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Abstract 
 

COVID-19 first appeared in Wuhan, China, in late 2019. The disease quickly spread globally, causing a pandemic. This 

study provides an overview of the COVID-19 endemic in Indonesia through a mathematical model. One of the analysis results is 

the basic reproduction ratio, which is used to predict the model dynamics in the future. Based on parameter estimation and data 

fitting, the basic reproduction ratio is 0.184492232. Sensitivity analysis was used to determine the importance of each model 

parameter in the spread of the disease. The result is that the infection rate and the level of quarantine of infected people play 

significant roles in the dynamics of this epidemic. Next, these two parameters are defined as fuzzy membership functions using 

temperature as the firm number. Based on the results of the model analysis, government policy has a significant role in preventing 

the spread of COVID-19. This can be seen from the high infection rate, but the outbreak can subside. The novelty of this research 

includes quarantine for incoming populations, analysis of a model with dimensionless variables in a non-constant population, and 

fuzzy membership function definitions using temperature as a reference. 
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1. Introduction  
 

COVID-19, caused by the SARS-CoV-2 virus, 

emerged in Wuhan City, Hubei Province, China, in December 

2019, and was initially linked to a seafood market (Zhou et al., 

2020). Factors contributing to its rapid spread included 

international travel (Sharun et al., 2021), limited early 

surveillance, delayed response efforts (Shangguan, Wang, & 

Sun, 2020), and community behaviors such as non-compliance 

with health protocols like mask-wearing, social distancing, and 

self-isolation (Haischer et al., 2020; Muto, Yamamoto, Nagasu, 

Tanaka, & Wada, 2020). 

On March 2nd, 2020, the Indonesian Government 

reported the first COVID-19 case among its citizens in DKI 

Jakarta (Sofian & Lestari, 2021). COVID-19 cases in Indonesia 

fluctuate due to factors such as government policies, public 

adherence  to  health   protocols,  and  the  emergence  of  virus 

 

variants.   Indonesian   government   responses   have   included 

social restrictions, health protocol enforcement, and mass 

vaccination campaigns. The effectiveness of these measures 

varies based on implementation, community compliance, and 

other factors (Roziqin, Mas’udi, & Sihidi, 2021). 

Several mathematical models have been developed 

by researchers. Estrada (2020) has reviewed three main areas 

of research related to SARS-CoV-2 and COVID-19 modeling, 

namely: (1) epidemiology; (2) drug repurposing; and (3) 

vaccine development. The purpose of this review is to present 

the most relevant literature on virus modeling strategies so that 

it can help modelers navigate the ever-growing literature and 

find the most appropriate strategies to apply in emergencies 

when facing future pandemics. Ouaziz and Khomssi (2024) 

introduced the SEIIRH where 𝑆𝐼  is sensitive, 𝐸𝐼  is 

unprotected, 𝐼  is contaminated or exhibiting indications, 𝐼𝑛𝑑 

denotes those who are ill but are not yet officially diagnosed, 𝑅 

is recuperated individuals and 𝐻 is healthy persons. Kucharski 

et al. (2020) introduced the SEIT model, where T denotes 

transferred   individuals   (isolated,   recovered,   or   no   longer   
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infectious).  Chatterjee, Chatterjee, Kumar, and Shankar (2020) 

explored the SEIQRD model with Quarantine (Q) and Died 

(D). Abdy, Side, Annas, Nur, and Sanusi (2021) devised a SIR 

model incorporating fuzzy parameters. Based on Chatterjee et 

al. (2020) and Abdy et al. (2021), we construct a mathematical 

model for the COVID-19 epidemic in Indonesia, incorporating 

government policies such as immigration quarantine, 

vaccination, quarantine for infected individuals, and health 

protocol enforcement. The novelty of this research includes 

quarantine for incoming populations, analysis of a model with 

dimensionless variables in a non-constant population, and 

fuzzy membership function definitions using temperature as a 

reference. 

 

2. Materials and Methods 
 

2.1 Model formulation 
 

The transfer diagram of the model can be seen in 

Figure 1. The meaning of every parameter is given in Table 1. 

Some parameters can be controlled, like 𝐵, 𝛼, 𝑝1, 𝑝2, 𝑝3, and 𝑝4. 

The definition of every variable is given. 𝑆̅, 𝐼,̅ and 𝑅̅ 

are the number of susceptible, infected, and recovered persons 

respectively. 𝑄1̅̅ ̅  is the number of persons who enter the 

population and take quarantine. 𝑄𝑇̅̅ ̅̅  is the number of 

quarantined infected persons. In this research, we followed 

Castañeda et al. (2023) in that the increase in new individuals 

(either through immigration or births) is proportional to the 

total population. We assumed that the birth and the natural 

death rates have the same value, which means that birth and 

natural death rates are not considered in population dynamics. 

In Castañeda et al. (2023), an analysis was conducted on a 

model with the birth and natural death rates having the same 

value but without immigration so that the resulting population 

dynamics are different from this study. We have also assumed 

the death rate because of infection of the quarantine-infected 

group is too small, and all immigration persons must be 

quarantined. Hence, 𝜔 = 𝜇 , 𝑚2 = 0, and 𝑝1 = 1, then based 

on Figure 1, we got 
 

𝑑𝑄1̅̅ ̅

𝑑𝑡
= 𝐵𝑁 − (𝛼 + 𝜇)𝑄1̅̅ ̅ 

 

𝑑𝑆̅

𝑑𝑡
= 𝛼𝑝2𝑄1̅̅ ̅ + 𝜇𝑁 − 𝛽(1 − 𝜂𝑝3)

𝑆̅

𝑁
 𝐼 ̅ − (𝜇 + 𝜂𝑝3)𝑆̅ 

 
𝑑𝐼̅

𝑑𝑡
= 𝛽(1 − 𝜂𝑝3)

𝑆̅

𝑁
 𝐼 ̅ − (𝜇 +𝑚1 + 𝑝4) 𝐼̅                (1) 

 

𝑑𝑄𝑇̅̅ ̅̅

𝑑𝑡
= 𝛼(1 − 𝑝2)𝑄1̅̅ ̅ + 𝑝4𝐼 ̅ − (𝜇 + 𝛾)𝑄𝑇̅̅ ̅̅  

 

𝑑𝑅̅

𝑑𝑡
= 𝛾𝑄𝑇̅̅ ̅̅ + 𝜂𝑝3𝑆̅ − 𝜇𝑅̅ 

 

𝑁 = 𝑄1̅̅ ̅ + 𝑆̅ + 𝐼 ̅ + 𝑄𝑇̅̅ ̅̅ + 𝑅̅. 
 

Then 
𝑑𝑁

𝑑𝑡
=

𝑑𝑄1̅̅̅̅

𝑑𝑡
+
𝑑𝑆̅

𝑑𝑡
+
𝑑𝐼̅

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
+
𝑑𝑅̅

𝑑𝑡
= 𝐵𝑁 −𝑚1𝐼.̅ 

 

Based on the research of Mena-Lorca and Hetheote (1992), we 

define dimensionless variables of System (1) as follows 

𝑄1 =
𝑄1̅̅ ̅

𝑁
, 𝑆 =

𝑆̅

𝑁
, 𝐼 =

𝐼 ̅

𝑁
, 𝑄𝑇 =

𝑄𝑇̅̅ ̅̅

𝑁
, and 𝑅 =

𝑅̅

𝑁
. 

 

Hence 
𝑑𝑄1
𝑑𝑡

=
𝑑 (
𝑄1̅̅ ̅

𝑁
)

𝑑𝑡
=
1

𝑁
.
𝑑𝑄1̅̅ ̅

𝑑𝑡
−
𝑄1̅̅ ̅

𝑁
.
1

𝑁
.
𝑑𝑁

𝑑𝑡
 

 

                    = 𝐵 − (𝛼 + 𝜇 + 𝐵)𝑄1 +𝑚1𝐼𝑄1. 
 

