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Abstract

COVID-19 first appeared in Wuhan, China, in late 2019. The disease quickly spread globally, causing a pandemic. This
study provides an overview of the COVID-19 endemic in Indonesia through a mathematical model. One of the analysis results is
the basic reproduction ratio, which is used to predict the model dynamics in the future. Based on parameter estimation and data
fitting, the basic reproduction ratio is 0.184492232. Sensitivity analysis was used to determine the importance of each model
parameter in the spread of the disease. The result is that the infection rate and the level of quarantine of infected people play
significant roles in the dynamics of this epidemic. Next, these two parameters are defined as fuzzy membership functions using
temperature as the firm number. Based on the results of the model analysis, government policy has a significant role in preventing
the spread of COVID-19. This can be seen from the high infection rate, but the outbreak can subside. The novelty of this research
includes quarantine for incoming populations, analysis of a model with dimensionless variables in a non-constant population, and

fuzzy membership function definitions using temperature as a reference.
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1. Introduction

COVID-19, caused by the SARS-CoV-2 virus,
emerged in Wuhan City, Hubei Province, China, in December
2019, and was initially linked to a seafood market (Zhou et al.,
2020). Factors contributing to its rapid spread included
international travel (Sharun et al., 2021), limited early
surveillance, delayed response efforts (Shangguan, Wang, &
Sun, 2020), and community behaviors such as non-compliance
with health protocols like mask-wearing, social distancing, and
self-isolation (Haischer et al., 2020; Muto, Yamamoto, Nagasu,
Tanaka, & Wada, 2020).

On March 2", 2020, the Indonesian Government
reported the first COVID-19 case among its citizens in DKI
Jakarta (Sofian & Lestari, 2021). COVID-19 cases in Indonesia
fluctuate due to factors such as government policies, public
adherence to health protocols, and the emergence of virus
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variants. Indonesian government responses have included
social restrictions, health protocol enforcement, and mass
vaccination campaigns. The effectiveness of these measures
varies based on implementation, community compliance, and
other factors (Rozigin, Mas’udi, & Sihidi, 2021).

Several mathematical models have been developed
by researchers. Estrada (2020) has reviewed three main areas
of research related to SARS-CoV-2 and COVID-19 modeling,
namely: (1) epidemiology; (2) drug repurposing; and (3)
vaccine development. The purpose of this review is to present
the most relevant literature on virus modeling strategies so that
it can help modelers navigate the ever-growing literature and
find the most appropriate strategies to apply in emergencies
when facing future pandemics. Ouaziz and Khomssi (2024)
introduced the SEINRH where S; is sensitive, E; is
unprotected, I is contaminated or exhibiting indications, I,4
denotes those who are ill but are not yet officially diagnosed, R
is recuperated individuals and H is healthy persons. Kucharski
et al. (2020) introduced the SEIT model, where T denotes
transferred individuals (isolated, recovered, or no longer
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infectious). Chatterjee, Chatterjee, Kumar, and Shankar (2020)
explored the SEIQRD model with Quarantine (Q) and Died
(D). Abdy, Side, Annas, Nur, and Sanusi (2021) devised a SIR
model incorporating fuzzy parameters. Based on Chatterjee et
al. (2020) and Abdy et al. (2021), we construct a mathematical
model for the COVID-19 epidemic in Indonesia, incorporating
government policies such as immigration quarantine,
vaccination, quarantine for infected individuals, and health
protocol enforcement. The novelty of this research includes
quarantine for incoming populations, analysis of a model with
dimensionless variables in a non-constant population, and
fuzzy membership function definitions using temperature as a
reference.

2. Materials and Methods

2.1 Model formulation

The transfer diagram of the model can be seen in
Figure 1. The meaning of every parameter is given in Table 1.
Some parameters can be controlled, like B, a, py, p2, p3, and p,.

The definition of every variable is given. S, I, and R
are the number of susceptible, infected, and recovered persons
respectively. Q; is the number of persons who enter the
population and take quarantine. Qr is the number of
quarantined infected persons. In this research, we followed
Castafieda et al. (2023) in that the increase in new individuals
(either through immigration or births) is proportional to the
total population. We assumed that the birth and the natural
death rates have the same value, which means that birth and
natural death rates are not considered in population dynamics.
In Castafieda et al. (2023), an analysis was conducted on a
model with the birth and natural death rates having the same
value but without immigration so that the resulting population
dynamics are different from this study. We have also assumed
the death rate because of infection of the quarantine-infected
group is too small, and all immigration persons must be
quarantined. Hence, w = u, m, = 0, and p; = 1, then based
on Figure 1, we got
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Based on the research of Mena-Lorca and Hetheote (1992), we
define dimensionless variables of System (1) as follows
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Using a similar concept to calculate ﬁ ﬂ %, and i—':, we get
System (2)
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We give the initial condition of every variable in System (2)
such that

