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Abstract

In this paper, we show that the exact values of the Ramsey numbers of connected 5-cycle matchings, denoted by

Ry(c(nCs)),are 11n— 2 forn > 2.
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1. Introduction

In this paper, all graphs discussed are finite,
undirected and simple, meaning they contain no loops or
multiple edges. We denote by K,, the complete graph and by C,,
the cycle graph of n vertices.

Let G and H be graphs with disjoint vertex sets. The
vertex set and the edge set of the graph G are denoted by V (G)
and E(G), respectively. The disjoint union or sum of graphs G
and H, denoted by G + H, is the graph obtained by taking the
disjoint union of the vertex sets and edge sets from both G and
H. The disjoint union of n copies of G is denoted by nG. Let S
be a subset of the vertex set of G, G — S is the graph obtained
by removing the vertices in S. An induced subgraph, G[S], is
G — S where S = V(G) — S. We also call G[S] the subgraph of
G induced by S. A k-edge-coloring of a graph G is a labeling
f:E(G) —» S where [S| = k. The labels are called colors. The
edges of one color form a color class. If all edges of G are
assigned with the same color, then G is called monochromatic.

Next, we will introduce an important definition on
the Ramsey number, which will be used throughout this paper.
Note that most of our definitions and notations are primarily
sourced from West (2001).
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Definition 1. (West, 2001). Let G4, G, ... , Gy be
graphs. The (graph) Ramsey number is the smallest integer n
such that every k-edge-coloring of K, contains a copy of G; in
color i for some i, denoted by R(G4, G, ..., Gi). When G; = G
for all i, we write R, (G) instead of R(G4, G5, ..., Gy).

Definition 2. (Roberts, 2017). Let G be a graph and
¢(nG) is the set of all connected graphs containing nG. The k-
color Ramsey number of connected G-matchings nG, denoted
by Ry (c(nG)), is the smallest integer N such that every k-
edge-coloring on Ky contains a monochromatic copy of a
graph in c(nG).

In this paper, we focus solely on 2-color Ramsey
numbers using red and blue. Nowadays, there are only results
on the Ramsey numbers of connected graph matchings on
complete graphs. Burr (1981) proved an important theorem that
helps finding lower bounds for this type of Ramsey numbers.
Cockayne and Lorimer (1975) first gave a result for a 2-color
connected matching. Gyarfas and Sarkdzy (2016) also proved
the exact value for a connected triangle matching. Later Roberts
(2017) gave a general result for a connected clique matching.
The next three theorems are the results of 2-color connected
clique matchings.

Theorem 3. (Cockayne & Lorimer, 1975). Forn >
2, Ry(c(nKy)) = Ry(nk,) =3n—1.
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Theorem 4. (Gyarfas & Séarkozy, 2016). Forn > 2,
Ry(c(nK3)) = 7Tn —2.

Theorem 5. (Roberts, 2017). For r =4 and n >
Ry(K,), we have R,(c(nk,)) = (r! —r+ Dn—r+ 1.

The question on determining the Ramsey number of
connected graphs matching besides the clique still remains
wide open. In this paper, we will provide the Ramsey number
of the connected 5-cycle matchings, which is R, (c(nCs)).

2. Main Result

In this section, we will prove the Ramsey number of
the connected 5-cycle matching. Before we proceed to the
proof, we first need to introduce some necessary theorems. The
bounds on the Ramsey number of multiple copies of Cs were
given by Denley (1996). Moreover, the Ramsey number of
matchings versus regular graphs was provided by Faudree,
Schelp and Sheehan (1980).

Theorem 6. (Denley, 1996). Letr > 5andm > n >
1. Then

rm+3n—1<R(mC,nCs) <rm+3n+r—4

In particular, setting r = 5 gives the general Ramsey
number for disjoint 5-cycles,

5m+3n—1<R(mCsnCs) <5m+3n+1.