Using a similar concept to calculate 
𝑑𝑆

𝑑𝑡
,
𝑑𝐼

𝑑𝑡
,
𝑑𝑄𝑇

𝑑𝑡
, and

𝑑𝑅

𝑑𝑡
, we get 

System (2) 

 
𝑑𝑄1
𝑑𝑡

= 𝐵 − (𝐵 + 𝜇 + 𝛼)𝑄1 +𝑚1𝐼𝑄1 

 
𝑑𝑆

𝑑𝑡
= 𝛼𝑝2𝑄1 + 𝜇 − [𝛽(1 − 𝜂𝑝3) − 𝑚1]𝑆𝐼 − (𝐵 + 𝜇 + 𝜂𝑝3)𝑆 

 
𝑑𝐼

𝑑𝑡
= 𝛽(1 − 𝜂𝑝3)𝑆𝐼 − (𝐵 + 𝜇 +𝑚1 + 𝑝4)𝐼 + 𝑚1𝐼

2              (2) 

 
𝑑𝑄𝑇
𝑑𝑡

= 𝛼(1 − 𝑝2)𝑄1 + 𝑝4𝐼 − (𝐵 + 𝜇 + 𝛾)𝑄𝑇 +𝑚1𝐼𝑄𝑇 

 
𝑑𝑅

𝑑𝑡
= 𝛾𝑄𝑇 + 𝜂𝑝3𝑆 − (𝐵 + 𝜇)𝑅 +𝑚1𝐼𝑅 

 
We give the initial condition of every variable in System (2) 

such that 

 

𝑄1(0) ≥ 0, 𝑆(0) ≥ 0, 𝐼(0) > 0,𝑄𝑇(0) ≥ 0, and 𝑅(0) ≥ 0  (3) 

 

 
 

Figure 1. The transfer diagram of the QSIQR mathematical model 

 
Table 1. The definition of the parameter in the model 

 

Parameter Definition 

  

𝐵 The rate of persons entering the population from 

immigration 

𝑝1 The proportion of persons quarantined from 
immigration 

𝑝2 The proportion of quarantined persons free from 

infection 

𝜔 The birth rate 

𝜇 The natural death rate 

𝑝3 The vaccination rate of susceptible persons 

𝛼 The rate of persons out of quarantine 

𝛽 The infection rate of susceptible persons 

𝜂 The effectiveness of vaccination 

𝑚1,𝑚2 The death rate because of infection 

𝑝4 The rate of infected persons who get quarantine and 

treatments 

𝛾 The recovery rate of the quarantined person 
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2.2 Existence and boundedness of solution of the  

      system. 
 

Let f = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝐹5) where 𝑓𝑖 is the right side of 

System (2) and 𝑖  is the 𝑖 th row, 𝑖 = 1,2,… ,5 . Let 𝐷+
5 =

{x ∈ ℝ5: x = (𝑄1, 𝑆, 𝐼, 𝑄𝑇 , 𝑅), 0 ≤ 𝑄1, 𝑆, 𝐼, 𝑄𝑇 , 𝑅 ≤ 1} . The 

function 𝑓𝑖 , 𝑖 = 1,2,… 5  has continuous first derivative then 

𝑓 ∈ 𝐶 ′(𝐷+
5) . Because f ∈ 𝐶 ′(𝐷+

5)  then f: 𝐷+
5 → ℝ 

5  is locally 

Lipschitz on 𝐷+
5. 

 

Proposition 1.  
 

System (2) with initial conditions (3) has the solution 

in interval [0,∞) and the solution of System (2) is nonnegative 

for all 𝑡 ≥  0. 
 

Proof. 
 

The solution of System (2) with initial conditions (3) 

exists on [0, 𝜔)  where 0 < 𝜔 < ∞  because f =
(𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5) ∈ 𝐶

′(𝐷+
5) where 𝑓1, 𝑓2, … , 𝑓5 are the right side 

of the System (2) is locally Lipschitz on 𝐷+
5. By using the lower 

bound of every equation in the System (2) (Onyango, 2022), we 

get 

𝑄1(𝑡) ≥ 𝑄1(0)𝑒
−(𝐵+𝜇+𝛼)𝑡 ≥ 0 

𝑆(𝑡) ≥ 𝑆(0)𝑒−∫ ([𝛽(1−𝜂𝑝3)−𝑚1]𝐼−(𝐵+𝜇+𝜂𝑝3))
𝑡

0
𝑑𝜏 ≥ 0 

𝐼(𝑡) ≥ 𝐼(0)𝑒−(𝐵+𝜇+𝑚1+𝑝4)𝑡 ≥ 0 

𝑄𝑇(𝑡) ≥ 𝑄𝑇(0)𝑒
−(𝐵+𝜇+𝛾)𝑡 ≥ 0 

𝑅(𝑡) ≥ 𝑅(0)𝑒−(𝐵+𝜇)𝑡 ≥ 0 
with the initial conditions (3). Hence, we have completed the 

proof. 

 

2.3 Parameter estimation and data fitting 
 

System (2) was fitted to cumulative infection data in 

Indonesia from June 13th to November 30th, 2021, as reported 

by Hendratno (2022), chosen due to the outbreak's peak during 

this period. The quarantine duration for incoming individuals 

ranges from 7 to 14 days, resulting in 𝛼  values between 

0.07142 and 0.14286. Indonesia's total population is 

270,203,917 (Badan Pusat Statistik [BPS], 2020), with an 

average daily immigration of 4,403.8307 persons from 

September 2020 to November 2021 (BPS, 2021). Parameters 

𝛽 , 𝑝2, and 𝑝4  were estimated using the fourth-order Runge-

Kutta Method, yielding 𝛽 = 0.97, 𝑝2 = 0.99,  and 𝑝4 = 0.9 .  

We also got MAPE= 0.27389122477722383 and MSE= 

4.703216574231331e-09.  Based on the MAPE value, the 

average prediction error is about 27.39% of the actual value. 

The very small MSE indicates that the absolute error is very 

small, indicating that the model is quite accurate, although the 

MAPE shows a relatively large percentage error. This may be 

due to some small actual values resulting in a high percentage 

error. A graphic of 𝐼 data versus 𝐼 estimation is given in Figure 

2. The values of all parameters are given in Table 2. 

 

2.4 Sensitivity analysis 
 

Sensitivity analysis was carried out to determine the 

importance of each model parameter in the spread of disease 

(Marino, Hogue, Ray, & Kirschner, 2008). The sensitivity 

index is used to assess the influence of each parameter on the 

spread of disease. The sensitivity index or Normalized 

sensitivity index is obtained from the normalized sensitivity 

index of variable 𝑉, differentiated by parameter 𝑝, defined as 

follows: 

 

𝐼𝑝
𝑉 =

𝜕𝑉

𝜕𝑝
.
𝑝

𝑉
                  (4) 

 

where 𝑉 is the variable to be analysed, and 𝑝 is the parameter 

(Chitnis, 2005). 
 

 
 

Figure 2. Plot of 𝐼 data and 𝐼 estimation 

 
Table 2. The value of the parameter in the model 
 

Parameter Value References 

   

𝐵 0.000016298 (BPS, 2020) 

𝜇 0.0000357 (Resmawan, Nuha,  

& Yahya, 2021) 

𝛼 0.071428571 Assumed 

𝑚1 0.001946408 (Hendratno, 2022) 

𝑝2 0.99 Assumed 

𝛽 0.97 Assumed 

𝜂 0.95 (Nasir, Joyosemito, Boerman, 
& Ismaniah, 2021) 

𝑝3 0.000263158 (Nasir et al., 2021) 

𝑝4 0.9 Assumed 

𝛾 0.063065477 (Hendratno, 2022) 
   

 

2.5 The membership function of the fuzzy  

      parameter 
 

In this research, we will define some parameters as 

membership functions of fuzzy parameters. Some epidemic 

mathematics models like Abdy et al. (2021), Verma, Tiwari, 

and Upadhyay (2018), and Nandi, Jana, Manadal, and Kar 

(2018) used the virus load (virus amount) as a crisp number. In 

this research, we will use temperature as a crisp number. Abdy 

et al. (2021) stated that the uncertain parameters or fuzzy 

parameters are very important because uncertainty in 

parameters and heterogeneity in the population are very 

possible to occur. Hence, the model can better describe the 

actual situation in the real world. 

 

2.6 The relationship between COVID-19 and  

      temperature 
 

The relationship between average temperature and 

COVID-19 cases was nearly linear between 21°C and 30°C, 
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and flat beyond 21°C, with little evidence that colder weather 

increases infections (Abujazar, Al-Awadhi, Rachdi, & 

Bensmail, 2021). Weather changes significantly influence 

COVID-19 incidence in Jakarta, with a significant correlation 

found between temperatures of 26.1°C to 28.6°C and COVID-

19 cases (Tosepu et al., 2020). Temperatures around 26°C–

30°C with humidity over 60% do not affect COVID-19 spread 

(Ahmar, El Safty, Al Zahrani, Rusli, & Rahman, 2021). The 

optimal average temperature for COVID-19 spread is 13°C to 

24°C, with cities below 24°C considered high risk for 

transmission (Anis, 2020). Warmer weather likely reduces 

COVID-19 transmissibility according to Chen et al. (2020). 

 

3. Results and Discussion 
 

3.1 The equilibrium points 
 

The equilibrium points are determined by solving System (5). 