Q,(0) 20,5(0) =0,1(0) > 0,Q7(0) =0,and R(0) =0 (3)
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Figure 1. The transfer diagram of the QSIQR mathematical model

Table 1.  The definition of the parameter in the model
Parameter Definition
B The rate of persons entering the population from
immigration
P1 The proportion of persons quarantined from
immigration
2 The proportion of quarantined persons free from
infection
w The birth rate
u The natural death rate
D3 The vaccination rate of susceptible persons
a The rate of persons out of quarantine
B The infection rate of susceptible persons
n The effectiveness of vaccination
my,m, The death rate because of infection
Ds The rate of infected persons who get quarantine and
treatments
y The recovery rate of the quarantined person
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2.2 Existence and boundedness of solution of the
system.

Let f = (f1, f2, f5, fa, Fs) Where f; is the right side of
System (2) and i is the ith row, i = 1,2,..,5. Let DS =
{xe R%:x=(Q4,5,1,Qr,R),0<Qy,5,1,Qr,R<1} . The
function f;,i = 1,2,...5 has continuous first derivative then
feC'(D). Because f € C'(D}) then f: D} - R® is locally
Lipschitz on D3.

Proposition 1.

System (2) with initial conditions (3) has the solution
in interval [0, o) and the solution of System (2) is nonnegative
forallt > 0.

Proof.

The solution of System (2) with initial conditions (3)
exists on [0,w) where 0<w<o because f=

(fu, for f5 fur f5) € C' (DY) where fi, f5, ..., f5 are the right side
of the System (2) is locally Lipschitz on D$. By using the lower
bound of every equation in the System (2) (Onyango, 2022), we
get

Q1(t) = Q,(0)e~EB+u+alt > ¢

S(t) > 5(0)6—f;([ﬁ(1—npa)-m1]1—(5+u+np3))dr >0

1(t) = 1(0)e~BFr+mitpa)t >

Qr(t) = Qr(0)e~B+ut > 0

R(t) = R(0)e~B+Wt > 0
with the initial conditions (3). Hence, we have completed the
proof.

2.3 Parameter estimation and data fitting

System (2) was fitted to cumulative infection data in
Indonesia from June 13™ to November 30™, 2021, as reported
by Hendratno (2022), chosen due to the outbreak's peak during
this period. The quarantine duration for incoming individuals
ranges from 7 to 14 days, resulting in a values between
0.07142 and 0.14286. Indonesia's total population is
270,203,917 (Badan Pusat Statistik [BPS], 2020), with an
average daily immigration of 4,403.8307 persons from
September 2020 to November 2021 (BPS, 2021). Parameters
B, p2, and p, were estimated using the fourth-order Runge-
Kutta Method, yielding 8 = 0.97,p, = 0.99, and p, = 0.9.
We also got MAPE= 0.27389122477722383 and MSE=
4.703216574231331e-09. Based on the MAPE value, the
average prediction error is about 27.39% of the actual value.
The very small MSE indicates that the absolute error is very
small, indicating that the model is quite accurate, although the
MAPE shows a relatively large percentage error. This may be
due to some small actual values resulting in a high percentage
error. A graphic of I data versus I estimation is given in Figure
2. The values of all parameters are given in Table 2.

2.4 Sensitivity analysis

Sensitivity analysis was carried out to determine the
importance of each model parameter in the spread of disease
(Marino, Hogue, Ray, & Kirschner, 2008). The sensitivity

index is used to assess the influence of each parameter on the
spread of disease. The sensitivity index or Normalized
sensitivity index is obtained from the normalized sensitivity
index of variable V, differentiated by parameter p, defined as
follows:

y == 4)

where V is the variable to be analysed, and p is the parameter
(Chitnis, 2005).
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Figure 2. Plot of I data and I estimation

Table 2. The value of the parameter in the model
Parameter Value References
B 0.000016298 (BPS, 2020)
u 0.0000357 (Resmawan, Nuha,
& Yahya, 2021)
a 0.071428571 Assumed
my 0.001946408 (Hendratno, 2022)
2 0.99 Assumed
B 0.97 Assumed
n 0.95 (Nasir, Joyosemito, Boerman,
& Ismaniah, 2021)
D3 0.000263158 (Nasir et al., 2021)
Ds 0.9 Assumed
y 0.063065477 (Hendratno, 2022)

2.5 The membership function of the fuzzy
parameter

In this research, we will define some parameters as
membership functions of fuzzy parameters. Some epidemic
mathematics models like Abdy et al. (2021), Verma, Tiwari,
and Upadhyay (2018), and Nandi, Jana, Manadal, and Kar
(2018) used the virus load (virus amount) as a crisp number. In
this research, we will use temperature as a crisp number. Abdy
et al. (2021) stated that the uncertain parameters or fuzzy
parameters are very important because uncertainty in
parameters and heterogeneity in the population are very
possible to occur. Hence, the model can better describe the
actual situation in the real world.