Theorem 7. (Faudree, Schelp, & Sheehan, 1980). Let
G be an r-regular graph (1 < r < 6) of n vertices. Then

R(mK,,G) = max{n + 2m —a(G) — 1,n+m—1},
where a(G) is the independence number of G.
Again, if we set ¢ = (k+1)Cs, then we have the
following corollary.

Corollary 8. Let m, k € N. Then

3k+2m+2,
5k+m+4,

m=2k+2,

R(mK,, (k + 1)Cs) = { m< 2k +2

where both cases are equal when m = 2k + 2.

Proof. Since a(Cs) = 2, we have a((k + 1)Cs) =
2(k + 1). We know that (k + 1)Cg has 5(k + 1) vertices. By
Theorem 7, we obtain

R(mK,, (k + 1)Cs) = max{3k + 2m + 2,5k + m + 4}.
We see that 3k +2m+2 =>5k+m+4 if and
only if m > 2k + 2. In addition, 3k + 2m +2 =5k + m+ 4
when m = 2k + 2. So, the result holds.
Theorem 9. For n > 2, Ry(c(nCs)) = 11n — 2.

Proof. First, we need to prove the lower bound, i.e.,
Ry(c(nCs)) = 11n — 2, by constructing a 2-edge-coloring on

Ki1n—3 Without monochromatic red or blue subgraphs in
¢(nCs). Consider two blue copies of Ks,,_;, and a red copy of
K,_1. Then we join these three graphs together only by red
edges, and thus we obtain a 2 -edge-coloring on Kjqi,_3 -
Clearly, there is no blue graph from ¢(nCs) in this coloring. For
ared graph in c¢(nCs), since Cg is not bipartite, in order to form
ared Cs, we need to use at least one vertex in the red K,,_,. But,
there are not enough vertices in the red K,,_;, which means this
coloring contains no red graphs in c(nCs). This finishes the
proof of the lower bound.

Next, for the upper bound, let G be the graph K;1,,_»
together with a 2-edge-coloring with red and blue. We will
prove that G contains a monochromatic graph from c¢(nCs).
For every simple graph G, either G or G is connected. This
implies that at least one color class of G is connected. Thus, we
can assume that the red is connected. By Theorem 6, the G
contains a monochromatic nCs. If that nCs is red, then we are
done. If it is blue and the blue color class is also connected, then
we are done as well. Therefore, we can assume that G contains
a blue nCs and contains no blue graph in c(nCs). Let k denote
the maximum number of disjoint blue copies of Cs in G. From
the discussion above, we know k > n. Since the blue graph is
disconnected, G can be separated into two blue (not necessarily
connected) subgraphs, where all edges between the two
subgraphs are red. Let V; and V, be the vertex sets of these
subgraphs. Since k = n and there is no blue graph from
¢(nCs) in G, we can ensure that G[V;] contains a maximum of
m disjoint blue copies of Cs where 2 < m < n— 1. (If the
subgraph initially contains more than n — 1 disjoint copies, it
can be divided into two smaller subgraphs. At least one of these
subgraphs will contain at Ieastg copies. Repeat the process

until obtaining a subgraph containing m copies such thatg <
m < n—1).

We show a contradiction by constructing a red nCs
in G, where each one is formed by joining ared K, + K, in one
subgraph and two vertices in another subgraph. We separate the
proof into four cases depending on the size of ;.

Case 1: |V;| = 9n — 1.

By Theorem 6, |[V;| =9n—1=8n+1 = R,(nCs)
forn = 2. Since G[V,] contains no blue nCs, it must contain a
red nCs.

Case2:5m+n+4<|V)|<9n-2.

We know that G[V;] contains no blue (m + 1)Cs.
Since m > % we have 2m+2 > n. By Corollary 8,
R(nK,,(m+1)Cs) =5m+n+4<|V;|. Thus G[V;]
contains a red nK,. Since |V;| = 3n, G[V;] contains a red
n(K; + K;). From |V,| =11n—2—|V;| = 2n, we know
G[V,] contains an n(2K;). Therefore G contains a red nCs.