 

𝐵 − (𝐵 + 𝜇 + 𝛼)𝑄1 +𝑚1𝐼𝑄1 = 0 
 

𝛼𝑝2𝑄1 + 𝜇 − [𝛽(1 − 𝜂𝑝3) − 𝑚1]𝑆𝐼 − (𝐵 + 𝜇 + 𝜂𝑝3)𝑆 = 0 
 

𝛽(1 − 𝜂𝑝3)𝑆𝐼 − (𝐵 + 𝜇 +𝑚1 + 𝑝4)𝐼 + 𝑚1𝐼
2 = 0                              (5) 

 

𝛼(1 − 𝑝2)𝑄1 + 𝑝4𝐼 − (𝐵 + 𝜇 + 𝛾)𝑄𝑇 +𝑚1𝐼𝑄𝑇 = 0 
 

𝛾𝑄𝑇 + 𝜂𝑝3𝑆 − (𝐵 + 𝜇)𝑅 + 𝑚1𝐼𝑅 = 0 

 

Theorem 2. 
 

Let 𝐸0 = (𝑄1
0, 𝑆0, 𝐼0, 𝑄𝑇

0 , 𝑅0) = (
𝐵

𝐵+𝜇+𝛼
,
𝐵𝛼𝑝2+(𝐵+𝜇+𝛼)𝜇

(𝐵+𝜇+𝛼)(𝐵+𝜇+𝜂𝑝3)
, 0,

𝐵𝛼(1−𝑝2)

(𝐵+𝜇+𝛼)(𝐵+𝜇+𝛾)
, 𝑅0)  

 

where 𝑅0 =
𝛾𝐵𝛼(1−𝑝2)(𝐵+𝜇+𝜂𝑝3)+𝜂𝑝3[𝐵𝛼𝑝2+(𝐵+𝜇+𝛼)𝜇](𝐵+𝜇+𝛾)

(𝐵+𝜇)(𝐵+𝜇+𝛼)(𝐵+𝜇+𝛾)(𝐵+𝜇+𝜂𝑝3)
 . 

The System (2) has a disease-free equilibrium point (𝐸0) for every condition. 

The basic reproduction ratio was determined using the next-generation matrix method (Shuai & Van Den Driessche, 2013). 

 

Let ℱ = 𝛽(1 − 𝜂𝑝3)𝑆𝐼 and 𝒱 = (𝐵 + 𝜇 +𝑚1 + 𝑝4)𝐼 − 𝑚1𝐼
2. 

 

Hence, 𝐹(𝐸0) =
𝑑ℱ

𝑑𝐼
(𝐸)|

𝐸=𝐸0
= 𝛽(1 − 𝜂𝑝3)𝑆

0  and 𝑉(𝐸0) =
𝑑𝒱

𝑑𝐼
(𝐸)|

𝐸=𝐸0
= (𝐵 + 𝜇 +𝑚1 + 𝑝4).   We get 𝑅0 = 𝜌(𝐹𝑉

−1) =

𝛽(1−𝜂𝑝3)𝑆
0

𝐵+𝜇+𝑚1+𝑝4
=

𝛽(1−𝜂𝑝3)[𝐵𝛼𝑝2+(𝐵+𝜇+𝛼)𝜇]

(𝐵+𝜇+𝑚1+𝑝4)(𝐵+𝜇+𝛼)(𝐵+𝜇+𝜂𝑝3)
. 

 

𝜌(𝐹𝑉−1) means the spectral radius of matrix 𝐹𝑉−1 (the maximum value of the modulus of all eigenvalues of matrix 𝐹𝑉−1) 

 

Definition 3. 
 

The basic reproduction ratio (𝑅0) is defined 𝑅0 =
𝛽(1−𝜂𝑝3)[𝐵𝛼𝑝2+(𝐵+𝜇+𝛼)𝜇]

(𝐵+𝜇+𝑚1+𝑝4)(𝐵+𝜇+𝛼)(𝐵+𝜇+𝜂𝑝3)
.  

 

Proposition 4. 

 
1.  𝛽(1 − 𝜂𝑝3) − 𝑚1 > 0 if 𝑅0 > 1. 

 

2.  
𝛽(1−𝜂𝑝3)[(𝐵+𝜇+𝛼)+(𝐵+𝜇+𝑚1+𝑝4)]

𝑚1[(𝐵+𝜇+𝛼)+(𝐵+𝜇+𝑚1+𝑝4)+(𝐵+𝜇+𝜂𝑝3)]
> 1 if 𝑅0 > 1.  

 

3.  
𝛽(1−𝜂𝑝3)[𝐵𝛼+(𝐵+𝜇)𝜇]

(𝐵+𝜇+𝜂𝑝3)(𝐵+𝜇+𝑚1+𝑝4)𝑚1
> 1,

𝛽(1−𝜂𝑝3)[𝐵(𝐵+𝑝4)+𝜇(𝐵+𝑚1+𝑝4)]

(𝐵+𝜇+𝜂𝑝3)(𝐵+𝜇+𝛼)𝑚1
> 1,  

 and 
𝛽(1−𝜂𝑝3)[𝛼𝑚1+𝜇(𝛼+𝑚1)]

𝑚1(𝐵+𝜇+𝛼)(𝐵+𝜇+𝑚1+𝑝4)
> 1 if 𝑅0 > 1, 𝐵 + 𝜇 > 𝑚1, 𝐵 + 𝑝4 > 𝛼.  

 

4.  
𝛽(1−𝜂𝑝3)(𝛼+𝑚1+𝑝4)

𝑚1(𝐵+𝜇+𝜂𝑝3+𝛼+𝑚1+𝑝4)
> 1 if 𝑅0 > 1.  

 

5.  
𝛽(1−𝜂𝑝3)(𝛼+𝑝4)

𝑚1(𝐵+𝜇+𝜂𝑝3+𝛼+𝑝4)
> 1 if 𝑅0 > 1, 𝐵 + 𝜇 > 𝑚1 and 𝛼 + 𝑝4 > 𝜇.  
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Proof (1). 
 

Let 𝑅𝑘3 =
𝛽(1−𝜂𝑝3)

𝑚1
.  

 

Hence 𝑅𝑘3 − 𝑅0 =
𝛽(1−𝜂𝑝3){(𝐵+𝜇+𝛼)[(𝐵+𝜇+𝑝4)(𝐵+𝜇+𝜂𝑝3)+𝑚1𝜂𝑝3 ]+𝐵𝑚1[𝐵+𝜇+𝛼(1−𝑝2)]}

(𝐵+𝜇+𝑚1+𝑝4)(𝐵+𝜇+𝛼)(𝐵+𝜇+𝜂𝑝3)𝑚1
 

 

Because 0 ≤ 𝑝2 ≤ 1 then 𝑅𝑘3 > 𝑅0 so 
𝛽(1−𝜂𝑝3)

𝑚1
> 𝑅0. Hence 

𝛽(1−𝜂𝑝3)

𝑚1
> 1 if 𝑅0 > 1.  

 

Then 𝛽(1 − 𝜂𝑝3) − 𝑚1 > 0 if 𝑅0 > 1. The proof of numbers 2 to 5 uses similar steps. 

 

Theorem 5. 
 

Let 𝐸1 = (𝑄1
∗, 𝑆∗, 𝐼∗, 𝑄𝑇

∗ , 𝑅∗) where 

 

𝑄1
∗ =

𝐵

(𝐵+𝜇+𝛼)−𝑚1𝐼
∗
, 𝑆∗ =  

(𝐵+𝜇+𝑚1+𝑝4)−𝑚1𝐼
∗

𝛽(1−𝜂𝑝3)
,  𝑄𝑇

∗ =
𝐵𝛼(1−𝑝2)+[(𝐵+𝜇+𝛼)−𝑚1𝐼

∗]𝑝4𝐼
∗

[(𝐵+𝜇+𝛼)−𝑚1𝐼
∗][(𝐵+𝜇+𝛾)−𝑚1𝐼

∗]
,  

 

𝑅∗ =
𝛾𝑄𝑇

∗+𝜂𝑝3𝑆
∗

𝐵+𝜇−𝑚1𝐼
∗
 and 𝐼∗ is the solution of 𝑔: [0,1] → ℝ, 𝑔(𝐼) = 𝑘3𝐼

3 + 𝑘2𝐼
2 + 𝑘1𝐼 + 𝑘0 where 

 

𝑘3 = −[𝛽(1 − 𝜂𝑝3) − 𝑚1]𝑚1
2,  

 

𝑘2 = 𝑚1
2[3(𝐵 + 𝜇) + (𝛼 + 𝑚1 + 𝑝4 + 𝜂𝑝3)] [

𝛽(1−𝜂𝑝3)[(𝐵+𝜇+𝛼)+(𝐵+𝜇+𝑚1+𝑝4)]

𝑚1[(𝐵+𝜇+𝛼)+(𝐵+𝜇+𝑚1+𝑝4)+(𝐵+𝜇+𝜂𝑝3)]
− 1],  

 

