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Abstract 
 

Three-dimensional quantitative structure–activity relationship (3D-QSAR) was determined on a set of 4-

aminoquinoline-pyrimidine hybrids to elucidate the 3D structural features affecting the antimalaria activity against wild-type 

Plasmodium falciparum dihydrofolate reductase (PfDHFR). Several combined analyses of comparative molecular field 

(CoMFA), comparative molecular similarity indices (CoMSIA) and noncovalent interaction (NCI) were carried out. The 3D 

descriptors capturing steric, electrostatic and hydrophobic features of molecules and their correlation with experimental activity 

were established (CoMFA; q2 = 0.506, r2 = 0.875, SEE = 0.227 and CoMSIA; q2 = 0.614, r2 = 0.871, SEE = 0.230). Key 

structural features are drawn from the models: The R1 substituent prefers small, less steric groups, while the R2 substituent favors 

larger, more sterically bulky hydrophobic groups. Introducing hydrogen bond acceptor and donor groups at R2 and the N-

substituted linkage enhances activity. The docking and NCI results revealed extensive hydrophobic interactions and its 

stabilization to the binding process of PfDHFR. 
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1. Introduction  
 

Malaria is caused by any of five species of 

Plasmodium, with P. falciparum being the most dangerous 

(Phillips et al., 2017). It is spread to people by the bite of a 

female Anopheles mosquito. The 2023 WHO Report links 

climate change to malaria via effects on mosquito behavior 

and survival (Venkatesan, 2024). Global malaria cases rose to 

249 million in 2022, exceeding pre-pandemic levels. Climate 

change impacts, such as drug and insecticide resistance, 

humanitarian crises, and resource constraints, pose significant 

risks to progress against malaria, particularly in vulnerable 

regions. In Pakistan, 2022 flooding led to a fivefold rise in 

malaria cases.  

Dihydrofolate reductase from Plasmodium 

falciparum (PfDHFR) is a key antimalarial target, but 

resistance has reduced the efficacy of current drugs 

(Chakraborty, 2016; Gelb, 2007; Sharma & Chauhan, 2012). 

Thus, new, potent antimalarials are urgently needed. Hybrid 

molecules, which combine pharmacophores to act on multiple 

targets, are a promising approach to overcoming resistance, 

including in treatment of malaria (Muregi & Ishih, 2010). 

Various 4-aminoquinoline and pyrimidine-based hybrids have 

shown promising activity against sensitive and resistant P. 

falciparum strains. Yuthavong et al. (Tarnchompoo et al., 

2002) first introduced 2,4-diaminopyrimidines for antimalarial 

activities against PfDHFR (Figure 1A, B). Manohar et al. 

reported 4-aminoquinoline-triazine conjugates with 

antimalarial efficacy against chloroquine-sensitive and 

resistant P. falciparum strains (Figure 1C) (Manohar, Khan, & 

Rawat, 2010). Balabadra et al. evaluated a novel family of 

naphthyl-bearing 1,2,3-triazoles for in vitro antiplasmodial 

activity against pyrimethamine (Pyr)-sensitive and Pyr-

resistant P. falciparum strains (Figure 1D) (Balabadra et al., 

2017). Novel 4-aminoquinoline-purine hybrids were also 

reported with antiplasmodial against chloroquine-sensitive 

and chloroquine-resistant P. falciparum strains (Figure 1E) 

(Reddy, Khan, Ponnan, Tripathi, & Rawat, 2017). Novel 

triazine–pyrimidine compounds (Figure 1F) were produced 

and tested for in vitro antimalarial activity in 2014 (Kumar, 

Khan, Ponnan, & Rawat, 2014). All compounds showed 

higher activity (IC50 = 1.32–10.70 μM) than the 

pyrimethamine (>19 μM) against the chloroquine-resistant 

strain W2. Rawat’s group has reported numerous 4-

aminoquinoline-pyrimidine hybrids (Figure 1G) with strong 

antimalarial activity (Kumar, Khan, Tekwani, Ponnan, & 

Rawat, 2014, 2015; Manohar et al., 2015; Manohar, Rajesh, 

Khan, Tekwani, & Rawat, 2012; Manohar, Tripathi, & Rawat, 

2014; Maurya, Khan, Bahuguna, Kumar, & Rawat, 2017; 

Tripathi, Khan, Ponnan, Kholiya, & Rawat, 2017; Thakur, 

Khan, & Rawat, 2014; Tripathi, Khan, Thakur, Ponnan, & 

Rawat, 2015).  