2.6 The relationship between COVID-19 and
temperature

The relationship between average temperature and
COVID-19 cases was nearly linear between 21°C and 30°C,
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and flat beyond 21°C, with little evidence that colder weather
increases infections (Abujazar, Al-Awadhi, Rachdi, &
Bensmail, 2021). Weather changes significantly influence
COVID-19 incidence in Jakarta, with a significant correlation
found between temperatures of 26.1°C to 28.6°C and COVID-
19 cases (Tosepu et al., 2020). Temperatures around 26°C—

3. Results and Discussion

3.1 The equilibrium points

293

30°C with humidity over 60% do not affect COVID-19 spread
(Ahmar, El Safty, Al Zahrani, Rusli, & Rahman, 2021). The
optimal average temperature for COVID-19 spread is 13°C to
24°C, with cities below 24°C considered high risk for
transmission (Anis, 2020). Warmer weather likely reduces
COVID-19 transmissibility according to Chen et al. (2020).

The equilibrium points are determined by solving System (5).

ap,Q1 +u— [ —np3) —mylSI — (B+pu+np3)S =0

B —np3)SI—(B+u+my +p )l +mI?> =0
a(1—=pz)Q1+pal —(B+pu+y)Qr+mIQr=0
yQr +np3sS — (B+wR+myIR =0

Theorem 2.

B Bap,+(B+u+a)u

®)

Let Eq = (09,5°,1° Q%,R%) = (

yBa(1-pp)(B+u+np3)+nps[Bap, +(B+u+a)ul(B+up+y)

0 =
where R (B+w)(B+p+a)(B+u+y) (B+u+np3)

B+u+a’ (B+u+a)(B+u+nps)’

Ba(1-p,) 0
" (B+u+a)(B+u+y)’ R )

The System (2) has a disease-free equilibrium point (E,) for every condition.
The basic reproduction ratio was determined using the next-generation matrix method (Shuai & Van Den Driessche, 2013).

Let 7= (1 —nps)SIand V = (B + pu + my + py)l — myI2.

Hence, F(E,) = ’;—’ZI(E) I B(1 —np3)S° and V(E,) = %(E) I (B+pu+my+ps). We get Ry =p(FV™1) =
=Eo =Eo

BU-1p3)S® _ _ BU-nps)[Bap,+(B+u+a)u]
B+ut+mi+p,  (B+p+my+ps)(B+u+a)(B+u+nps)’

p(FV~1) means the spectral radius of matrix FV =1 (the maximum value of the modulus of all eigenvalues of matrix FV~1)

Definition 3.

B(1-np3)[Bap,+(B+ut+a)u]

The basic reproduction ratio (R,) is defined Ry =

Proposition 4.

1. B(1 —np3) —my > 0if Ry > 1.

B(-np3)[(B+p+a)+(B+u+m;+p,)]
" my[(Bu+a)+(B+put+my+ps)+(B+u+nps)]

> 1ifRy > 1.

B -np3)[Ba+(B+wul

B(-np3)[B(B+py)+u(B+my+p,)]

(B+pu+my+ps) (B+u+a) (B+u+np;)’

)

" (B+utnpz) (B+p+my+py)my
B -np3)lam,+u(at+m,)]
my (B+u+a)(B+p+my+p,)

B(1-nps)(a+mi+p,)
" my(Bptnpz+atm+p,)

> 1ifRy > 1.

B(1-nps)(a+p,)
" my(B+u+npz+a+p,)

(B+pu+np3)(B+u+a)m,
>1ifRy>1,B+u>my,B+p,>a.

>1,

>1ifRy>1,B+u>mianda+p, > 1.
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Proof (1).

B1-1ps)

1

Let Rk3 =

_ BA-np){(B+u+ad)[(B+p+Ds) (B+putnps)+mynps 1+Bmy [B+u+a(1-p,)]}
(B+u+m+p,)(B+p+a)(B+u+npsz)my

Hence Ry; — Ry

Because 0 < p, < 1then Ry3 > R, so% > Ry. Hence 52722 5 1 jf Ry > 1.
1

my
Then (1 — np3) —my > 0if Ry > 1. The proof of numbers 2 to 5 uses similar steps.
Theorem 5.
Let E; = (Q1,S*,I*,Qt, R*) where

_ B « _ (Brutmy+py)-m,l” 0h = Ba(1-pa)+[(B+p+a)—my "|pyl”
(B+p+a)-myI’ BG-nps) " T T [B+ura)-mi M l[(B+uty)-mal)

Q

%

R* = —‘;?;"1:3?: and [ is the solution of g: [0,1] = R, g(I) = k3I® + k1% + k11 + ko where
—m

ks = —[B(1 —nps) — mi]mf,

kz — mf[S(B + ’u) + (Of +my+p,+ 7']}93)] [ B-np3)[(B+p+a)+(B+u+m;+p,)] ]_ ]'

my [(B+p+a)+(B+p+my+p,)+(B+p+nps)