𝑘1 = −(𝐵 + 𝜇 + 𝜂𝑝3)(𝐵 + 𝜇 + 𝑚1 + 𝑝4)𝑚1 {
𝛽(1−𝜂𝑝3)[𝐵𝛼+(𝐵+𝜇)𝜇]

(𝐵+𝜇+𝜂𝑝3)(𝐵+𝜇+𝑚1+𝑝4)𝑚1
− 1}  

−(𝐵 + 𝜇 + 𝜂𝑝3)(𝐵 + 𝜇 + 𝛼)𝑚1 {
𝛽(1 − 𝜂𝑝3)[𝐵(𝐵 + 𝑝4) + 𝜇(𝐵 + 𝑚1 + 𝑝4)]

(𝐵 + 𝜇 + 𝜂𝑝3)(𝐵 + 𝜇 + 𝛼)𝑚1
− 1} 

−𝑚1(𝐵 + 𝜇 + 𝛼)(𝐵 + 𝜇 +𝑚1 + 𝑝4) {
𝛽(1 − 𝜂𝑝3)[𝛼𝑚1 + 𝜇(𝛼 + 𝑚1)]

𝑚1(𝐵 + 𝜇 + 𝛼)(𝐵 + 𝜇 +𝑚1 + 𝑝4)
− 1} 

 −𝛽(1 − 𝜂𝑝3)(𝐵𝑚1 + 𝛼𝑝4),  
 

𝑘0 = (𝐵 + 𝜇 + 𝜂𝑝3)(𝐵 + 𝜇 + 𝛼)(𝐵 + 𝜇 +𝑚1 + 𝑝4)(𝑅0 − 1). 
The System (2) has an endemic equilibrium point, i.e. 𝐸1 ∈ 𝐷+

5 if 𝑅0 > 1,𝐵 + 𝜇 > 𝑚1, 𝐵 + 𝑝4 > 𝛼,  and 𝛼 + 𝑝4 > 𝜇. 

Proof. The proof is given in Appendix 1. 

 

3.2 The local stability of equilibrium points 
 

The Jacobian matrix of System (3) is 

 

𝐽(𝐸) =

[
 
 
 
 

𝐽12 0 𝑚1𝑄1 0 0
𝛼𝑝2 𝐽22 𝐽23 0 0

0 𝛽(1 − 𝜂𝑝3)𝐼 𝐽33 0 0

𝛼(1 − 𝑝2) 0 𝑝4 +𝑚1𝑄𝑇 𝐽44 0
0 𝜂𝑝3 𝑚1𝑅 𝛾 𝐽55]

 
 
 
 

 

 

where 𝐸 = (𝑄1
 , 𝑆 , 𝐼 , 𝑄𝑇

 , 𝑅), 
 𝐽12 = 𝑚1𝐼 − (𝐵 + 𝜇 + 𝛼), 𝐽22 = −[𝛽(1 − 𝜂𝑝3) − 𝑚1]𝐼 − (𝐵 + 𝜇 + 𝜂𝑝3), 
𝐽23 = −[𝛽(1 − 𝜂𝑝3) − 𝑚1]𝑆, 𝐽33 = 𝛽(1 − 𝜂𝑝3)𝑆 − (𝐵 + 𝜇 +𝑚1 + 𝑝4) + 2𝑚1𝐼, 
 𝐽44 = 𝑚1𝐼 − (𝐵 + 𝜇 + 𝛾), 𝐽55 = 𝑚1𝐼 − (𝐵 + 𝜇). 
 

Theorem 6. 
 

𝐸0 is locally asymptotically stable if 𝑅0 < 1 and  𝐸0 is unstable if 𝑅0 > 1. 
 

Proof. 
 

The eigenvalues of 𝐽(𝐸0)  are 𝜆1 = −(𝐵 + 𝜇 + 𝛼), 𝜆2 = −(𝐵 + 𝜇 + 𝜂𝑝3), 𝜆3 = −(𝐵 + 𝜇 + 𝛾), 𝜆4 = −(𝐵 + 𝜇)  and 

𝜆5 = (𝐵 + 𝜇 +𝑚1 + 𝑝4)(𝑅0 − 1). We have 𝜆1 < 0, 𝜆2 < 0, 𝜆3 < 0, and 𝜆4 < 0. We get 𝜆5 < 0 if 𝑅0 < 1 and 𝜆5 > 0 if 𝑅0 > 1.   
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Hence, 𝐸0 is locally asymptotically stable if 𝑅0 < 1 and 𝐸0 is unstable if 𝑅0 > 1. 
 

Proposition 7.  
 

1.  𝛽(1 − 𝜂𝑝3) − 2𝑚1 > 0 if 𝑅0 > 1 and 𝐵 + 𝜇 > 𝑚1. 
2.  𝛽(1 − 𝜂𝑝3) − (𝛼 +𝑚1) > 0 if 𝑅0 > 1 and 𝐵 + 𝑝4 > 𝛼. 

3.  𝛽(1 − 𝜂𝑝3)𝑝4 −𝑚1(𝑚1 + 𝑝4 + 𝜂𝑝3) > 0 if 𝑅0 > 1 and 𝑝4 > 𝑚1. 
4.  𝛽(1 − 𝜂𝑝3)(𝛼 + 𝑝4) − 𝑚1(𝛼 + 𝑝4 + 𝜂𝑝3) > 0 if 𝑅0 > 1, 𝛼 + 𝑝4 > 𝜇, and 𝐵 + 𝜇 > 𝑚1. 
The proof of proposition 7 uses similar steps as the proof of proposition 4. 

 

Theorem 8. 
 

𝐸1  is locally asymptotically stable if 𝑅0 > 1, 𝐵 + 𝜇 > 𝑚1, 𝐵 + 𝑝4 > 𝛼, 𝛼 + 𝑝4 > 𝜇, 𝑝4 > 𝑚1, 𝛼 > 𝑚1, and(𝐵 +
𝑝4)(1 − 𝑝2)𝛼 > (𝛼

2𝑝2 + 𝜇). 
 

Proof. The proof is given in Appendix 2. 

 

3.3 The global stability of equilibrium points 
 

Theorem 9 from Shuai & Van Den Driessche (2013) provides a method to determine the Lyapunov function for the 

global stability of the free-disease equilibrium point.  

 

Theorem 9. (Shuai & Van Den Driessche, 2013) 
 

Let 𝑓(𝑥, 𝑦) = (𝐹 − 𝑉)𝑥 − ℱ(𝑥, 𝑦) + 𝒱(𝑥, 𝑦)  where 𝐹 = [
𝜕ℱ𝑖

𝜕𝑥𝑗
(0, 𝑦0)]  and 𝑉 = [

𝜕𝒱

𝜕𝑥𝑗
(0, 𝑦0)].  Let 𝜔𝑇 ≥ 0  be the left 

eigenvector of the nonnegative matrix 𝑉−1𝐹 corresponding to the eigenvalue 𝜌(𝑉−1𝐹) = 𝜌(𝐹𝑉−1) = 𝑅0. If 𝑓(𝑥, 𝑦) ≥ 0 in Γ ⊂
ℝ+
𝑛+𝑚, 𝐹 ≥ 0, 𝑉−1 ≥ 0 and 𝑅0 ≤ 1 then the function 𝑄 = 𝜔𝑇𝑉−1𝑥 is a Lyapunov function of model (6) in Γ. 

 

Theorem 10. 
 

The disease-free equilibrium point 𝐸0 is globally asymptotically stable if 
𝛽(1−𝜂𝑝3)

(𝐵+𝜇+𝑝4)
≤ 1. 

 

Proof. 
 

Based on Theorem 9, we get 𝑄 =
𝐼

𝐵+𝜇+𝑚1+𝑝4
. Hence 𝑄(𝐸0) = 0 and 𝑄(𝐸) > 0∀𝐸 ∈ 𝐷+

5 , 𝐸 ≠ 𝐸0, 𝑄̇ =
1

𝐵+𝜇+𝑚1+𝑝4
𝐼̇ =

(𝑅0 − 1)𝐼 −
𝐼

𝐵+𝜇+𝑚1+𝑝4
[𝛽(1 − 𝜂𝑝3)(𝑆

0 − 𝑆) − 𝑚1𝐼]. From the last equation, we cannot determine whether 𝛽(1 − 𝜂𝑝3)(𝑆
0 −

𝑆) − 𝑚1𝐼 > 0.  Hence, we change the calculation into 

 

𝑄̇ =
1

𝐵 + 𝜇 +𝑚1 + 𝑝4
𝐼̇ =

𝐼

𝐵 + 𝜇 +𝑚1 + 𝑝4
[𝛽(1 − 𝜂𝑝3)𝑆 − (𝐵 + 𝜇 +𝑚1 + 𝑝4) + 𝑚1𝐼] 

=
𝛽(1 − 𝜂𝑝3)𝐼

𝐵 + 𝜇 + 𝑚1 + 𝑝4
[𝑆 −

(𝐵 + 𝜇 + 𝑝4)

𝛽(1 − 𝜂𝑝3)
+ 𝑚1(𝐼 − 1)]. 

