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Abstract 
 

In this paper, we show that the exact values of the Ramsey numbers of connected 5- cycle matchings, denoted by 

𝑅2(𝑐(𝑛𝐶5)), are 11𝑛 − 2 for 𝑛 ≥ 2. 
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1. Introduction  
 

In this paper, all graphs discussed are finite, 

undirected and simple, meaning they contain no loops or 

multiple edges. We denote by 𝐾𝑛 the complete graph and by 𝐶𝑛 

the cycle graph of 𝑛 vertices. 

Let 𝐺 and 𝐻 be graphs with disjoint vertex sets. The 

vertex set and the edge set of the graph 𝐺 are denoted by 𝑉(𝐺) 

and 𝐸(𝐺), respectively. The disjoint union or sum-of graphs 𝐺 

and 𝐻, denoted by 𝐺 + 𝐻, is the graph obtained by taking the 

disjoint union of the vertex sets and edge sets from both 𝐺 and 

𝐻. The disjoint union of 𝑛 copies of 𝐺 is denoted by 𝑛𝐺. Let 𝑆 

be a subset of the vertex set of 𝐺, 𝐺 − 𝑆 is the graph obtained 

by removing the vertices in 𝑆. An induced subgraph, 𝐺[𝑆],-is-
𝐺 − 𝑆̅ where 𝑆̅ = 𝑉(𝐺) − 𝑆.-We also call 𝐺[𝑆] the subgraph of 

𝐺 induced by 𝑆. A 𝑘 edge coloring-of a graph 𝐺 is a labeling 

𝑓: 𝐸(𝐺) →  𝑆 where |𝑆| = 𝑘. The labels are called colors. The 

edges of one color form a color class. If all edges of 𝐺  are 

assigned with the same color, then 𝐺 is called monochromatic. 

Next, we will introduce an important definition on 

the Ramsey number, which will be used throughout this paper. 

Note that most of our definitions and notations are primarily 

sourced from West (2001). 

 
Definition 1.- (West, 2001).- Let 𝐺1, 𝐺2, … , 𝐺𝑘  be 

graphs.-The-(graph)-Ramsey number is the smallest integer 𝑛 

such that every 𝑘 edge coloring of 𝐾𝑛 contains a copy of 𝐺𝑖 in 

color 𝑖 for some 𝑖, denoted by 𝑅(𝐺1, 𝐺2, … , 𝐺𝑘).-When 𝐺𝑖 = 𝐺 

for all 𝑖, we write 𝑅𝑘(𝐺) instead of 𝑅(𝐺1, 𝐺2, … , 𝐺𝑘). 

 

Definition 2.-(Roberts, 2017).-Let 𝐺 be a graph and 

𝑐(𝑛𝐺) is the set of all connected graphs containing 𝑛𝐺.-The 𝑘 

color Ramsey number of connected 𝐺 matchings-𝑛𝐺, denoted 

by 𝑅𝑘(𝑐(𝑛𝐺)), is the smallest integer 𝑁  such that every 𝑘- 

edge coloring on 𝐾𝑁  contains a monochromatic copy of a 

graph in 𝑐(𝑛𝐺). 

In this paper, we focus solely on 2 -color Ramsey 

numbers using red and blue. Nowadays, there are only results 

on the Ramsey numbers of connected graph matchings- on 

complete graphs. Burr (1981)-proved an important theorem that 

helps finding lower bounds for this type of Ramsey numbers.-

Cockayne and Lorimer-(1975) first gave a result for a 2 color 

connected matching.-Gyárfás and Sárközy-(2016) also proved 

the exact value for a connected triangle matching.-Later Roberts 

(2017)-gave a general result for a connected clique matching.-

The next three theorems are the results of 2- color connected 

clique matchings. 

 

Theorem 3.-(Cockayne & Lorimer, 1975). For 𝑛 ≥

2, 𝑅2(𝑐(𝑛𝐾2)) = 𝑅2(𝑛𝐾2) = 3𝑛 − 1.  
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Theorem 4.-(Gyárfás & Sárközy, 2016).-For 𝑛 ≥ 2,-

𝑅2(𝑐(𝑛𝐾3)) = 7𝑛 − 2. 

 

Theorem- 5.- (Roberts, 2017).- For 𝑟 ≥ 4  and 𝑛 ≥

𝑅2(𝐾𝑟), we have 𝑅2(𝑐(𝑛𝐾𝑟)) = (𝑟2 − 𝑟 + 1)𝑛 − 𝑟 + 1. 
The question on determining the Ramsey number of 

connected graphs matching- besides the clique still remains 

wide open.-In this paper, we will provide the Ramsey number 

of the connected 5 cycle matchings, which is 𝑅2(𝑐(𝑛𝐶5)). 