B(-np3)[Ba+(B+uu] _1}

(B+u+np3)(B+u+my+ps)my

B —np3)[B(B +ps) + (B +my +ps)] 1}
(B+u+np3)(B+u+a)m

B —np3)lam; + u(a +my)] 1}

ky=-B+p+nps)(B+p+m +P4)m1{

—(B+u+np3)(B+u+a)ym, {

_m1(3+‘u+a)(3+#+m1+p4){m1(8+u+a)(B+;4+m1+p4)_

—B(1 —np3)(Bmy + ap,),
ko=B+u+npz)B+u+a)B+u+my+p)Ro—1).

The System (2) has an endemic equilibrium point, i.e. E; € D3 if Ry > 1,B +u > my,B+p, > a, and a + p, > p.
Proof. The proof is given in Appendix 1.

3.2 The local stability of equilibrium points

The Jacobian matrix of System (3) is

J12 0 myQq 0 0

apz J22 J23 0 0

J(E) = 0 B(1 —np3)l I33 0 0
a(l-p,) 0 Pa+mQr Juu O

0 np3 myR Y Jss

where E = (Q4,5,1,Qr,R),
Jiz=ml —(B+pu+a)jp =—[B1—np3) —mi]l — (B +pu+np3),
J23 = =B —np3) —my1S,J33 = (1 —np3)S — (B + p+my +py) +2myl,
Jaa=myIl — (B +pu+y),Jss =ml — (B + p).
Theorem 6.

E, is locally asymptotically stable if Ry < 1 and E; is unstable if Ry > 1.
Proof.

The eigenvalues of J(Ey) are 4, =—(B+u+a),l,=—B+u+np3),As=—B+u+y)ly,=—(B+p) and
As=B+u+m;+py)(Ry—1).Wehave 1; < 0,1, < 0,13 <0,and A, < 0.Weget ls <0ifRy;<landAg >0if Ry > 1.
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Hence, E, is locally asymptotically stable if R, < 1 and E| is unstable if Ry > 1.

Proposition 7.
1. B(1 —np3) —2m; >0ifRy>1and B+ u > m;.
2. B(1—np3) —(a+my) >0ifRy>1and B +p, > a.
3. B(1 —np3)ps —my(my + py +1p3) > 0if Ry > 1 and py > m;.

4. B(1 —np3)(a+ps) —my(a+ps+1p3) >0ifRy > 1,0 +py > p,and B + u > m,.
The proof of proposition 7 uses similar steps as the proof of proposition 4.

Theorem 8.

E; is locally asymptotically stable if Ry > 1, B4+u>my,B+p,>a,a+p,>p, py >my, a>my,and(B +
pa)(1 = pa > (ap, + ).

Proof. The proof is given in Appendix 2.
3.3 The global stability of equilibrium points

Theorem 9 from Shuai & Van Den Driessche (2013) provides a method to determine the Lyapunov function for the
global stability of the free-disease equilibrium point.

Theorem 9. (Shuai & Van Den Driessche, 2013)

Let f(x,) = (F — V)x — #(x,y) + V(x,y) where F = [g%(o yo)] and V = [;’7" o, yo)]. Let o7 > 0 be the left
] ]

eigenvector of the nonnegative matrix V=1F corresponding to the eigenvalue p(V=1F) = p(FV™1) = Ry. If f(x,y) = 0inT c
R F >0,V-1 > 0and R, < 1 then the function Q = w”V ~x is a Lyapunov function of model (6) in T.

Theorem 10.
The disease-free equilibrium point E; is globally asymptotically stable if £Q-npy) <1
(B+u+ps)
Proof.
- ! — 5 ) — 1 —
Based on Theorem 9, we get Q = ErrEe— Hence Q(E,) = 0 and Q(E) > OVE € D}, E # Ey, Q = Ery——
Ry — DI — ! [B(1 —np3)(S° — S) — myI]. From the last equation, we cannot determine whether (1 — np3)(S° —

B+u+mq,+p,
S) — myl > 0. Hence, we change the calculation into

1 . I

) = I= 1-— S—(B+u+my+py)+ml
Q B+pu+m +p, B+y+m1+p4[ﬁ( np3) ( p+my +pg) +myl]
1- I B+u+
__BA—nps) _(BHu P4)+m1(1_1).
B +p+my +p, B —np3)
Hence, § < 0 if Btiutpy) BO-1P3) - 1 Hence, the disease-free equilibrium point E is globally asymptotically stable if
' B-nps) = (B+u+ps) ~ : 0
B(1-1p3) <1
(B+p+p4)
Theorem 11.
The endemic equilibrium point E; is globally asymptotically stable if R, > 1,p, =0, B+ pu+ T'Zﬂ >my + %,B +

a(1-py)

pAZzm + 5P B u >y +my,and B+ u 2 nps +my.