 

Hence, 𝑄̇ < 0 if 
(𝐵+𝜇+𝑝4)

𝛽(1−𝜂𝑝3)
≥ 1 or 

𝛽(1−𝜂𝑝3)

(𝐵+𝜇+𝑝4)
≤ 1. Hence, the disease-free equilibrium point 𝐸0 is globally asymptotically stable if 

𝛽(1−𝜂𝑝3)

(𝐵+𝜇+𝑝4)
≤ 1. 

 

Theorem 11. 
 

The endemic equilibrium point 𝐸1  is globally asymptotically stable if 𝑅0 > 1, 𝑝4 = 0, 𝐵 + 𝜇 +
𝜂𝑝3

2
≥ 𝑚1 +

𝛼𝑝2

4
, 𝐵 +

𝜇 +
𝛾

2
≥ 𝑚1 +

𝛼(1−𝑝2)

4
 , 𝐵 + 𝜇 ≥ 𝛾 + 𝑚1, and 𝐵 + 𝜇 ≥ 𝜂𝑝3 +𝑚1. 

 

Proof. 
 

Let 𝑉:𝐷+
5 → ℝ , 𝑉(𝐸) =

1

2
[(𝑄1 − 𝑄1

∗)2 + (𝑆 − 𝑆∗)2 + (𝑄𝑇 − 𝑄𝑇
∗ )2 + (𝑅 − 𝑅∗)2] + 𝑆∗ (𝐼 − 𝐼∗ − 𝐼∗ ln

𝐼

𝐼∗
)  where 𝐸 =

(𝑄1, 𝑆, 𝐼, 𝑄𝑇 , 𝑅) ∈ 𝐷+
5. 
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We have 𝑉(𝐸1) = 0 and 𝑉(𝐸) > 0∀𝐸 ∈ 𝐷+
5 , 𝐸 ≠ 𝐸1. 

Hence 𝑉̇ = (𝑄1 − 𝑄1
∗)𝑄1̇ + (𝑆 − 𝑆

∗)𝑆̇ + 𝑆∗
(𝐼−𝐼∗)

𝐼
𝐼̇ + (𝑄𝑇 − 𝑄𝑇

∗ )𝑄𝑇̇ + (𝑅 − 𝑅
∗)𝑅̇ 

≤ −𝛼𝑝2 [(𝑄1 − 𝑄1
∗) −

(𝑆−𝑆∗)

2
]
2

− [(𝐵 + 𝜇 +
𝜂𝑝3

2
) − (𝑚1𝐼

∗ +
𝛼𝑝2

4
)] (𝑆 − 𝑆∗)2 − 𝛼(1 − 𝑝2) [(𝑄1 −𝑄1

∗) −
(𝑄𝑇−𝑄𝑇

∗)

2
]
2

− [(𝐵 + 𝜇 +
𝛾

2
) − (𝑚1𝐼

∗ +
𝛼(1−𝑝2)

4
)] (𝑄𝑇 − 𝑄𝑇

∗ )2 −
𝛾

2
[(𝑄𝑇 −𝑄𝑇

∗ ) − (𝑅 − 𝑅∗)]2 −
1

2
[(𝐵 + 𝜇) − (𝛾 + 𝑚1𝐼

∗)](𝑅 − 𝑅∗)2 −
𝜂𝑝3

2
[(𝑆 − 𝑆∗) −

(𝑅 − 𝑅∗)]2 −
1

2
[(𝐵 + 𝜇) − (𝜂𝑝3 +𝑚1𝐼

∗)](𝑅 − 𝑅∗)2 + 𝑝4(𝐼 − 𝐼
∗)(𝑄𝑇 −𝑄𝑇

∗ ). 

Hence 𝑉̇ < 0  if 𝑝4 = 0, 𝐵 + 𝜇 +
𝜂𝑝3

2
≥ 𝑚1 +

𝛼𝑝2

4
, 𝐵 + 𝜇 +

𝛾

2
≥ 𝑚1 +

𝛼(1−𝑝2)

4
 , 𝐵 + 𝜇 ≥ 𝛾 + 𝑚1, and 𝐵 + 𝜇 ≥ 𝜂𝑝3 +𝑚1.  Hence, 

the endemic equilibrium point 𝐸1 is globally asymptotically stable if 𝑅0 > 1, 𝑝4 = 0, 𝐵 + 𝜇 +
𝜂𝑝3

2
≥ 𝑚1 +

𝛼𝑝2

4
, 𝐵 + 𝜇 +

𝛾

2
≥ 𝑚1 +

𝛼(1−𝑝2)

4
 , 𝐵 + 𝜇 ≥ 𝛾 + 𝑚1, and 𝐵 + 𝜇 ≥ 𝜂𝑝3 +𝑚1. 

 

3.4 Sensitivity analysis 
 

Based on Table 2, the sensitivity index 𝑅0 to the parameters is given in Table 3. Based on Table 3, the most sensitive 

parameter is 𝛽, followed by 𝑝4, 𝑝3, and 𝜂. The graphs of changing parameters (by ±10%) are given in Figure 3. The graphs of 𝐼 
by changing parameter 𝜂 were like the graph of changing 𝑝3.  

From Figure 3, we get that only 𝛽 and 𝑝4 have a significant influence on 𝐼. Hence, we defined the relation of both with 

the effectiveness of government policies. Because the range of 𝛽  and 𝑝4  is the interval [0,1] , we can define 𝛽  and 𝑝4  as 

membership functions of fuzzy parameters. 

 
Table 3. The sensitivity index 𝑅0 to the parameters 

 

Parameter The sensitivity index Parameter The sensitivity index 
    

𝛽 1 𝑚1 −0.002157884079 

𝜂 −0.8280701709 𝑝2 0.3111204437 

𝐵 0.2570642104 𝑝3 −0.8280701712 

𝛼 0.0002263219544 𝑝4 −0.9977844681 

𝜇 0.5704719285   
    

 

  
 

(a) (b) (c) 
 

Figure 3. Plots of 𝐼 on changing a parameter by ±10% : (a) 𝛽, (b) 𝑝4, and (c) 𝑝3 

 

3.5 The membership function of the fuzzy parameter 
 

We assumed that the humidity in Indonesia is constant. Using the membership function of the fuzzy parameter, we 

defined 𝛽 and 𝑝4 as follow. 

𝛽(𝑇) =

{
 
 

 
 

𝛽𝑚𝑖𝑛  ,   𝑖𝑓 T < Tmin 

𝛽𝑚𝑖𝑛 + 𝛽1(1 − 𝜋)(1 − 𝜃).
(T−Tmin)

(Topt−Tmin)
, 𝑖𝑓 Tmin ≤ T < Topt

𝛽𝑚𝑖𝑛 + 𝛽1(1 − 𝜋)(1 − 𝜃).
(Tmax−T)

(Tmax−Topt)
𝑖𝑓 Topt ≤ T < Tmax

𝛽𝑚𝑖𝑛, 𝑖𝑓 T ≥ Tmax 

                  (6) 

where 𝛽𝑚𝑖𝑛 + 𝛽1(1 − 𝜋)(1 − 𝜃) = 1 ⇔ 𝛽𝑚𝑖𝑛 = 1 − 𝛽1(1 − 𝜋)(1 − 𝜃), 
 

𝑝4(𝛽) = {

𝑝4
0, 𝑖𝑓 0 ≤ 𝛽 < 𝛽min  

𝑝4
0 + 𝑐. 𝛽(𝑇), 𝑖𝑓 𝛽min ≤ 𝛽 < 𝛽(𝑇𝑜𝑝𝑡)

1, 𝑖𝑓 𝛽 = 𝛽(𝑇𝑜𝑝𝑡)
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and  𝑝4
0 + 𝑐. 𝛽(𝑇𝑜𝑝𝑡) = 1 ⇔ 𝑝4

0 = 1 − 𝑐[𝛽𝑚𝑖𝑛 + 𝛽1(1 − 𝜋)(1 − 𝜃)]. Hence, we get 

 

𝑝4(𝑇) =

{
 
 

 
 

1 − 𝑐. [𝛽𝑚𝑖𝑛 + 𝛽1(1 − 𝜋)(1 − 𝜃)], 𝑖𝑓 𝑇 < 𝑇𝑚𝑖𝑛

1 − 𝑐. [𝛽𝑚𝑖𝑛 + 𝛽1(1 − 𝜋)(1 − 𝜃)] [1 −
(𝑇−𝑇𝑚𝑖𝑛)

(𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛)
] , 𝑖𝑓 𝑇𝑚𝑖𝑛 ≤ 𝑇 < 𝑇𝑜𝑝𝑡

1 − 𝑐. [𝛽𝑚𝑖𝑛 + 𝛽1(1 − 𝜋)(1 − 𝜃)] [1 −
(𝑇𝑚𝑎𝑥−𝑇)

(𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡)
] , 𝑖𝑓 𝑇𝑜𝑝𝑡 ≤ 𝑇 < 𝑇𝑚𝑎𝑥

1 − 𝑐. [𝛽𝑚𝑖𝑛 + 𝛽1(1 − 𝜋)(1 − 𝜃)], 𝑖𝑓 𝑇 ≥ 𝑇𝑚𝑎𝑥 

               (7) 

where 𝛽1 is the standard virus transmission rate (based on the characteristics of the virus), 𝜋 is the proportion of susceptible persons 

in implementing health protocols, 𝜃 is the effectiveness of government policies like vaccination and quarantine, and 𝑐 is the weight 

of 𝛽 for 𝑝4  . 𝑇min, 𝑇opt, and 𝑇max successively are minimum, optimum, and maximum temperatures (°𝐶) . Let  𝑇min = 4, 13 ≤

𝑇𝑜𝑝𝑡 ≤ 24, and 𝑇max = 26.  Assume that the value of 𝛽 = 0.97 and 𝑝4 = 0.9  (Table 2) occurred at 𝑇 = 25, 𝜋 = 0.8 and 𝜃 =

0.698. Then we get 𝑐 = 0.2. The value of 𝛽, 𝑝4, and 𝑅0 based on 𝑇 are given in Table 4.  

The graphs of 𝐼 with changing temperature are given in Figure 4. From Table 4 and Figure 4, The ratio between the rate 

of quarantine for infected people and the rate of infection is greater, causing the outbreak to disappear more quickly. 
 

Table 4. The value of 𝛽, 𝑝4, and 𝑅0 based on 𝑇 
 

𝜋 𝜃 𝑇 𝛽 𝑝4 𝑅0 
𝑝4
𝛽

 

       

0.7 0.5 10 0.9505 0.9333333334 0.17434611 0.98193933 

22 1 1 0.17122169 1 

24.5 0.962875 0.95 0.17352398 0.986628586 
25 0.92575 0.9 0.17608152 0.972184715 

0.8 0.698 10 0.980068 0.9333333334 0.17976964 0.952314873 

22 1 1 0.17122169 1 
24.5 0.985051 0.95 0.17752042 0.964417071 

25 0.970102 0.9 0.18451745 0.927737496 
       

 

  
(a) 𝜋 = 0.7, 𝜃 = 0.5 (b) 𝜋 = 0.8, 𝜃 = 0.698 

 

Figure 4. Plots of 𝐼 for various temperatures 

 

3.6 Numerical simulation 
 

The initial values are given below.  

𝑄1(0) ∈ {0.000017201, 0.00017201, 0.00037201},  
𝑆(0) ∈ {0.9926850995,0.6926850995, 0.4926850995 },  
𝐼(0) ∈ {0.0004196386, 0.0003196386, 0.0001196386},  
𝑄𝑇(0) = {0.0004196386, 0.00196386,0.00296386 }, and  

𝑅(0) ∈ {0.0064584223,0.3048593919,0.5038593919}.  
We used Table 2 for 𝑅0 < 1  simulation. We got 𝑅0 = 0.184492232 , 𝐸0 = (𝑄1

0, 𝑆0, 𝐼0, 𝑄𝑇
0 , 𝑅0) =

(0.000228, 0.1716, 0, 0.00000258, 0.8282). The simulations of 𝑅0 < 1 are given in Figure 5.  

From Table 2, effective countermeasures can eliminate the outbreak, indicated by 𝛽 =  0.97 resulting in an 𝑅0 value 

below 1. Figure 5 shows the outbreak peaked early and declined thereafter due to increasing recoveries and immunity reducing 

disease spread opportunities.  

For global stability of the free-disease equilibrium, there is an additional condition 
𝛽(1−𝜂𝑝3)

(𝐵+𝜇+𝑝4)
≤ 1 (Theorem 10). In this 

case, we can assign 𝑝3 = 0.0763158 . Hence, we got 𝑅0 = 0.0007124515908 , 
𝛽(1−𝜂𝑝3)

(𝐵+𝜇+𝑝4)
= 0.99958,  and 𝐸0 =

(𝑄1
0, 𝑆0, 𝐼0 , 𝑄𝑇

0 , 𝑅0) = (0.000228, 0.000714, 0, 0.00000258, 0.999055) . The simulations of 𝑅0 < 1  with additional condition 
𝛽(1−𝜂𝑝3)

(𝐵+𝜇+𝑝4)
≤ 1  are given in Figure 5 (c) and (d). Figures 5(c) and (d) show faster convergence and the additional condition in 

Theorem 10 guarantees this. 
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(a) I (b) R (c) I (with additional condition 

in Theorem 10) 
(d) R (with additional condition 

in Theorem 10) 
 

Figure 5. Simulations of 𝑅0 < 1 

 

For 𝑅0 > 1,  we change some parameters in Table 2, i.e., 𝐵 = 0.0036298 , 𝛼 = 0.014,  𝑝2 = 0.5,  𝑝4 = 0 , and 𝛾 =
0.000630655. We got 𝑅0 = 65.053 and all the requirements of Theorems 5, 8, and 11 are satisfied. We got that 𝐼 is the solution 

of 𝑘3𝐼
3 + 𝑘2𝐼

2 + 𝑘1𝐼 + 𝑘0 = 0 where 𝑘3 = −0.000003666,  𝑘2 = 0.00004383,  𝑘1 = −0.0000958, and 𝑘0 = 0.0000248 . The 

cubic equation has three positive solutions i.e. 0.2994167685, 2.463945211, 9.191753991 and only one solution lies in [0.1] so 

𝐼 = 0.2994167685 . Hence, 𝐸1 = (𝑄1
∗, 𝑆∗, 𝐼∗, 𝑄𝑇

∗ , 𝑅∗) = (0.212484, 0.005186, 0.299416, 0.400549, 0.082364)  . The 

simulations of 𝑅0 > 1 are given in Figure 6. 

From Figure 6, the graphs 𝐼 and 𝑅 converge to 𝐼∗ and 𝑅∗ respectively. Hence, the solution of System (2) converges to 𝐸1 

if the requirements of Theorems 5, 8, and 11 are satisfied. 
 

  
(a) I (b) R 

 

Figure 6. Simulations of 𝑅0 > 1 

 

3.7 Discussion 
 

This study provides a new approach related to 

defining parameters as fuzzy membership functions with 

temperature as a crisp number whereas previous studies only 

used the virus load in the body as a crisp number such as Abdy 

et al. (2021), Nandi et al. (2018), and Verma et al. (2018). The 

use of temperature as a crisp number is considered more 

appropriate because the modelling is carried out at the macro 

level (individuals in a population) rather than at the cellular 

level. In model construction, this study is also more relevant 

because it pays attention to government policies such as 

immigration quarantine, vaccination, quarantine for infected 

individuals, and enforcement of health protocols, in defining 

the classes and parameters that play a role. 

 

4. Conclusions 
 

Based on data fitting using data from June 13th, 2021, 

to  November  30th, 2021,  the QSIQR  model  can  describe  the 

COVID-19  outbreak  in  Indonesia.  Sensitivity  analysis shows 

that the infection rate (𝛽) and quarantine rate of infected people 

(𝑝4) have a significant role in the dynamics of this outbreak. 

Based on these results, these two parameters are then defined 

as a fuzzy membership functions using temperature as the crisp 

number and relating it to the effectiveness of government  

policies and the level of community compliance in 

implementing health protocols. Based on the results of model 

analysis, the government policies have a significant role in 

preventing the outbreak of COVID-19. Further research that 

can be done includes defining fuzzy membership functions 

based on temperature in different parts of the region such as 

Tropical Zone, Subtropical Zone, Temperate Zone, and Cold 

Zone. Other research may divide the group of infected 

individuals into groups of detected infected individuals and 

undetected infected individuals. 
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Appendix 1. The proof of Theorem 5. 

Solving equations of System (5), we get 𝑄1 = 𝑄1
∗, 𝑆 = 𝑆∗, 𝑄𝑇 = 𝑄𝑇

∗ , and 𝑅 = 𝑅∗ 
Hence 𝑄1

∗ > 0,𝑄𝑇
∗ > 0, and 𝑅∗ > 0 because 𝐵 + 𝜇 > 𝑚1 and 0 ≤ 𝐼∗ ≤ 1. 