Three-dimensional quantitative structure−activity 

relationship (3D-QSAR) is a ligand-based drug design 

approach that has significantly advanced drug discovery (Roy, 

Kar, & Das, 2015). Among the well-established 3D-QSAR 

techniques, comparative molecular field analysis (CoMFA) 

(Cramer, Patterson, & Bunce, 1988) and comparative 

molecular similarity indices analysis (CoMSIA) (Klebe, 

Abraham, & Mietzner, 1994) provide valuable guidance for 

designing potent ligands by identifying ‘favorable’ or 

‘unfavorable’ regions around the molecules through contour 

map visualization. In this study, CoMFA and CoMSIA were 

employed to construct 3D-QSAR models capturing the 

pharmacophoric features of 4-aminoquinoline-pyrimidine 

compounds based on their 3D structures and antimalarial 

inhibitory activities (IC50). Molecular docking (Jones, Willett, 

Glen, Leach, & Taylor, 1997; Tue-ngeun et al., 2024) was 

used to predict the binding poses and interactions of each 

compound, using the X-ray structure of PfDHFR bound with 

pyrimethamine (PDB ID: 3QGT) as a template (Figure 2). 

Additionally, noncovalent interaction (NCI) analysis further 

characterized the binding interactions, providing insights into 

the structural requirements for antimalarial activity. 
 

 
 

Figure 1. Structures of 4-aminoquinoline-based and pyrimidine-

based compounds with antimalarial inhibitory activity 

against PfDHFR included in Table S1. 4-aminoquinoline-
pyrimidine compounds used in the current 3D-QSAR 

study are indicated in panel G. 
 

 
 

Figure 2. Structures of wild-type PfDHFR when complexed with an 

antimalarial drug, pyrimethamine (Pyr), that was used in 
this current 3D-QSAR study. Coordinates were taken from 

PDB ID 3QGT. 
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2. Materials and Methods  
 

2.1 Data set 
 

A total of 162 compounds of 4-aminoquinoline-

pyrimidine derivatives with reported IC₅₀ values were 

compiled from previous studies (Kumar, Khan, Ponnan, & 

Rawat, 2014; Kumar, Khan, Tekwani, Ponnan, & Rawat, 

2015; Manohar, Rajesh, Khan, Tekwani, & Rawat, 2012; 

Maurya, Khan, Bahuguna, Kumar, & Rawat, 2017; Tripathi, 

Khan, Ponnan, Kholiya, & Rawat, 2017; Tripathi, Khan, 

Thakur, Ponnan, & Rawat, 2015). The Sybyl-X 2.0 program 

(Tripos, USA) was used for 3D-QSAR modeling. Compounds 

were divided into a training set (130 compounds) and a test set 

(32 compounds), selected to ensure diversity in biological 

activity and structure. The dataset was selected on the basis of 

linker length (n), N-substituents (–NX), and pyrimidine ring 

substituents (R₁, R₂).  The IC50 and pIC₅₀ values (pIC50 = –

logIC50) as well as compound structures can be found in Table 

S1.  

 

2.2 Molecular docking  
 

All compounds were built in Discovery Studio 

(BIOVIA, 2017) and geometry-optimized at the M06-2X/6-

31G(d) level using Gaussian 09 Revision D.01 (Frisch et al., 

2009). Gasteiger-Hückel charges were assigned to the 

compounds. Docking was performed using GOLD (Verdonk, 

Cole, Hartshorn, Murray, & Taylor, 2003) with the PfDHFR 

crystal structure (PDB ID: 3QGT, chain A) as receptor 

(Vanichtanankul et al., 2011). The cofactor NADPH 

(hereafter referred to as NDP) was retained; water and 

pyrimethamine were removed. Hydrogen atoms were added, 

and residues within 12 Å of the binding site were defined as 

the docking region. A genetic algorithm was applied to 

explore ligand poses, performing 100 docking runs per 

compound. GoldScore was used to rank the binding poses.  

