
  

 

*Corresponding author 

  Email address: nancy9b@gmail.com;                         

                           hemlata.joshi28@gmail.com 

 

Songklanakarin J. Sci. Technol. 

47 (6), 438–444, Nov. – Dec. 2025 

 

 

 

 Original Article  
 

 

Residual-based MEWMA control charts  

in the presence of multicollinearity 
  

Nancy M.1, 2*, and Hemlata Joshi1 

 
1 Department of Statistics and Data Science, CHRIST (Deemed to be University),  

Bangalore, Karnataka, 560029 India 

 
2 Department of Statistics, School of Computational and Physical Sciences,  

Kristu Jayanti (Deemed to be University), Bengaluru, Karnataka, 560077 India 

 
Received: 22 October 2024; Revised: 3 July 2025; Accepted: 22 August 2025 

 

 

Abstract 
 

Statistical Process Control has been performing a critical role in attaining quality assurance from historic times to the 

modern era.  Examining and governing the process variables involves rigorous stages and several control charts. The multivariate 

process is considered for a more comprehensive understanding of handling multiple correlated variables of the process. The study 

here focuses on the unique creation and deployment of residual-based Multivariate Exponentially Weighted Moving Average 

control charts in the presence of multicollinearity, specially constructed and evaluated for Phase I and Phase II. The chart offers a 

reliable framework for understanding shifts in multivariate processes across time from minor to moderate changes in process 

parameters. Agro-Economy data of Indian States for the years 2019 and 2020 are utilized in an application example. The proposed 

residual-based MEWMA control charts detect out-of-control circumstances with few false alarms and this is critical for rapid 

interventions, resulting in optimal crop management and production. 
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1. Introduction  
 

Industries frequently need to monitor many quality 

traits or factors at the same time to increase production and 

turnover. Incorporating theories and procedures of Statistical 

Process Control (SPC) with multivariate processes via the 

Multivariate Exponentially Weighted Moving Average 

(MEWMA) control charts has revolutionized the area of 

Statistical Quality Control (SQC). MEWMA charts help to 

evaluate the overall quality of a process by considering many 

factors simultaneously. In recent years, measuring and tracking 

several process variables at the same time has been monitored 

by MEWMA charts, making them appropriate for identifying 

changes across multiple dimensions. MEWMA charts provide 

improved   management   of   correlation   and   sensitivity  when 

 

compared to single-variate charts, expanding numerous sectors 

with operational excellence in multivariate processes. For the 

past  three  decades,  MEWMA  charts  have  gained  favorable 

interest in detecting deviations and shifts in the process 

characteristics.  

Lowry discussed the concept of MEWMA with two 

illustrative applications and charts, providing insights about the 

detection of out-of-control signals (Lowry, Woodall, Champ, & 

Rigdon, 1992). This was followed by the regression 

adjustments process in MEWMA charts (Hawkins, 1993). 

Wierda explored the advances in multivariate SPC such as 

CUSUM charts, multivariate charts, and capacity indices, 

emphasizing theoretical gaps and the importance of identifying 

factors that cause out-of-control signals (Wierda, 1994) and, 

during the same period Lowry published a detailed survey of 

multivariate control charts contributing to the spread of these 

ideas for multivariate processes (Lowry & Montgomery, 1995). 

MEWMA charts for detecting smaller shifts were further 

demonstrated by (Prabhu & Runger, 1997) whereas Stoumbos 

devised robustness against non–normality in the same chart 
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(Stoumbos, & Sullivan, 2002). Yeh and his co-researchers 

proved the effectiveness of the combined MEWMA and 

EWMA–V charts regarding the process mean and variability 

(Yeh, Lin, Zhou, & Venkataramani, 2003). Slightly altering the 

EWMA of each observation and its transposition, Yeh and his 

team further proposed MEWMA when the variables are highly 

correlated (Yeh, Huwang, & Wu, 2005). Extending this 

version, Zhang et al. identified a rapid detection of mean, 

variance, or both shifts in terms of correct detection percentages 

using the multiple testing procedure (Zhang & Chang, 2008). 

Park and Jun (2015) facilitated a new MEWMA for every mean 

shift to improve the identification of tiny alterations in 

multivariate systems. In the presence of a gamma model for 

performance of the MEWMA charts, Flury and Quaglino 

(2018) obtained control limits with known parameters. 

Adaptive MEWMA charts were used by Haq and Khoo (2019) 

for monitoring process mean in a normally distributed 

procedure. By identifying a robust MEWMA with dispersion 

when the covariance matrix decreases, their research focuses on 

monitoring process variability using individual observations. 

However, the suggested chart also insisted on monitoring 

aggregated data by including the sample covariance matrix in 

the EWMA statistic (Ajadi, Zwetsloot, & Tsui, 2021). 

Nidsunkid and Yeesa (2023) analyzed the MEWMA chart 

when the normality assumption is violated, and this assumption 

has a significant impact on multivariate control charts intended 

for quick detection.  