Substitute the values of 𝑆∗ and 𝑄1
∗ to the second equation of System (5),  

we got the function 𝑔 where 𝑔: [0,1] → ℝ, 𝑔(𝐼) = 𝑘3𝐼
3 + 𝑘2𝐼

2 + 𝑘1𝐼 + 𝑘0 and 

𝑘3, 𝑘2, 𝑘1, 𝑘0 in Theorem 5. Based on Proposition 4, number (1) to (3), we get 

𝑘3 < 0, 𝑘2 > 0, 𝑘1 < 0, and 𝑘0 > 0 if 𝑅0 > 1,𝐵 + 𝜇 > 𝑚1, and 𝐵 + 𝑝4 > 𝛼.  
Using Descartes's rule for 𝑔, we get the number of positive roots of 𝑔 is either 3 

or 1.  

We will prove that 𝑔 has only one solution in the interval [0,1]. 
We have 𝑔(0) = 𝑘0 > 0 if 𝑅0 > 1 and 𝑔(1) = 𝑘3 + 𝑘2 + 𝑘1 + 𝑘0 < 0 if 𝐵 +
𝜇 > 𝑚1. 

We have 𝑔′(𝐼) = 3𝑘3𝐼
2 + 2𝑘2𝐼 + 𝑘1. 

Based on Proposition 4, we get 3𝑘3 < 0, 2𝑘2 > 0  if 𝑅0 > 1 and 𝑘1 < 0 if 

𝑅0 > 1, 𝐵 + 𝜇 > 𝑚1, and 𝐵 + 𝑝4 > 𝛼.  
Using Descartes's rule for 𝑔′, we get the number of positive roots of 𝑔′ is either 

2 or 0. 

The discriminant of 𝑔′ is 𝐷 = 4(𝑘2
2 − 3𝑘3. 𝑘1) and 𝐷 > 0 if 𝑅0 > 1 and 

(𝐵 + 𝜇) > 𝑚1. Hence, 𝑔′ has two real roots. 

Let 

 𝐼1 =
2(𝐵+𝜇)

3𝑚1
+
1

3
.
𝛽(1−𝜂𝑝3)(𝛼+𝑚1+𝑝4)−𝑚1(𝐵+𝜇+𝜂𝑝3+𝛼+𝑚1+𝑝4)

[𝛽(1−𝜂𝑝3)−𝑚1]𝑚1
+

√𝐷

6[𝛽(1−𝜂𝑝3)−𝑚1]𝑚1
2. 

Based on Proposition 4, number (4) and (5), we get  

 
𝛽(1−𝜂𝑝3)(𝛼+𝑚1+𝑝4)−𝑚1(𝐵+𝜇+𝜂𝑝3+𝛼+𝑚1+𝑝4)

[𝛽(1−𝜂𝑝3)−𝑚1]𝑚1
> 1  if 𝑅0 > 1, 𝐵 + 𝜇 > 𝑚1 and 𝛼 +

𝑝4 > 𝜇. 

Hence, 𝐼1 >
2

3
+
1

3
+

√𝐷

6[𝛽(1−𝜂𝑝3)−𝑚1]𝑚1
2 > 1 +

√𝐷

6[𝛽(1−𝜂𝑝3)−𝑚1]𝑚1
2 > 1. 

Hence, 𝐼1 is an exterior point of 𝐷𝑔
′ = [0,1]. 

Let 𝐼2 =
−𝑘2+√𝐷

3𝑘3
=

−𝑘2+√(𝑘2
2−3𝑘3.𝑘1)

3𝑘3
. 

Because 𝑘3 < 0 and 𝑘1 < 0 if 𝑅0 > 1, (𝐵 + 𝜇) > 𝑚1, and 𝐵 + 𝑝4 > 𝛼 then 

(2𝑘2)
2 > (2𝑘2)

2 − 4(3𝑘3). 𝑘1 = 𝐷 and because 𝑘2 > 0 then −𝑘2 + √𝐷 < 0 

then 𝐼2 > 0. 

We get 𝑔′(𝐼) = 3𝑘3(𝐼 − 𝐼1)(𝐼 − 𝐼2) if 𝑅0 > 1,𝐵 + 𝜇 > 𝑚1,  and 𝛼 + 𝑝4 > 𝜇. 

Case 𝐼2 ∉ [0,1]: 
We get that 𝐼2 > 1 and let 𝐼 ∈ [0,1]. Hence 𝐼 < 𝐼1 ⇔ 𝐼 − 𝐼1 < 0 and  𝐼 <
𝐼2 ⇔ 𝐼 − 𝐼2 < 0. Because 𝑘3 < 0 then 𝑔′(𝐼) = 3𝑘3(𝐼 − 𝐼1)(𝐼 − 𝐼2) < 0. 

Hence, 𝑔 is decreasing on [0,1]. Because 𝑔(0) > 0 and 𝑔(1) < 0 if 𝑅0 >
1  and 𝐵 + 𝜇 > 𝑚1 and 𝑔 continues and decreases on [0,1] then 𝑔(𝐼) = 0 

has only one solution on [0,1]. 
Case 𝐼2 ∈ [0,1]:  

Let 𝐼 ∈ [0,1]. 
Case 𝐼 ∈ [0, 𝐼2] 

Hence 𝐼 < 𝐼1 ⇔ 𝐼 − 𝐼1 < 0 and  𝐼 < 𝐼2 ⇔ 𝐼 − 𝐼2 < 0. Because 

𝑘3 < 0 then 𝑔′(𝐼) = 3𝑘3(𝐼 − 𝐼1)(𝐼 − 𝐼2) < 0. Hence, the graph of 

𝑔 is decreasing on [0, 𝐼2] so 𝑔(𝐼2) < 𝑔(0). 
Case 𝐼 ∈ [𝐼2, 1] 

Hence 𝐼 < 𝐼1 ⇔ 𝐼 − 𝐼1 < 0 and  𝐼 > 𝐼2 ⇔ 𝐼 − 𝐼2 > 0. Because 

𝑘3 < 0 then 𝑔′(𝐼) = 3𝑘3(𝐼 − 𝐼1)(𝐼 − 𝐼2) > 0. Hence, the graph of 

𝑔 is increasing on [𝐼2, 1] so 𝑔(𝐼2) < 𝑔(1). Because  𝑔(1) < 0 then 

𝑔(𝐼2) < 0.  

Because 𝑔(0) > 0 and 𝑔(𝐼2) < 0 if 𝑅0 > 1  and 𝐵 + 𝜇 > 𝑚1, and 

𝑔 continues and decreases on [0, 𝐼2] then 𝑔(𝐼) = 0 has only one 

solution on [0, 𝐼2] ⊆ [0,1]. 
Hence, the function 𝑔: [0,1] → ℝ, 𝑔(𝐼) = 0 has only one solution on the interval 
[0,1] if 𝑅0 > 1, 𝐵 + 𝜇 > 𝑚1, 𝐵 + 𝑝4 > 𝛼,  and 𝛼 + 𝑝4 > 𝜇. 
 

Appendix 2. The proof of Theorem 8. 

The characteristics of matrices jacobian 𝐽(𝐸1) is   

[𝜆 − [𝑚1𝐼
∗ − (𝐵 + 𝜇)]][𝜆 − [𝑚1𝐼

∗ − (𝐵 + 𝜇 + 𝛾)]](𝐶3𝜆
3 + 𝐶2𝜆

2 + 𝐶1𝜆 + 𝐶0)

[(𝐵 + 𝜇 + 𝛼) − 𝑚1𝐼
∗]

= 0 

where 

𝐶3 = 𝐵 + 𝜇 + 𝛼 − 𝑚1𝐼
∗, 

𝐶2 = (𝐵 + 𝜇 + 𝛼 − 𝑚1𝐼
∗)[(𝐵 + 𝜇 + 𝛼 − 𝑚1𝐼

∗) + (𝐵 + 𝜇 − 𝑚1𝐼
∗) +

𝐼∗[𝛽(1 − 𝜂𝑝3) − 𝑚1 ] + 𝜂𝑝3],  

𝐶1 = (𝐵 + 𝜇 + 𝛼 −𝑚1𝐼
∗)[(𝐵 + 𝜇 + 𝛼 − 2𝑚1𝐼

∗)[[𝛽(1 − 𝜂𝑝3) − 𝑚1]𝐼
∗ +

(𝐵 + 𝜇 + 𝜂𝑝3)] + (𝐵 + 𝜇 −𝑚1𝐼
∗)[𝛽(1 − 𝜂𝑝3) − 2𝑚1]𝐼

∗ + [𝛽(1 − 𝜂𝑝3) −

(𝛼 +𝑚1)]𝑚1𝐼
∗ + [𝛽(1 − 𝜂𝑝3) − 𝑚1]𝑝4𝐼

∗],  

𝐶0 = 𝐼∗ [(𝐵 + 𝜇 + 𝛼 −𝑚1𝐼
∗)2[(𝐵 + 𝜇 − 𝑚1𝐼

∗)[𝛽(1 − 𝜂𝑝3) − 2𝑚1] +

[𝛽(1 − 𝜂𝑝3)𝑝4 −𝑚1(𝑚1 + 𝑝4 + 𝜂𝑝3)]] + 𝛽(1 − 𝜂𝑝3)[𝐵𝑚1𝛼(1 − 𝑝2 −

𝐼∗) + 𝑚1[𝐵(𝐵 + 𝜇 − 𝑚1𝐼
∗) + (𝜇 + 𝛼 − 𝑚1𝐼

∗)(𝐵 + 𝜇 + 𝛼 −

𝑚1𝐼
∗)](1 − 𝐼∗)]]. 