The protocol was validated by re-docking the co-crystal ligand 

(RMSD < 1.0 Å). The highest-scoring pose of compound 57 

served as the alignment template for QSAR analysis. 

 

2.3 CoMFA and CoMSIA analyses 
 

QSAR models were developed in Sybyl-X using the 

docked conformations. CoMFA used Lennard–Jones and 

Coulomb potentials; CoMSIA included five fields: steric, 

electrostatic, hydrophobic, H-bond donor, and acceptor. A 2.0 

Å grid and a distance-dependent dielectric were applied. A 

Gaussian-type, distance-dependent function was used to 

calculate molecule properties. The leave-one-out (LOO) 

 
Table 1. Actual and predicted pIC50 activities (denoted as Act pIC50 and Pred pIC50, respectively) for the test set (32 compounds) of CoMFA 

and CoMSIA. The difference in their residual activity (∆) is also included. Full IC50 and pIC50 values can be found in Table S1. 
 

Compound n(linker) R1 R2 Act pIC50 

CoMFA model CoMSIA model 

Pred pIC50  Pred pIC50  

         

9 3 NH-4-F,Ph H 7.553 7.231 -0.382 7.255 -0.298 
10 3 NH-4-Cl,Ph H 7.328 7.363 -0.072 7.275 -0.053 

11 3 NH-4-Br,Ph H 7.31 7.210 -0.149 7.235 -0.075 

12 3 NH-4-CH3,Ph H 6.815 7.242 0.405 7.298 0.483 
15 4 NH-Ph H 7.357 6.984 -0.541 7.179 -0.177 

25 2 NH-4-Br,Ph Methyl 7.252 7.487 -0.043 7.323 0.071 

30 3 NH-4-F,Ph Methyl 7.237 7.116 -0.222 7.305 0.068 
31 3 NH-4-Cl,Ph Methyl 7.222 7.093 -0.190 7.279 0.057 

44 3 Methyl Chloro 6.481 6.356 -0.031 7.208 0.726 

45 4 Methyl Chloro 6.921 6.827 -0.179 7.302 0.381 
48 3 Methyl Chloro 6.62 6.535 -0.065 7.083 0.463 

50 6 Methyl Chloro 6.854 7.496 0.429 7.494 0.640 

62 4 Methyl N-Et piperazine 7.699 7.639 0.070 7.578 -0.121 
71 3 H NH-(CH2)5OH 5.412 5.484 0.129 5.632 0.220 

76 3 Methyl NH-(CH2)5OH 5.578 5.983 0.465 5.947 0.369 

81 4 H NH-(CH2)6OH 5.499 6.068 0.604 6.146 0.647 
84 4 Methyl NH-(CH2)4OH 6.886 6.211 -0.650 5.948 -0.938 

87 2 Methyl Chloro 7.194 6.677 -0.535 6.967 -0.227 

102 2 Methyl N-Et piperazine 7.377 7.342 0.031 7.255 -0.122 
103 2 Methyl Pyrrolidine 7.222 7.607 -0.164 7.034 -0.188 

104 2 Methyl Piperidine 7.357 7.343 0.017 7.086 -0.271 

109 3 Methyl Morpholine 7.276 7.408 0.036 7.170 -0.105 
112 3 Methyl Chloro 5.955 6.721 0.744 6.620 0.665 

118 2 Methyl 4-Ethylpiperazin-1-yl 7.699 7.435 -0.178 7.463 -0.236 

122 3 Methyl 4-Ethylpiperazin-1-yl 7.398 7.388 -0.084 7.329 -0.069 
126 2 Methyl 4-Ethylpiperazin-1-yl 7.523 7.191 -0.330 7.108 -0.415 

129 3 Methyl Morpholin-1-yl 6.886 6.936 0.042 6.540 -0.346 

136 3 Methyl Piperidin-1-yl 7.292 7.314 0.080 7.178 -0.115 
139 3 H Pyrrolidin-1-yl 6.690 6.745 -0.001 6.908 0.217 

153 4 H Morpholin-1-yl 7.420 7.266 -0.159 7.196 -0.224 

159 6 Methyl Pyrrolidin-1-yl 7.102 7.177 -0.032 7.409 0.307 
160 6 Methyl Piperidin-1-yl 7.092 7.161 -0.037 7.419 0.327 
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cross-validation (q2) was used to assess the performance of the 

models. The predictive ability within the test set (32 

compounds) was obtained using the equation r2
pred= (SD-

PRESS)/SD, where SD is the sum of squared deviations 

between the mean activity of the training set and the inhibitory 

activities of the test set. PRESS is the sum of squared 

deviations between the predicted and experimental activity for 

each compound in the test set. Molecular visualization was 

generated using Discovery Studio and Sybyl-X. 