 

2. Main Result 
 

In this section, we will prove the Ramsey number of 

the connected 5 -cycle matching. Before we proceed to the 

proof, we first need to introduce some necessary theorems. The 

bounds on the Ramsey number of multiple copies of 𝐶5 were 

given by Denley (1996). Moreover, the Ramsey number of 

matchings versus regular graphs was provided by Faudree, 

Schelp and Sheehan (1980). 

 

Theorem 6. (Denley, 1996). Let 𝑟 ≥ 5 and 𝑚 ≥ 𝑛 ≥
1. Then 

 

𝑟𝑚 + 3𝑛 − 1 ≤ 𝑅(𝑚𝐶𝑟, 𝑛𝐶5) ≤ 𝑟𝑚 + 3𝑛 + 𝑟 − 4. 
 

In particular, setting 𝑟 = 5 gives the general Ramsey 

number for disjoint 5-cycles, 

 

5𝑚 + 3𝑛 − 1 ≤ 𝑅(𝑚𝐶5, 𝑛𝐶5) ≤ 5𝑚 + 3𝑛 + 1. 
 

Theorem 7. (Faudree, Schelp, & Sheehan, 1980). Let 

𝐺 be an 𝑟-regular graph (1 ≤ 𝑟 ≤ 6) of 𝑛 vertices. Then 

 

𝑅(𝑚𝐾2, 𝐺) = max{𝑛 + 2𝑚 − 𝛼(𝐺) − 1, 𝑛 + 𝑚 − 1}, 
 

where α(𝐺) is the independence number of 𝐺. 

Again, if we set 𝐺 = (𝑘+1)𝐶5 , then we have the 

following corollary. 

 

Corollary 8. Let 𝑚, 𝑘 ∈ ℕ. Then 

 

𝑅(𝑚𝐾2, (𝑘 + 1)𝐶5) = {
 3𝑘 + 2𝑚 + 2, 𝑚 ≥ 2𝑘 + 2,

5𝑘 + 𝑚 + 4, 𝑚 ≤ 2𝑘 + 2,
 

 

where both cases are equal when 𝑚 = 2𝑘 + 2. 

 

Proof. Since α(𝐶5) = 2,  we have α((𝑘 + 1)𝐶5) =
2(𝑘 + 1). We know that (𝑘 + 1)𝐶5 has 5(𝑘 + 1) vertices. By 

Theorem 7, we obtain 

 
𝑅(𝑚𝐾2, (𝑘 + 1)𝐶5) = max{3𝑘 + 2𝑚 + 2, 5𝑘 + 𝑚 + 4}. 

 
We see that 3𝑘 + 2𝑚 + 2 ≥ 5𝑘 + 𝑚 + 4  if and 

only if 𝑚 ≥ 2𝑘 + 2. In addition, 3𝑘 + 2𝑚 + 2 = 5𝑘 + 𝑚 + 4 

when 𝑚 = 2𝑘 + 2. So, the result holds. 

 

Theorem 9. For 𝑛 ≥ 2, 𝑅2(𝑐(𝑛𝐶5)) = 11𝑛 − 2. 

 
Proof. First, we need to prove the lower bound, i.e., 

𝑅2(𝑐(𝑛𝐶5)) ≥ 11𝑛 − 2, by constructing a 2-edge-coloring on 

𝐾11𝑛−3  without monochromatic red or blue subgraphs in 

𝑐(𝑛𝐶5). Consider two blue copies of 𝐾5𝑛−1 and a red copy of 

𝐾𝑛−1 . Then we join these three graphs together only by red 

edges, and thus we obtain a 2 -edge-coloring on 𝐾11𝑛−3 . 

Clearly, there is no blue graph from 𝑐(𝑛𝐶5) in this coloring. For 

a red graph in 𝑐(𝑛𝐶5), since 𝐶5 is not bipartite, in order to form 

a red 𝐶5, we need to use at least one vertex in the red 𝐾𝑛−1. But, 

there are not enough vertices in the red 𝐾𝑛−1, which means this 

coloring contains no red graphs in 𝑐(𝑛𝐶5) . This finishes the 

proof of the lower bound. 