Proof.

Let V:D; >R, V(E) = %[(Qi Q>+ (S =59+ (Qr—Qr)?*+(R—R)H*]+5* (1 = lnII—*) where E =
(Q1,S,1,Qr,R) € D3.



296 M. Kharis et al. / Songklanakarin J. Sci. Technol. 47 (4), 290-300, 2025

We have V(E,) = 0 and V(E) > OVE € D}, E + E;.
Hence V = (Q; — Q)01 + (S — 55 + 5 21 + (@7 — 030G + (R — ROR

< —apa (@ - 0 - (B +u+ ’”’3) (mat +“2)] (5 = 592 et~ p) [ (@1 — @) ~ L5 ~[(B+ 1+
) = (mat* + “22)] (07 — 09)* = L1Q@r = @) = (R = RO = S[(B + 1) — (v + my DR — R? =2 [(S = §) —

(R—RM* - —[(B + 1) — (ps + MIDI(R — R*? + p,(I = I')(Qr — Q7).

nps a(l a(1-p;)

HenceV<0|fp4=OB+u+—>m1+— B+y+ >m; +—= B+u>y+m1,andB+u>mo3+m1 Hence,

the endemic equilibrium point E; is globally asymptotically stable if Ry > 1 ps=0,B+u+ % >m +22,B+pu + >m; +

M JB+u=y+myand B +pu = nps +my.

3.4 Sensitivity analysis

Based on Table 2, the sensitivity index R, to the parameters is given in Table 3. Based on Table 3, the most sensitive
parameter is 3, followed by p,, p3, and 1. The graphs of changing parameters (by +£10%) are given in Figure 3. The graphs of I
by changing parameter n were like the graph of changing ps.

From Figure 3, we get that only 8 and p, have a significant influence on I. Hence, we defined the relation of both with
the effectiveness of government policies. Because the range of g and p, is the interval [0,1], we can define 8 and p, as
membership functions of fuzzy parameters.

Table 3.  The sensitivity index R to the parameters

Parameter The sensitivity index Parameter The sensitivity index
B 1 m —0.002157884079
n —0.8280701709 Da 03111204437
B 0.2570642104 D3 —0.8280701712
a 0.0002263219544 Da —0.9977844681
u 0.5704719285

—— | data 0.008
I estimation

— Idata

| estimation
— 10.9p3
— 11.1p3

— Idata

1 estimation 0.0020
— 10.9p4
— 11.1p4

o0 — 10.9beta 0.007

— | 1.1beta
0.006
o.008
0.0015
0.005
0.006
0.004
0.0010
0.004 0.003
0.002
0.0005

The proportion of Infected people
The proportion of Infected people
The proportion of Infected people

0.002
0.001

0.000 0.000
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t t o 25 50 75 100 125 150 175
@ (b) ©

Figure 3. Plots of I on changing a parameter by +10% : (a) 8, (b) p,, and (C) ps

3.5 The membership function of the fuzzy parameter

We assumed that the humidity in Indonesia is constant. Using the membership function of the fuzzy parameter, we
defined 8 and p, as follow.
ﬁmin ’ ifT < Tmin
T—Tmin :
Bmin + (1 —m)(1 - 9)-((—)'lf Thin =T < Topt

B(T) = T(‘;Ft—T:nTi;) (6)
Bmin + (1 —m)(1 — 9)-mif Topt < T < Trax
k .Bmiw if T= Tmax

where B + f1(1-m)(1=0) =1 Brip =11 -m)(1-6),

pgrif 0< ﬁ < ﬂmin
pa(B) = pé(}) +c.B(T),if Bmin < B < B(Topt)
1, lfﬁ = .B(Topt)
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and pf + c.f(Tope) =1 © pf =1 — c[Bmin + B1(1 — m)(1 — H)]. Hence, we get

( 1-c. [ﬁmin + ﬁl(l -m(1 - 9)]rif T < Thin

{ 1= ¢ [Bin + fr(1 — m)(1 — 0)] [1 —(T(T‘f%)) Jf Toin ST < Tope
pa(T) = o @
' 1-c. [ﬁmin"'ﬁl(l_n)(l_e)] [1_(;%1—1;”0 Jif ToptST<Tmax

l 1—c. [ﬁmin + Bl(l - T[)(l - 9)]: if T = Tmax

where f; is the standard virus transmission rate (based on the characteristics of the virus), m is the proportion of susceptible persons
in implementing health protocols, 8 is the effectiveness of government policies like vaccination and quarantine, and ¢ is the weight
of B for py . Trmin, Topt, and Trax SUccessively are minimum, optimum, and maximum temperatures (°C). Let Ty = 4,13 <
Topt < 24, and Tpyax = 26. Assume that the value of f = 0.97 and p, = 0.9 (Table 2) occurred at T = 25, = = 0.8 and 6 =
0.698. Then we get ¢ = 0.2. The value of 8, p,, and R, based on T are given in Table 4.