 

2.4 Noncovalent interaction  
 

NCI analysis of the most active compounds (57–59) 

was performed via the NCIweb server (https://nciweb. 

dsi.upmc.fr/) (Novoa, Laplaza, Peccati, Fuster, & Contreras-

García, 2023). The method analyzes weak interactions 

through electron density (ρ) and reduced density gradient (s, 

also referred to as RDG) using promolecular densities 

(Contreras-García et al., 2011). 3D isosurfaces (cutoff = 0.3 

a.u.) reveal hydrogen bonds (blue), van der Waals (green), and 

repulsive (red) interactions. 

 

3. Results and Discussion  
 

3.1 General information on the compounds 
 

A set of 4-aminoquinoline-pyrimidine derivatives 

with a broad pIC50 range (4.980–8.301) was investigated using 

3D-QSAR modeling. Actual and predicted pIC50 values for 

the 32 test set compounds are shown in Table 1; data for the 

remaining compounds appear in Table S1. Test compounds 

were randomly selected to reflect both structural diversity and 

biological activity. Differences in inhibitory activity against 

the chloroquine-sensitive P. falciparum D6 strain were 

attributed to structural variations (Table 1). The distribution of 

compounds with different linker lengths (n = 2, 3, 4, and 6) is 

summarized in Figure 3. The most common linker length was 

n = 3 (39%), followed by n = 2 (30%) and n = 4 (25%), as 

shown in the pie chart (Figure 3B). No compounds with n = 5 

were found, and only 6% had the longest linker (n = 6). These 

trends suggest that an optimal alkyl linker length contributes 

to the antimalarial activity. 
 

 
 
Figure 3. Population of compounds with different numbers of linker 

carbons (n), as observed from the 162 compounds with 

antimalarial activities (pIC50). 

3.2 3D-QSAR 
 

To explore the structure–activity relationship of 162 

aminoquinoline-pyrimidine derivatives (Table S1), we applied 

CoMFA and CoMSIA using the Partial Least Squares (PLS) 

method (Wold, Ruhe, Wold, & Dunn, 1984). Structures were 

generated in Discovery Studio 2017 using compound 57 as a 

template, and geometry-optimized with Gaussian 09. Ten 

models for each technique were developed, with Model 10 

providing the best statistical performance with the highest r2 

(Tables S2–S3). For CoMFA, the optimal model (NOC = 6) 

had q² = 0.506, r² = 0.875, F = 133.007, and SEE = 0.227, 

with steric and electrostatic contributions of 59.8% and 

40.2%, respectively (Table 2). CoMSIA, using five 

descriptors—steric (S), electrostatic (E), hydrophobic (H), H-

bond donor (D), and H-bond acceptor (A)—gave q² = 0.614, 

r² = 0.871, and the following contributions: A (24.2%) > D 

(22.1%) > H (19.9%) > E (18.5%) > S (15.3%). 

To assess the reliability of the CoMFA and 

CoMSIA models, both models were trained on the same 

dataset (Table S1) and validated with a test set of 32 

compounds, chosen for structural and activity diversity. Table 

1 summarizes predicted and actual activities, and residuals, for 

the test set. The test set predictions showed good agreement 

with experimental values (Δ < 0.9). Cross-validation (q² > 0.6) 

further supports the predictive reliability of both models.  

Contour maps were generated to interpret CoMFA 

and CoMSIA results using compound 57 (pIC50 = 8.301) as 

reference. CoMFA steric maps (Figure 4A) highlight 

favorable bulk at R2 (green contours) and minimal substitution 

at R1. Compounds 43, 65, and 57 with increasing steric bulk at 

R2 (Cl < NH(CH₂)₄OH < N-methylpiperazine) show increased 

pIC50 values (Figure S1). Similar trends were found for the n 

= 3 linker series: compound activity followed the order 

piperidine < morpholine < N-methylpiperazine < N-

ethylpiperazine (compounds 51, 55, 58, and 61; Figure S2). 