Next, for the upper bound, let 𝐺 be the graph 𝐾11𝑛−2 

together with a 2 -edge-coloring with red and blue. We will 

prove that 𝐺  contains a monochromatic graph from 𝑐(𝑛𝐶5) . 

For every simple graph 𝐺 , either 𝐺  or 𝐺̅  is connected. This 

implies that at least one color class of 𝐺 is connected. Thus, we 

can assume that the red is connected. By Theorem 6, the 𝐺 

contains a monochromatic 𝑛𝐶5. If that 𝑛𝐶5 is red, then we are 

done. If it is blue and the blue color class is also connected, then 

we are done as well. Therefore, we can assume that 𝐺 contains 

a blue 𝑛𝐶5 and contains no blue graph in 𝑐(𝑛𝐶5).  Let 𝑘 denote 

the maximum number of disjoint blue copies of 𝐶5 in 𝐺. From 

the discussion above, we know 𝑘 ≥ 𝑛. Since the blue graph is 

disconnected, 𝐺 can be separated into two blue (not necessarily 

connected) subgraphs, where all edges between the two 

subgraphs are red. Let 𝑉1  and 𝑉2  be the vertex sets of these 

subgraphs. Since 𝑘 ≥  𝑛  and there is no blue graph from 

𝑐(𝑛𝐶5) in 𝐺, we can ensure that 𝐺[𝑉1] contains a maximum of 

𝑚  disjoint blue copies of 𝐶5  where 
𝑛

2
 ≤  𝑚 ≤  𝑛 − 1 . (If the 

subgraph initially contains more than 𝑛 − 1 disjoint copies, it 

can be divided into two smaller subgraphs. At least one of these 

subgraphs will contain at least 
𝑛

2
  copies. Repeat the process 

until obtaining a subgraph containing 𝑚 copies such that 
𝑛

2
 ≤

 𝑚 ≤  𝑛 − 1). 

We show a contradiction by constructing a red 𝑛𝐶5 

in 𝐺, where each one is formed by joining a red 𝐾2 + 𝐾1 in one 

subgraph and two vertices in another subgraph. We separate the 

proof into four cases depending on the size of 𝑉1. 

 

Case 1: |𝑉1| ≥ 9𝑛 − 1. 
By Theorem 6, |𝑉1| ≥ 9𝑛 − 1 ≥ 8𝑛 + 1 ≥ 𝑅2(𝑛𝐶5) 

for 𝑛 ≥ 2. Since 𝐺[𝑉1] contains no blue 𝑛𝐶5, it must contain a 

red 𝑛𝐶5. 

 

Case 2: 5𝑚 + 𝑛 + 4 ≤ |𝑉1| ≤ 9𝑛 − 2. 
We know that 𝐺[𝑉1]  contains no blue (𝑚 + 1)𝐶5 . 

Since 𝑚 ≥
𝑛

2
,  we have 2𝑚 + 2 >  𝑛.  By Corollary 8, 

𝑅(𝑛𝐾2, (𝑚 + 1)𝐶5) = 5𝑚 + 𝑛 + 4 ≤ |𝑉1|.  Thus 𝐺[𝑉1] 
contains a red 𝑛𝐾2 . Since |𝑉1| ≥ 3𝑛 , 𝐺[𝑉1]  contains a red 

𝑛(𝐾2 + 𝐾1).  From |𝑉2| = 11𝑛 − 2 − |𝑉1| ≥ 2𝑛 , we know 

𝐺[𝑉2] contains an 𝑛(2𝐾1). Therefore 𝐺 contains a red 𝑛𝐶5. 

 

Case 3: 5𝑚 + 5 ≤ |𝑉1| ≤ 5𝑚 + 𝑛 + 3. 
We will construct a red 𝑛𝐶5  using 𝑝(𝐾2 + 𝐾1) +

(𝑛 − 𝑝)(2𝐾1)  in 𝐺[𝑉1]  and (𝑛 − 𝑝)(𝐾2 + 𝐾1) + 𝑝(2𝐾1)  in 

𝐺[𝑉2], where 1 ≤ 𝑝 ≤ 𝑛 − 1. 
Let |𝑉1| = 5𝑚 + 𝑝 + 4 , where 1 ≤ 𝑝 ≤ 𝑛 − 1. 