The graphs of I with changing temperature are given in Figure 4. From Table 4 and Figure 4, The ratio between the rate
of quarantine for infected people and the rate of infection is greater, causing the outbreak to disappear more quickly.

Table 4. The value of 3, p,, and R, based on T

T 6 T B Pa Ry %

0.7 0.5 10 0.9505 0.9333333334 0.17434611 0.98193933
22 1 1 0.17122169 1

245 0.962875 0.95 0.17352398 0.986628586

25 0.92575 0.9 0.17608152 0.972184715

0.8 0.698 10 0.980068 0.9333333334 0.17976964 0.952314873
22 1 1 0.17122169 1

245 0.985051 0.95 0.17752042 0.964417071

25 0.970102 0.9 0.18451745 0.927737496

—— Temp = 25 degrees C 0.00200 4 —— Temp = 25 degrees C
Temp = 10 degrees € Temp = 10 degrees C

—— Temp = 24.5 degrees C 0.00175 1 —— Temp = 24.5 degrees C

—— Temp = 22 degrees C —— Temp = 22 degrees C

0.0005

0.0004 0.00150 4

0.00125
0.0003 4

of Infected people

0.00100 {

0.0002 0.00075 1

0.00050
0.00025 1
0.00000 1

[} 25 50 s 100 125 150 175 0 25 50 7 100 125 150 175

The proportion
The proportion of Infected people

0.0001

0.0000

(@m=0.70=0.5 (bywr =0.8,6 =0.698

Figure 4. Plots of I for various temperatures

3.6 Numerical simulation

The initial values are given below.

Q,(0) € {0.000017201,0.00017201,0.00037201},

5(0) € {0.9926850995,0.6926850995, 0.4926850995 },

1(0) € {0.0004196386,0.0003196386,0.0001196386},

Qr(0) = {0.0004196386,0.00196386,0.00296386 }, and

R(0) € {0.0064584223,0.3048593919,0.5038593919}.

We used Table 2 for Ry<1 simulation. We got R, = 0.184492232 , E,=(Q?5°1°Q2R") =
(0.000228,0.1716,0,0.00000258,0.8282). The simulations of R, < 1 are given in Figure 5.

From Table 2, effective countermeasures can eliminate the outbreak, indicated by § = 0.97 resulting in an R, value
below 1. Figure 5 shows the outbreak peaked early and declined thereafter due to increasing recoveries and immunity reducing
disease spread opportunities.

For global stability of the free-disease equilibrium, there is an additional condition % < 1 (Theorem 10). In this
4

case, we can assign ps; = 0.0763158 . Hence, we got R, = 0.0007124515908 , % =0.99958, and E; =
(Q2,5°,1°,Q% R®) = (0.000228,0.000714,0,0.00000258,0.999055). The simulations of R, < 1 with additional condition
% < 1 are given in Figure 5 (c) and (d). Figures 5(c) and (d) show faster convergence and the additional condition in
Theorem 10 guarantees this.
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Figure 5. Simulationsof Ry < 1

For Ry, > 1, we change some parameters in Table 2, i.e., B = 0.0036298, @ = 0.014, p, = 0.5, p, =0, and y =
0.000630655. We got R, = 65.053 and all the requirements of Theorems 5, 8, and 11 are satisfied. We got that I is the solution
of ksI® + kpI? + ky1 + ko = 0 where k; = —0.000003666, k, = 0.00004383, k; = —0.0000958, and k, = 0.0000248. The
cubic equation has three positive solutions i.e. 0.2994167685, 2.463945211, 9.191753991 and only one solution lies in [0.1] so

1 =0.2994167685 Hence,
simulations of R, > 1 are given in Figure 6.

E; =(Q1,5%1",Q7,R*) = (0.212484,0.005186,0.299416, 0.400549,0.082364)

The

From Figure 6, the graphs I and R converge to I* and R* respectively. Hence, the solution of System (2) converges to E;

if the requirements of Theorems 5, 8, and 11 are satisfied.

AN
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(@ IL

2000 3000

1000

®)R

2000 3000

Figure 6. Simulations of Ry > 1

3.7 Discussion

This study provides a new approach related to
defining parameters as fuzzy membership functions with
temperature as a crisp humber whereas previous studies only
used the virus load in the body as a crisp number such as Abdy
et al. (2021), Nandi et al. (2018), and Verma et al. (2018). The
use of temperature as a crisp number is considered more
appropriate because the modelling is carried out at the macro
level (individuals in a population) rather than at the cellular
level. In model construction, this study is also more relevant
because it pays attention to government policies such as
immigration quarantine, vaccination, quarantine for infected
individuals, and enforcement of health protocols, in defining
the classes and parameters that play a role.