For longer linkers (n = 4), steric hindrance near the pyrimidine 

ring (yellow contours) reduced activity (compounds 15, 36, 

45, 52; Figure S3–S4). CoMFA electrostatic maps (Figure 4B) 

show favorable blue contours at R2 (positive electrostatics) 

and red at R1 (negative). Compounds with electron-donating 

R2 groups (e.g., H, Me) showed higher pIC50 values than those 

with electron-withdrawing groups (e.g., Cl, NH(CH₂)₃OH), as 

seen in compounds 18, 39, 45, and 83 (Figure S5–S6). 

CoMSIA hydrophobic fields (Figure 5A) show 

favorable hydrophobicity (purple contours) at R2. Polar ring 

systems at R2—e.g., N-methylpiperazine in compound 57—

enhance activity, while hydrophobicity on the pyrimidine ring 

and linker is disfavored (green contours), as confirmed by 

compounds 45 and 59 (n = 4; Figure S8–S9) and contrasted 

with n = 3 compounds (51, 61, 75). H-bond donor fields 

(Figure 5B) reveal cyan contours near NH linkers and 

quinoline moieties, suggesting their positive impact. H-bond 

acceptor fields (Figure 5C) show magenta contours around 

nitrogen atoms in N-methylpiperazine, consistent with high 

pIC50 in compounds 57–59 (Figure S10). These observations 

align with CoMSIA descriptor contributions (Table 2), where 

H-bond donor and acceptor fields are the most dominant 

(>40%). 
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Table 2. Comparison of PLS fitting results between the best CoMFA and CoMSIA models 
 

 
Model 

 

Leave one out cross-validation Non-cross-validation Field contribution (%) 

q2 NOC r2 SEE F S E H D A 

           

CoMFA 0.506 6 0.875 0.227 133.007 59.8 40.2 - - - 
CoMSIA 0.614 6 0.871 0.230 128.652 15.3 18.5 19.9 22.1 24.2 

           

 

q2; LOO cross-validated correlation coefficient, NOC; the optimum number of components, r2; non-cross-validated correlation coefficient, SEE; 
standard error estimate of non-cross-validated correlation coefficient, F; Fisher’s values, S; steric, E; electrostatic, H; hydrophobic, D; hydrogen 

bond donor, A; hydrogen bond acceptor 

 

 
 

Figure 4. CoMFA contour maps of (A) steric and (B) electrostatic 

fields using compound 57 as a reference. Green (80%) and 
yellow (20%) contours in panel A, and blue (80%) and red 

(20%) contours in panel B indicate favorable and 

unfavorable regions, respectively. 

 
3.3 Docking simulation  
 

Molecular docking is an in-silico method that 

enables prediction of ligand binding poses and affinities at 

protein active sites, making it essential in pharmaceutical 

research (Jitonnom et al., 2024; Tue-ngeun et al., 2024). In 

this study, the GOLD program was used to evaluate the 

binding of 4-aminoquinoline-pyrimidine inhibitors at the 

PfDHFR active site, offering structural insights for compound 

design. 

Compounds 57–59, among the most active 

derivatives (pIC50 = 7.699–8.301), were selected to represent 

binding interactions (Figures 6 and S12). All three exhibited 

both electrostatic and hydrophobic interactions with PfDHFR.  
Compound 57 formed C–H bonds with Ile14 and Ile164, π–π 

stacking with Phe58, π–alkyl interactions with Leu46 and 

Ile112, and a halogen bond (–NH···Cl, 2.8 Å) with Met55. 

Additional hydrogen bonds with pyrimidine and chloroquine 

moieties were observed (∼2.2 and ∼2.6 Å; Figure S12(A)). 

                
 

Figure 5. CoMSIA contour maps of (A) hydrophobic, (B) H-bond 

donor, and (C) H-bond acceptor fields using compound 57 
as reference. Favorable and unfavorable regions are shown 

as: (A) purple (80%) and green (20%), (B) cyan (80%) and 

purple (20%), and (C) magenta (80%) and orange (20%), 
respectively. 