Since 𝑚 ≥
𝑛

2
,  we have 𝑝 <  2𝑚 + 2 . By Corollary 8, 

𝑅(𝑝𝐾2, (𝑚 + 1)𝐶5) = 5𝑚 + 𝑝 + 4. Thus, 𝐺[𝑉1] contains a red 

𝑝𝐾2.  To show that 𝐺[𝑉1]  contains a red 𝑝(𝐾2 + 𝐾1) + (𝑛 −
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𝑝)(2𝐾1), we need to show that |𝑉1| ≥ 3𝑝 + 2(𝑛 − 𝑝) = 2𝑛 +

𝑝.  Since 𝑚 ≥
𝑛

2
, we obtain |𝑉1| = 5𝑚 + 𝑝 + 4 ≥

5𝑛

2
+ 𝑝 ≥

2𝑛 + 𝑝.  Hence, 𝐺[𝑉1]  contains a red 𝑝(𝐾2 + 𝐾1) + (𝑛 −
𝑝)(2𝐾1). 

Next, we need to show that 𝐺[𝑉2]  contains a red 
(𝑛 − 𝑝)(𝐾2 + 𝐾1) + 𝑝(2𝐾1). 

We first show that there is a red (𝑛 − 𝑝)𝐾2 in 𝐺[𝑉2]. 
Since |𝑉1| = 5𝑚 + 𝑝 + 4 , we have |𝑉2| = 11𝑛 − 2 − |𝑉1| =
11𝑛 − 5𝑚 − 𝑝 − 6 . Suppose that 𝐺[𝑉2] contains a maximum 

of 𝑚′ disjoint blue copies of 𝐶5. 

First, we consider the case when 𝑚′ ≤ 2𝑛 − 𝑚 − 2.  
By Corollary 8, we have 

 

𝑅 ((𝑛 − 𝑝)𝐾2, (𝑚′ + 1)𝐶5)

= {
 3𝑚′ + 2𝑛 − 2𝑝 + 2, 𝑛 − 𝑝 ≥ 2𝑚′ + 2

5𝑚′ + 𝑛 − 𝑝 + 4, 𝑛 − 𝑝 ≤ 2𝑚′ + 2.
 

 

If 𝑛 − 𝑝 ≥ 2𝑚′ + 2 , then with 𝑚′ ≤ 2𝑛 − 𝑚 − 2 , 

we have 

 

𝑅 ((𝑛 − 𝑝)𝐾2, (𝑚′ + 1)𝐶5) = 3𝑚′ + 2𝑛 − 2𝑝 + 2

≤ 8𝑛 − 3𝑚 − 2𝑝 − 4. 
 

Since 𝑛 ≥ 𝑚 + 1 >  0 and 𝑝 >  0, we have 

 

8𝑛 − 3𝑚 − 2𝑝 − 4 ≤ 10𝑛 − 5𝑚 − 2𝑝 − 6
< 11𝑛 − 5𝑚 − 𝑝 − 6 = |𝑉2|. 

 

If 𝑛 − 𝑝 ≤ 2𝑚′ + 2, again with 𝑚′ ≤ 2𝑛 − 𝑚 − 2, 

we obtain 5𝑚′ ≤ 10𝑛 − 5𝑚 − 10.  
Therefore, 

 

𝑅 ((𝑛 − 𝑝)𝐾2, (𝑚′ + 1)𝐶5) = 5𝑚′ + 𝑛 − 𝑝 + 4

≤ 11𝑛 − 5𝑚 − 𝑝 − 6 = |𝑉2|. 
 

From both subcases, 𝐺[𝑉2] contains a red (𝑛 − 𝑝)𝐾2. 
Next, suppose that 𝑚′ ≥ 2𝑛 − 𝑚 − 1.  Since 𝑚 ≤

𝑛 − 1, we have 𝑚′ ≥ 𝑛. Since 𝐺[𝑉2] contains no blue 𝑐(𝑛𝐶5), 
𝑉2 can be partitioned into 𝑈1 and 𝑈2, where 𝐺[𝑈1] contains at 

least 
𝑛

2
 but at most 𝑛 − 1 disjoint copies of blue 𝐶5. Note that 

𝐺[𝑈2] will contain at least 𝑚′ − 𝑛 + 1 disjoint copies of blue 

𝐶5. 

If 𝑚′ ≥ 𝑛 − 1 +
𝑛−𝑝

5
, then both 𝐺[𝑈1]  and 𝐺[𝑈2] 

contain at least 
𝑛−𝑝

5
 disjoint blue copies of 𝐶5.  This means 

|𝑈1| ≥ 𝑛 − 𝑝 and |𝑈2| ≥ 𝑛 − 𝑝. In addition, all edges between 

these two subgraphs are red. So, there is a red (𝑛 − 𝑝)𝐾2 in 

𝐺[𝑉2].  