4. Conclusions

Based on data fitting using data from June 13t, 2021,
to November 30", 2021, the QSIQR model can describe the
COVID-19 outbreak in Indonesia. Sensitivity analysis shows
that the infection rate () and quarantine rate of infected people
(p4) have a significant role in the dynamics of this outbreak.
Based on these results, these two parameters are then defined
as a fuzzy membership functions using temperature as the crisp
number and relating it to the effectiveness of government

policies and the level of community compliance in
implementing health protocols. Based on the results of model
analysis, the government policies have a significant role in
preventing the outbreak of COVID-19. Further research that
can be done includes defining fuzzy membership functions
based on temperature in different parts of the region such as
Tropical Zone, Subtropical Zone, Temperate Zone, and Cold
Zone. Other research may divide the group of infected
individuals into groups of detected infected individuals and
undetected infected individuals.
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Appendix 1. The proof of Theorem 5.

Solving equations of System (5), we get Q; = Q7,S = S*,Qr = Q7,and R = R”
Hence Q7 > 0,Q7 > 0,and R* > 0 because B+ u > myand 0 < [* < 1.
Substitute the values of S* and Q7 to the second equation of System (5),

we got the function g where g:[0,1] - R, g(I) = k3I® + k,I? + kyI + ko and
k3, ko, kq, ko in Theorem 5. Based on Proposition 4, number (1) to (3), we get
k3 <0,k, >0,k; <0,andky >0ifRy >1,B+u>my,and B +p, > a.
Using Descartes's rule for g, we get the number of positive roots of g is either 3
orl.

We will prove that g has only one solution in the interval [0,1].

We have g(0) = ko >0ifRy > 1and g(1) = kz + ky + ky + ko <0if B+
u>my.

We have g'(I) = 3ksI? + 2k,1 + k4.

Based on Proposition 4, we get 3k3; < 0, 2k, > 0 if Ry > 1and k; < 0 if
Ry>1,B+u>my,and B +p, > a.

Using Descartes's rule for g’, we get the number of positive roots of g'is either
20r0.

The discriminant of g"is D = 4(k2 — 3ks.k,) and D > 0 if Ry > 1 and

(B + u) > my. Hence, g’ has two real roots.

Let
[ = 2B+0) 1 BUnps)(@tmy +py)=m; (B+ptnpstatm;+p,) VD
T [BU—nps)—m,Im, 6[B(1—1p3)-mylm?’
Based on Proposition 4, number (4) and (5), we get
BA—np3)(a+my+ps)—m, (B+u+nps+a+m, +p,) >1ifR
I ig
[B(-np3)—m4lm,

>1,B+u>mjanda +
P4y > [

2 1 VD VD
Hence, I; > =+ -
ence, ly > 3+ 3t e - TR m——

Hence, I; is an exterior point of D!f =[0,1].

> 1.

—kptvB | Tt (k2-3ks.ky)
Letl, = = .
3k3 3k3
Because k3 < 0 and ky < 0if Ry > 1, (B + ) > my, and B + p, > a then
(2k,)? > (2k,)? — 4(3k3). ky = D and because k, > 0 then —k, + VD < 0
then I, > 0.
Weget g'(I1) = 3ks(I = I,))(I = I,) if Ry > 1,B + u > m,, and a + p, > p.
Case I, ¢ [0,1]:
We getthatI, > 1and let] € [0,1]. Hence I <y, & I —1; < 0and I <
I, © I —1, < 0. Because k3 < 0 then g'(I) = 3k3(I — I,)(I — I,) < 0.
Hence, g is decreasing on [0,1]. Because g(0) > 0 and g(1) < 0 if Ry >
1 and B + p > m, and g continues and decreases on [0,1] then g(I) = 0
has only one solution on [0,1].
Case I, € [0,1]:
Let! € [0,1].
CaseI € [0,1,]
HenceI <y ®1—-1;<0and I <I, &1—1, <0.Because
ks < 0then g'(1) = 3ks(I — I,)(I — I,) < 0. Hence, the graph of
g is decreasing on [0, I,] so g(I3) < g(0).
Casel € [I,,1]
HenceI <y ©1—1;<0and [ >, ©1—1,> 0. Because
ks < 0then g'(1) = 3k;(I — I,)(I — I,) > 0. Hence, the graph of
g isincreasing on [I,, 1] so g(I;) < g(1). Because g(1) < 0 then
g(I) <0.
Because g(0) > 0and g(I;) < 0ifRy, > 1 and B + u > m4, and
g continues and decreases on [0, I,] then g(I) = 0 has only one
solution on [0, I,] < [0,1].
Hence, the function g:[0,1] - R, g(I) = 0 has only one solution on the interval
[0,1]ifRy > 1,B+pu>my,B+py,>a, and a +p, > pu.