 

Compounds 58–59, with longer linkers, formed 

more hydrogen bonds (Asp54, Ser111, Ile164, NDP) and 

hydrophobic interactions (Ala16, Met55, Phe58, Met104, 

Ile112) (Figures 6C, 6D, S12(B–C)). Unlike 57, where the N-

methylpiperazine oriented toward Phe116, compounds 58–59 

repositioned the chloroquine moiety to interact with Phe116 

and Met55, while the R2 group stacked with Phe58. Both 

formed additional π and hydrogen bond contacts with the 

nicotinamide and ribose moieties of NDP, absent in 57. 

Compound 58 showed greater binding affinity than 

59 due to stronger π–lone pair and π–π interactions with 

Phe116 (Figure 6C). These binding differences support their 

observed antimalarial potencies (Manohar, Rajesh, Khan, 

Tekwani, & Rawat, 2012). Additional docking results for 

other compounds are shown in Figures S13–S16. 
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Figure 6. (A, B) Binding interactions (in 3D and 2D) of the docked conformation of the most active compound 57 (pIC50 = 8.301), whereas the 
2D interactions for its counterpart compounds, 58 (C) and 59 (D), with longer carbon linkers (n = 3 and 4, respectively) were also 

included for comparison. This visualization was made by using the BIOVIA Discovery Studio. The values of GoldScore fitness for 

57, 58 and 59 are 68.00, 73.26, and 71.48, respectively. 
 

3.4 NCI analysis 
 

NCI analysis was performed on compounds 57–59 

to characterize key interactions with PfDHFR. The 2D RDG 

plots (–0.06 to +0.06) and corresponding 3D isosurfaces 

(Figure 7) reveal dominant van der Waals forces (green 

regions, –0.02 to +0.02), supporting weak but favorable 

binding. Compound 57 shows weaker interactions than those 

observed for compounds 58 and 59 due to less extensive green 

isosurfaces, correlating with its shorter linker. The interaction 

strength for the ligand binding can be tracked from the 

integration of electron density, ρ(r). As shown in Figure S17, 

the binding strength trend (58 > 59 > 57) is observed, 

consistent with the docking results above. A significant 

difference between the shorter linker compound 57 and the 

longer linker compounds 58-59 is detected in the NCI plots. 

Additionally, sharp blue RDG peaks (–0.04 to –0.03) in 

compounds 58–59 indicate H-bonding with the ribose OH of 

NDP, absent in 57. Overall, the NCI results are consistent 

with the docking study and further support the role of van der 

Waals and hydrogen-bond interactions in stabilizing the 

binding process of PfDHFR. 

 

4. Conclusions 
 

This study employed 3D-QSAR and molecular 

docking to analyze 162 compounds (4-aminoquinoline- 

pyrimidine derivatives) as antimalarial agents targeting  

PfDHFR. CoMFA and CoMSIA models, aligned using 

 
 

Figure 7. 2D scatters (left) and 3D isosurfaces (right) of the docked 
conformations of compounds 57 (A), 58 (B) and 59 (C) 

from NCI analysis. Circles on the 3D NCI plots indicate 

regions corresponding to important H-bond (blue circles) 
and van der Waals interactions (green circles) observed for 

each compound 
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Figure 8. Structural features obtained from this current 3D-QSAR 

study. Optimal length of the carbon linker is n = 3 (> 39% 
of all studied compounds, Figure 3B). 

 
compound 57, demonstrated good predictive performance 

(CoMFA: q² = 0.506, r² = 0.875, SEE = 0.227; CoMSIA: q² = 

0.614, r² = 0.871, SEE = 0.230). Key pharmacophoric features 

were identified from contour maps, recommending small 

hydrophobic R₁ groups, bulky hydrophobic R₂ groups, and 

appropriate H-bond donor/acceptor substitutions at R₂ and –

NX positions, as shown in Figure 8. Further docking 

simulations revealed that optimal binding involves 

interactions with Phe58, Phe116, and the NADPH 

nicotinamide moiety. Compounds 58 and 59 showed stronger 

binding due to favorable conformations, while compound 57 

lacked key interactions due to a shorter linker. Residues Ile14, 

Leu46, Met55, Phe58, Ser111, Ile112, Phe116, and Ile164 

were identified as crucial for binding stability, as supported by 

NCI analysis. 
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