Suppose that 𝑚′ < 𝑛 − 1 +
𝑛−𝑝

5
.  Since 𝑚′ ≥ 𝑛 , let 

𝑚′ = 𝑛 − 1 + 𝑞, for some 1 ≤ 𝑞 <
𝑛−𝑝

5
. Then both 𝐺[𝑈1] and 

𝐺[𝑈2] contain at least 𝑞 disjoint blue copies of 𝐶5. Therefore, 

we obtain a red (5𝑞)𝐾2 from 5𝑞 vertices in each subgraph. 

Next, we let 𝑉2
′  be the set of vertices in 𝑉2  after 

deleting all vertices contained in the red (5𝑞)𝐾2  from the 

previous step. Then 𝐺[𝑉2
′] contains at most 𝑚′ − 2𝑞  disjoint 

copies of blue 𝐶5 and |𝑉2
′| = 11𝑛 − 5𝑚 − 𝑝 − 10𝑞 − 6. Now, 

we need a red (𝑛 − 𝑝 − 5𝑞)𝐾2  in 𝐺[𝑉2
′].  Since 𝑚′ ≥ 𝑛 , we 

obtain 2𝑚′ − 4𝑞 + 2 >  𝑛 − 5𝑞 − 𝑝. By Corollary 8, we have 

 

𝑅 ((𝑛 − 𝑝 − 5𝑞)𝐾2, (𝑚′ − 2𝑞 + 1)𝐶5)

= 5𝑚′ + 𝑛 − 𝑝 − 15𝑞 + 4. 
 

Since 𝑚′ =  𝑛 − 1 + 𝑞, we obtain 

 

5𝑚′ + 𝑛 − 𝑝 − 15𝑞 + 4 = 5(𝑛 − 1 + 𝑞) + 𝑛 − 𝑝 − 15𝑞 + 4
= 6𝑛 − 𝑝 − 10𝑞 − 1. 

 

From 𝑚 ≤ 𝑛 − 1, we can conclude that 

 
6𝑛 − 𝑝 − 10𝑞 − 1 = 11𝑛 − 5(𝑛 − 1) − 𝑝 − 10𝑞 − 6

≤ 11𝑛 − 5𝑚 − 𝑝 − 10𝑞 − 6 = |𝑉2
′|. 

 

Therefore, 𝐺[𝑉2
′] contains a red (𝑛 − 𝑝 − 5𝑞)𝐾2  as 

desired. Hence, we have a red (𝑛 − 𝑝)𝐾2 in 𝐺[𝑉2]. 
In both cases, 𝐺[𝑉2]  contains a red (𝑛 − 𝑝)𝐾2 . 

Clearly, |𝑉2| = 11𝑛 − 5𝑚 − 𝑝 − 6 ≥ 5𝑛 > 3𝑛 − 𝑝.  This 

implies that 𝑉2  has enough vertices to form (𝑛 − 𝑝)(𝐾2 +
𝐾1) + 𝑝(2𝐾1).  So, 𝐺[𝑉2]  contains a red (𝑛 − 𝑝)(𝐾2 + 𝐾1) +
𝑝(2𝐾1). Thus, we have a red 𝑛𝐶5 in 𝐺. 

 
Case 4: |𝑉1| ≤ 5𝑚 + 4. 
We will construct a red 𝑛𝐶5 in 𝐺 using a red 𝑛(2𝐾1) 

in 𝐺[𝑉1] and a red 𝑛(𝐾2 + 𝐾1) in 𝐺[𝑉2]. Since 𝑉1  contains at 

least 
𝑛

2
 disjoint blue 𝐶5 , we have |𝑉1| ≥ 2𝑛 . Then 𝐺[𝑉1] 

contains an 𝑛(2𝐾1). 
From |𝑉1| ≤ 5𝑚 + 4 ≤ 5𝑛 − 1 , we have |𝑉2| ≥

6𝑛 − 1. Again, we suppose that 𝐺[𝑉2] contains a maximum of 

𝑚′ disjoint blue copies of 𝐶5. We consider four subcases. 

 

Subcase 4.1: 𝑚′ ≤
𝑛−2

2
.  

This means 𝑛 ≥ 2𝑚′ + 2. By Corollary 8, we have 
 

𝑅(𝑛𝐾2, (𝑚′ + 1)𝐶5) = 3𝑚′ + 2𝑛 + 2 ≤
7𝑛 − 2

2
< 6𝑛 − 1

≤ |𝑉2|. 
 