Case3:5m+5< |V <5m+n+3.

We will construct a red nCs using p(K, + K;) +
(n—p)(2Ky) in G[V1] and (n —p)(K; + K;) +p(2K;) in
G[V,],wherel <p <n-—1.

Let |[Vi]=5m+p+4, where 1 <p <n-—1.
Since m > g we have p < 2m+2 . By Corollary 8,
R(pK,,(m + 1)Cs) = 5m + p + 4. Thus, G[V;] contains a red
pK,. To show that G[V;] contains a red p(K, + K;) + (n —
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p)(2K;), we need to show that |V;| =3p+ 2(n—p) =2n+
p. Since m 22, we obtain |V;| = 5m+p+4257n+p =
2n+p. Hence, G[V;] contains a red p(K, + K;) + (n —
p)(2Ky).

Next, we need to show that G[V,] contains a red
(n = p)(K; + K1) + p(2Ky).

We first show that there is a red (n — p)K, in G[V,].
Since |[V;| =5m+p+ 4, we have |V,| =11n -2 — |V;| =
11n — 5m — p — 6. Suppose that G[V,] contains a maximum
of m' disjoint blue copies of Cs.

First, we consider the case whenm’ < 2n—m — 2.
By Corollary 8, we have

R ((n = p)Ky, (m' +1)Cs)
_{3m'+2n—2p+2,
- 5m'+n—p+4,

n—p=2m'+2
n—p<2m'+2.

Ifn—p=2m +2, then withm' <2n—-m -2,
we have

R((n—p)Kz,(m'+ 1)65) =3m' +2n—2p+2
<8n-3m-2p-—4.

Sincen =2m+1 > 0andp > 0, we have

8n—-3m—-2p—-4<10n-5m—2p—6
<1lln—-5m—p—6=|V,|.

Ifn—p <2m'+2, again with m’ < 2n—m — 2,
we obtain 5m’ < 10n — 5m — 10.
Therefore,

R((n—p)Kz,(m'+1)Cs) =5m'+n—-p+4
<1lln—-5m—p—6=|V|.

From both subcases, G[V,] contains a red (n — p)K,.

Next, suppose that m' > 2n—m — 1. Since m <
n — 1, we have m' > n. Since G[V,] contains no blue c(nCs),
V, can be partitioned into U; and U,, where G[U;] contains at
Ieast%but at most n — 1 disjoint copies of blue Cs. Note that
G[U,] will contain at least m' — n + 1 disjoint copies of blue
Cs.

fm=n—-1+ %, then both G[U,] and G[U,]
contain at least % disjoint blue copies of Cs. This means
|Ui| =n—pand|U,| =n — p. In addition, all edges between
these two subgraphs are red. So, there is a red (n — p)K, in
G[Va].

Suppose that m' <n —1+ ?. Since m' = n, let
m=n—1+gq,forsomel<gqg< ?. Then both G[U,] and
G[U,] contain at least g disjoint blue copies of Cs. Therefore,
we obtain a red (5¢) K, from 5q vertices in each subgraph.

Next, we let V, be the set of vertices in V, after
deleting all vertices contained in the red (5¢q)K, from the
previous step. Then G[V,] contains at most m' — 2q disjoint
copies of blue Cs and |V;| = 11n — 5m — p — 10q — 6. Now,

we need a red (n—p — 5¢)K, in G[V;]. Since m" > n, we
obtain 2m’—4q + 2 > n — 5q — p. By Corollary 8, we have

R ((n —p—=5@)K,, (m —2q + 1)C5)
=5m'+n—p—15q + 4.

Sincem' = n—1+ g, we obtain

5m+n—p—15g+4=5n—-1+q)+n—p—15q+4
=6n—-—p-—10q — 1.

