 

  
  

Figure 4. Performance measures vs. service rate (𝜇1) Figure 5. 𝐸(𝑄) vs. service rate (𝜇1) 
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Table 6. High-capacity batch service rate influences performance measures (Let 𝜆 = 10, 𝜇2 = 0 and 𝛾 = 5) 

 

   𝜇1    𝜌    𝐸𝑄    𝐸𝑊    𝐸𝐼  

     

 18.00   0.2222   69.9624   3.4981   11.4185  

 18.25   0.2192   69.3820   3.4691   12.4678  

 18.50   0.2162   68.8272   3.4414   13.6738  
 18.75   0.2133   68.2956   3.4148   15.0631  

 19.00   0.2105   67.7866   3.3893   16.6930  

 19.25   0.2078   67.2987   3.3649   18.6266  
 19.50   0.2051   66.8308   3.3415   20.9651  

 19.75   0.2025   66.3809   3.3191   23.8061  

 20.00   0.2000   65.9491   3.2975   27.3888  
 20.25   0.1975   65.5338   3.2767   32.0033  

 20.50   0.1951   65.1339   3.2567   38.1495  

 20.75   0.1928   64.7495   3.2375   46.8538  
 21.00   0.1905   64.3786   3.2189   59.8671  

 21.25   0.1882   64.0213   3.2011   81.7738  

 21.50   0.1860   63.6764   3.1838   125.7630  

 21.75   0.1839   63.3440   3.1672   262.7660  
     

 

  
  

Figure 6. Performance measures vs. service rate (𝜇1) Figure 7. 𝐸(𝑄) vs. service rate (𝜇1) 

 

7. Conclusions 
 

The bulk service queuing system with queue length-

dependent service and multiple vacations using the 

supplementary variable technique was investigated. A 

probability-generating function for the queue length, expected 

busy period, idle period, and waiting time was derived. 

MATLAB software was used for detailed numerical 

illustrations. 

The analysis done assessed mean queue length, mean 

waiting time, and mean idle period. Table 5 assumes a low-

capacity batch service, Table 6 assumes no low-capacity batch 

service. The numerical results show that as the service rate 

increases both queue length and waiting time decrease with the 

expected queue length and waiting time in Table 5 being lower 

than in Table 6. 

In manufacturing industries, low quantities of raw 

materials delay the production, increasing the consumer 

waiting time. Providing low-capacity batch service can reduce 

queue length and waiting time, making this model applicable to 

real-world scenarios with similar complexities. 
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