 
Subcase 4.2: 

𝑛−2

2
< 𝑚′ ≤ 𝑛 − 1.  

This means 𝑛 <  2𝑚′ + 2.  Again, by Corollary 8, 

we have 

 

𝑅(𝑛𝐾2, (𝑚′ + 1)𝐶5) = 5𝑚′ + 𝑛 + 4 ≤ 6𝑛 − 1 ≤ |𝑉2|. 

 
Subcase 4.3: 𝑛 ≤ 𝑚′ < 𝑛 − 1 +

𝑛

5
.  

Note that when 𝑛 is less than 6, there is no such 𝑚′. 

In this subcase, we can assume that 𝑛 ≥ 6. Let 𝑚′ = 𝑛 − 1 +

𝑞, where 1 ≤ 𝑞 <
𝑛

5
. Then 𝐺[𝑉2] can be separated into two blue 

subgraphs, where 𝑈1 and 𝑈2 are vertex sets of these subgraphs, 

in such a way that each of 𝐺[𝑈1] and 𝐺[𝑈2] contains at least 𝑞 

disjoint blue copies of 𝐶5. (Similar to the construction of 𝑚 at 

the beginning of the proof, it can be done so that 𝐺[𝑈1] contains 

at least 
𝑛

2
 but at most 𝑛 − 1 copies.) Then there is a red (5𝑞)𝐾2 
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in 𝐺[𝑉2]. Next, let 𝑉2
′ be a set of vertices in 𝑉2 apart from the 

vertices in the red (5𝑞)𝐾2. We have 

 

|𝑉2
′| = |𝑉2| − 10𝑞 = 11𝑛 − 5𝑚 − 10𝑞 − 6. 

 

So, we need a red (𝑛 − 5𝑞)𝐾2 in 𝐺[𝑉2
′]. Since 𝐺[𝑉2

′] 

has at most 𝑚′ − 2𝑞 = 𝑛 − 𝑞 − 1 disjoint blue copies of 𝐶5 , 

and 𝑛 − 5𝑞 <  2(𝑛 − 𝑞) + 2, by Corollary 8, we have 

 

𝑅((𝑛 − 5𝑞)𝐾2, (𝑛 − 𝑞)𝐶5) = 5(𝑛 − 𝑞 − 1) + 𝑛 − 5𝑞 + 4

= 6𝑛 − 10𝑞 − 1. 
Since 𝑛 ≥ 𝑚 + 1, we obtain 

 

𝑅((𝑛 − 5𝑞)𝐾2, (𝑛 − 𝑞)𝐶5) = 6𝑛 − 10𝑞 − 1

≤ 11𝑛 − 5𝑚 − 10𝑞 − 6 = |𝑉2
′|. 

Thus, we have a red (𝑛 − 5𝑞)𝐾2  together with the 

red (5𝑞)𝐾2 that we have constructed prior. Hence, we have a 

red 𝑛𝐾2 in 𝐺[𝑉2]. 
 

Subcase 4.4: 𝑚′ ≥ 𝑛 − 1 +
𝑛

5
.  

Then 𝑉2 can be partitioned into 𝑈1 and 𝑈2, such that 

both 𝐺[𝑈1] and 𝐺[𝑈2] contain at least 
𝑛

5
 disjoint blue copies of 

𝐶5 . Thus, |𝑈1|, |𝑈2| ≥ 𝑛 . Pairing one vertex from 𝑈1  with 

another vertex from 𝑈2, we get a red 𝑛𝐾2 in 𝐺[𝑉2]. 
In all four subcases, we can conclude that there is a 

red 𝑛𝐾2  in 𝐺[𝑉2] . In addition, since |𝑉2| ≥ 6𝑛 − 1 ≥
3𝑛, 𝐺[𝑉2] contains a red 𝑛(𝐾2 + 𝐾1). Therefore, we obtain a 

red 𝑛𝐶5 in 𝐺. This completes the proof. 

 
3. Conclusions 

 

In this paper, we proved that 𝑅2(𝑐(𝑛𝐶5)) = 11𝑛 −
2, for 𝑛 ≥ 2. In order to prove this result, the Ramsey number 

of multiple copies of 5-cycles is a very essential tool. But 

Ramsey numbers of multiple copies of 𝑘-cycles when 𝑘 ≥ 6 

remain unknown. This makes it difficult and very interesting to 

prove Ramsey numbers for connected 𝑘-cycle matchings when 

𝑘 ≥ 6. 
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