Appendix 2. The proof of Theorem 8.

The characteristics of matrices jacobian J(E;) is

[A= [yl = B+ WI][2— [my]” = (B + 1t + Y]] (C32% + Co22 + €14+ Cp)
B+ p+a)—myl*]

[
=0
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138436
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where

C;=B+u+a—ml",
Co,=B+put+a-mI)B+ut+ta—-—mI)+B+u—ml*)+
I"[B(1 = np3) —my | +nps),

Ci=B+u+ta- mll*)[(B +u+a-— Zmll*)[[ﬁ(l —np3) —my]I* +
(B + p+1p3)] + (B + p — my I)[B(1 = np3) — 2my 11" + [B(1 — np3) —
(a +my)mI" + [B(1 —np3) — ml]p4l*]v

Co=1"[(B +u+a—myIV[(B +p—myI)BA —1ps) — 2m,] +

[B(1 —np3)ps — my(my + py + ﬂps)]] + B —np3)[Bmya(l —p, —
IN+mBB+u—mI)+w+a—mI)B+u+a-—
my (1= 1]
Weget A, = —(B+p—myl*)dan A, = —(B + u +y — myI*). Because B +
u>myand [ €[0,1] then 2, < 0and 4, < 0.
We will prove that all roots of €343 + C,A% + C1A + C, = 0 have a negative real
part by using Routh Hurwitz criteria, i.e., C5,C,, Cy,Cy and C;C, — CyC5 are
positive.
Because B + u > m, and I* € [0,1], we have C3 > 0 and C, > 0.
Based on proposition 7, number (1) dan (2) then C; > 0 if Ry > 1,B 4+ pu +
a>2my,B+u>my,and B +p, > a.
We get Co>0 if B+u>mypu+a>my, B —nps)>2my, B0 —
NP3)Ps > My (My + Py +1p3), and I <1 —p,.
Based on proposition 7, B(1 —np3) > 2m, if Ry > 1 and B 4+ u > m,; and
B(1 —np3)ps > my(my + py +np3) if Ry > 1and p, > m,.
Furthermore, we must determine the conditions that must be satisfied for I* <
1-p,.
Let I* is a solution of g: [0,1] = R, g(I) = ksI® + k,1% + kqI + ko where
k3, ko, kq, and k, are defined in Theorem 5 and k3 < 0, k, > 0, kg > 0 if Ry >
1,k; <0ifRy > 1,(B+p) >my,and (B +py) > a.
We have g(1 — pp) = k3(1 —pz)® + ka(1 = p2)* + ky(1 = p2) + ko
=—{f(1 —np3)(B + p)(1 —p)(a —my) + B(1 — np3lup,my +
pamy (B + p)[(B + 1) —my] + B(1 — np3)p2(B + )[(B +py)(1 —
pda = (@*py + W]+ (B + i+ p (B + u+1p3) —my][(B +p +
a) —myl}
=p2{B(L = npImi(1 = p3) + amy (B + ) + my[(B + i) (p +
B +w)—mu+m)] +mnps[(B+u+a)+ B +u+p)l +
p3mi +mylua + (B + 1+ a)(B + pr)1}
=2p,(1 = p)my[B(1 — np3) — my][(B + ) —my] —p(1 =
p2)ma[B(1 = np3)(a + ps) — ma(a + py + np3)].
Based on Proposition 7 number 4, we got (1 — nps)(a + ps) —my(a + py +
np3) > 0if Ry > 1,a +p, > p, and B + u > my. Hence, g(1 —p,) <0 if
Ry>1LB+u>my,a+p,>ua>my, and (B +py)(1 —pyla >
(a?p, + ).
Weget g(0) = ko >0and g(1 —p;) <O0if Ry >1,B+u>my,a+p, >
wa>my,and (B + p) (1 = pla > (a?p, + ).
Hence, g is decreasing in the interval [0, I,] where I, is the least solution of
g =0.
Cases 1 —p, <I,:
Because g(1 — p;) < 0, g(I*) = 0 and g is decreasing in interval
[0,1;]then " < 1 —p,.
Cases 1 —p, > I,:
Because g(1 — p,) < 0, g(I*) = 0 and g is decreasing in interval
[0,1,] then g(I,) < 0,andwe get I* < I, < 1 — p,.
Hence, I* <1 —p, ifRy>1,B+pu>my,a+p, > p,a >my,and (B +
p)(1 = pla > (a’p; + ).
Hence, Cop > 0if Ry > 1,B +pu > my,a + py > p,a > my,and (B + p,)(1 —
pa > (a’p, + ).
We have C,C; —CyC3>0ifB+pu+a>2myand B+ pu >m;y.
Hence, the endemic point E; is locally asymptotically stable if Ry > 1,B + u >
my,B+p,>a,a+py,>u py>my, a>myand (B +p,)(1 —pyla >
(@®py + ).