We get 𝜆1 = −(𝐵 + 𝜇 − 𝑚1𝐼
∗) dan 𝜆2 = −(𝐵 + 𝜇 + 𝛾 − 𝑚1𝐼

∗). Because 𝐵 +
𝜇 > 𝑚1 and 𝐼∗ ∈ [0,1] then 𝜆1 < 0 and 𝜆2 < 0. 

We will prove that all roots of 𝐶3𝜆
3 + 𝐶2𝜆

2 + 𝐶1𝜆 + 𝐶0 = 0 have a negative real 

part by using Routh Hurwitz criteria, i.e., 𝐶3, 𝐶2, 𝐶1, 𝐶0  and 𝐶1𝐶2 − 𝐶0𝐶3  are 

positive.  

Because 𝐵 + 𝜇 > 𝑚1 and 𝐼∗ ∈ [0,1], we have 𝐶3 > 0 and 𝐶2 > 0. 

Based on proposition 7, number (1) dan (2) then 𝐶1 > 0 if  𝑅0 > 1, 𝐵 + 𝜇 +
𝛼 > 2𝑚1, 𝐵 + 𝜇 > 𝑚1, and 𝐵 + 𝑝4 > 𝛼.  

We get 𝐶0 > 0  if 𝐵 + 𝜇 > 𝑚1, 𝜇 + 𝛼 > 𝑚1, 𝛽(1 − 𝜂𝑝3) > 2𝑚1, 𝛽(1 −
𝜂𝑝3)𝑝4 > 𝑚1(𝑚1 + 𝑝4 + 𝜂𝑝3), and 𝐼∗ < 1 − 𝑝2.  

Based on proposition 7, 𝛽(1 − 𝜂𝑝3) > 2𝑚1  if 𝑅0 > 1  and 𝐵 + 𝜇 > 𝑚1  and 

𝛽(1 − 𝜂𝑝3)𝑝4 > 𝑚1(𝑚1 + 𝑝4 + 𝜂𝑝3) if 𝑅0 > 1 and 𝑝4 > 𝑚1.  
Furthermore, we must determine the conditions that must be satisfied for 𝐼∗ <
1 − 𝑝2. 

Let 𝐼∗ is a solution of 𝑔: [0,1] → ℝ, 𝑔(𝐼) = 𝑘3𝐼
3 + 𝑘2𝐼

2 + 𝑘1𝐼 + 𝑘0 where 

𝑘3, 𝑘2, 𝑘1, and 𝑘0 are defined in Theorem 5 and 𝑘3 < 0, 𝑘2 > 0, 𝑘0 > 0 if 𝑅0 >
1, 𝑘1 < 0 if 𝑅0 > 1, (𝐵 + 𝜇) > 𝑚1, and (𝐵 + 𝑝4) > 𝛼. 
We have 𝑔(1 − 𝑝2) = 𝑘3(1 − 𝑝2)

3 + 𝑘2(1 − 𝑝2)
2 + 𝑘1(1 − 𝑝2) + 𝑘0 

= −{𝛽(1 − 𝜂𝑝3)(𝐵 + 𝑝4)(1 − 𝑝2)(𝛼 −𝑚1) + 𝛽(1 − 𝜂𝑝3)𝜇𝑝2𝑚1 +
𝑝2𝑚1(𝐵 + 𝑝4)[(𝐵 + 𝜇) − 𝑚1] + 𝛽(1 − 𝜂𝑝3)𝑝2(𝐵 + 𝜇)[(𝐵 + 𝑝4)(1 −
𝑝2)𝛼 − (𝛼

2𝑝2 + 𝜇)] + (𝐵 + 𝜇 + 𝑝4)[(𝐵 + 𝜇 + 𝜂𝑝3) − 𝑚1][(𝐵 + 𝜇 +
𝛼) − 𝑚1]}  

−𝑝2{𝛽(1 − 𝜂𝑝3)𝑚1
2(1 − 𝑝2

2) + 𝛼𝑚1(𝐵 + 𝜇) +𝑚1[(𝐵 + 𝜇)(𝜇 +

(𝐵 + 𝜇)) − 𝑚1(𝜇 + 𝑚1)] + 𝑚1𝜂𝑝3[(𝐵 + 𝜇 + 𝛼) + (𝐵 + 𝜇 + 𝑝4)] +

𝑝2
2𝑚1

3 +𝑚1[𝜇𝛼 + (𝐵 + 𝜇 + 𝛼)(𝐵 + 𝑝2)]}  

−2𝑝2(1 − 𝑝2)𝑚1[𝛽(1 − 𝜂𝑝3) − 𝑚1][(𝐵 + 𝜇) − 𝑚1] − 𝑝2(1 −
𝑝2)𝑚1[𝛽(1 − 𝜂𝑝3)(𝛼 + 𝑝4) − 𝑚1(𝛼 + 𝑝4 + 𝜂𝑝3)].  

Based on Proposition 7 number 4, we got 𝛽(1 − 𝜂𝑝3)(𝛼 + 𝑝4) − 𝑚1(𝛼 + 𝑝4 +
𝜂𝑝3) > 0 if 𝑅0 > 1, 𝛼 + 𝑝4 > 𝜇, and 𝐵 + 𝜇 > 𝑚1.  Hence, 𝑔(1 − 𝑝2) < 0 if 

𝑅0 > 1, 𝐵 + 𝜇 > 𝑚1, 𝛼 + 𝑝4 > 𝜇, 𝛼 > 𝑚1, and (𝐵 + 𝑝4)(1 − 𝑝2)𝛼 >
(𝛼2𝑝2 + 𝜇).  
We get 𝑔(0) = 𝑘0 > 0 and 𝑔(1 − 𝑝2) < 0 if 𝑅0 > 1,𝐵 + 𝜇 > 𝑚1, 𝛼 + 𝑝4 >
𝜇, 𝛼 > 𝑚1, and (𝐵 + 𝑝4)(1 − 𝑝2)𝛼 > (𝛼2𝑝2 + 𝜇). 
Hence, 𝑔  is decreasing in the interval [0, 𝐼2] where 𝐼2  is the least solution of 

𝑔′(𝐼) = 0. 

Cases 1 − 𝑝2 < 𝐼2: 

Because 𝑔(1 − 𝑝2) < 0, 𝑔(𝐼∗) = 0 and 𝑔 is decreasing in interval 
[0, 𝐼2] then 𝐼∗ < 1 − 𝑝2. 

Cases 1 − 𝑝2 > 𝐼2: 
Because 𝑔(1 − 𝑝2) < 0, 𝑔(𝐼∗) = 0 and 𝑔 is decreasing in interval 
[0, 𝐼2] then 𝑔(𝐼2) < 0, and we get 𝐼∗ < 𝐼2 < 1 − 𝑝2. 

Hence, 𝐼∗ < 1 − 𝑝2 if 𝑅0 > 1,𝐵 + 𝜇 > 𝑚1, 𝛼 + 𝑝4 > 𝜇, 𝛼 > 𝑚1, and (𝐵 +
𝑝4)(1 − 𝑝2)𝛼 > (𝛼2𝑝2 + 𝜇).  
Hence, 𝐶0 > 0 if 𝑅0 > 1, 𝐵 + 𝜇 > 𝑚1, 𝛼 + 𝑝4 > 𝜇, 𝛼 > 𝑚1, and (𝐵 + 𝑝4)(1 −
𝑝2)𝛼 > (𝛼2𝑝2 + 𝜇). 
We have  𝐶1𝐶2 − 𝐶0𝐶3 > 0 if 𝐵 + 𝜇 + 𝛼 > 2𝑚1 and 𝐵 + 𝜇 > 𝑚1. 

Hence, the endemic point 𝐸1 is locally asymptotically stable if 𝑅0 > 1,𝐵 + 𝜇 >
𝑚1, 𝐵 + 𝑝4 > 𝛼, 𝛼 + 𝑝4 > 𝜇, 𝑝4 > 𝑚1, 𝛼 > 𝑚1, and (𝐵 + 𝑝4)(1 − 𝑝2)𝛼 >
(𝛼2𝑝2 + 𝜇). 

 