Fromm < n — 1, we can conclude that

6n—-p—10q—1=11n—-5n—1)—-p—10g—6
<1ln—-5m—p—10q — 6 = |V;].

Therefore, G[V;] contains a red (n — p — 5¢)K, as
desired. Hence, we have ared (n — p)K, in G[V,].

In both cases, G[V,] contains a red (n—p)K, .
Clearly, |V;]=1ln—-5m—-p—-6=5n>3n—p. This
implies that V, has enough vertices to form (n —p)(K, +
K,) + p(2K;). So, G[V,] contains a red (n — p)(K, + K;) +
p(2K;). Thus, we have ared nCs in G.

Case 4: |[V;| < 5m + 4.

We will construct a red nCs in G using a red n(2K;)
in G[V;] and a red n(K, + K;) in G[V,]. Since V; contains at
least g disjoint blue Cs5, we have |V;| =2n. Then G[V;]
contains an n(2K;).

From |V;| <5m+4<5n-1, we have |V,| =
6n — 1. Again, we suppose that G[V,] contains a maximum of
m’ disjoint blue copies of Cs. We consider four subcases.

Subcase 4.1: m' < nT_Z
This means n > 2m’ + 2. By Corollary 8, we have

n—2

R(nK,, (m' +1)Cs) =3m'+2n+2 <
< Wl

<6n-1

Subcase 4.2: "T_Z <m' <n-1.

This means n < 2m'+ 2. Again, by Corollary 8,
we have

R(nK,, (m' +1)Cs) =5m' +n+4 <é6n—1<|Vyl.

Subcase43:n<m'<n—1+ g

Note that when n is less than 6, there is no such m'.
In this subcase, we can assume thatn = 6. Letm' =n—1+
q,where1 < g < g Then G[V,] can be separated into two blue
subgraphs, where U; and U, are vertex sets of these subgraphs,
in such a way that each of G[U,] and G[U,] contains at least ¢
disjoint blue copies of Cs. (Similar to the construction of m at
the beginning of the proof, it can be done so that G[U; ] contains

at least g but at most n — 1 copies.) Then there is a red (5¢)K,
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in G[V,]. Next, let V, be a set of vertices in V, apart from the
vertices in the red (5¢)K,. We have

[V3] = IV,] — 10g = 11n — 5m — 10q — 6.

So, we need a red (n — 5¢)K, in G[V;]. Since G[V;]
has at most m" — 2q = n — g — 1 disjoint blue copies of Cs,
andn —5q < 2(n—q) + 2, by Corollary 8, we have

R((n —5q)K,, (n— q)CS) =5n—q—-1)+n—-5q+4
=6n-—10q — 1.
Sincen = m + 1, we obtain

R((n —5¢)K,, (n — q)Cs) = 6n— 10q — 1
<1ln-5m—10q — 6 = |V;].
Thus, we have a red (n — 5q)K, together with the
red (5¢q)K, that we have constructed prior. Hence, we have a
red nkK, in G[V,].

Subcase 4.4:m' =n—1+ %

Then V, can be partitioned into U; and U,, such that
both G[U;] and G[U,] contain at least % disjoint blue copies of
Cs. Thus, |Uyl,|U,| = n. Pairing one vertex from U; with
another vertex from U,, we get a red nK, in G[V,].

In all four subcases, we can conclude that there is a
red nK, in G[V,] . In addition, since [V,|=6n—-12=>
3n, G[V,] contains a red n(K, + K;). Therefore, we obtain a
red nCs in G. This completes the proof.

3. Conclusions

In this paper, we proved that R,(c(nCs)) = 11n —
2,forn > 2. In order to prove this result, the Ramsey number
of multiple copies of 5-cycles is a very essential tool. But

Ramsey numbers of multiple copies of k-cycles when k > 6
remain unknown. This makes it difficult and very interesting to
prove Ramsey numbers for connected k-cycle matchings when
k >6.
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