Based on our literature survey, addressing the 

residual-based MEWMA control charts in the presence of 

multicollinearity provides a potential for future study, notably 

in creating and assessing strategies for dealing with 

multicollinearity within residual-based MEWMA frameworks. 

Traditional MEWMA charts might overlook some minor 

deviations; and yet, significant shifts with respect to process 

variations and averages, in the presence of multicollinearity, 

will be a challenge for the monitoring. The motivation to 

propose the chart is to improve the ability of early detection and 

be consistent in tracking multivariate processes, and the 

proposed chart minimizes the impact of multicollinearity by 

using residuals of biased estimators resulting in higher quality, 

so that the two phases in process control are further 

strengthened. This technique helps in early detection, 

producing a practical solution to intricate situations.  

This article proposes unique residual-based 

Multivariate Exponentially Weighted Moving Average charts 

(MEWMA) in the presence of multicollinearity. The 

adaptability of MEWMA from sensitive to minor shifts helps 

to enhance measuring and variation evaluations from 

conventional techniques, making it a robust chart with the 

hybrid approach in the context of multicollinearity. The 

performance of the residual-based MEWMA charts is 

measured using the Average Run Length (AvgRL) and further 

justified with an application in the field of Agronomy of Indian 

states and union territories for two successive years.  

The article is laid out as follows: Section 2 describes 

the model methodology, followed by Section 3 briefly outlining 

the proposed design of the residual-based MEWMA charts in 

the presence of multicollinearity. An application is illustrated 

in Section 4 to facilitate understanding the proposed charts. 

Lastly, the inference is highlighted in Section 5. 

 

2. Model Methodology 
 

A multiple linear regression model in the general 

form is denoted as: 

 

𝑋𝑖 = 𝛾0 + 𝛾1𝑅𝑖1 + 𝛾2𝑅𝑖2 + ⋯ + 𝛾𝑞𝑅𝑖𝑞 + 𝜖𝑖 , 𝑖 = 1,2, … , 𝑚 (1) 
 

𝑤ℎ𝑒𝑟𝑒, 𝐸[𝜖𝑖] = 0, 𝑉𝑎𝑟[𝜖𝑖] = 𝜎2 𝑖. 𝑒. , 𝜖𝑖~𝑁(0, 𝜎2).  
𝑋𝑖  refers to the response variable of size (𝑚 × 1), 𝑅  of size 

(𝑚 × 𝑞)  has q regressors and, γ is the unknown regression 

coefficient with order (𝑞 × 1). The variables are standardized 

to estimate the (𝑞×1) vector γ of regression coefficients. The 

multiple linear regression model in equation (1) can be written 

in matrix form as: 

 

𝑋 = 𝑅𝛾+∈                                                (2) 

𝑖. 𝑒. , [

𝑥1

𝑥2

⋮
𝑥𝑚

] = [

1 𝑟11 𝑟12

1 𝑟21 𝑟22
⋯

𝑟1𝑞

𝑟2𝑞

⋮ ⋱ ⋮
1 𝑟𝑚1 𝑟𝑚2 ⋯ 𝑟𝑚𝑞

] [

𝛾1

𝛾2

⋮
𝛾𝑞

] + [

𝜀1

𝜀2

⋮
𝜀𝑚

] 

 

𝑅′𝑅 is the correlation matrix of size 𝑞 × 𝑞 and 𝑅′𝑋 is 

the vector of the correlation coefficients. Assumptions are 

crucial during the analysis of regression; in case the 

assumptions are violated the model becomes unfit and 

unreliable in estimating the parameters. These assumptions 

may include non-linearity, autocorrelation, homoscedasticity, 

normality, and multicollinearity. There always exists a 

correlation between the response and the explanatory variables 

in a regression model. The study presented here examines the 

case when the multiple independent variables in a regression 

model are correlated leading to multicollinearity. A small to 

high degree of multicollinearity can cause significant issues. To 

address this, various techniques are employed. One such 

technique that is often used to detect multicollinearity is the 

Variance Inflation Factor (VIF). 𝑉𝐼𝐹 =
1

𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 
=

1

1−𝑝𝑖
2 , 

𝑝𝑖
2 is the unadjusted coefficient of determination for predicting 

the ith independent variable on the remaining ones.  During the 

absence of multicollinearity, the ordinary least square estimator 

will be applied to estimate the parameters; but since the interest 

of the study is concerning multicollinearity, we further proceed 

with the estimators that help us to overcome the issue of 

multicollinearity. To address this issue, several estimators such 

as Principal component, ridge regression, (r-k) class estimator, 

etc. are used to estimate the coefficients of the regression 

model, which stabilize and improve regression model 

dependability. The functional form of these estimators depends 

on the shrinkage parameter K which was further estimated by 

various researchers to enhance the performance of the 

regression model. Based on a few inspections and extensive 

reviews it was found that the estimator proposed by Azar and 

Genc (2017) for the shrinkage parameter gives the minimum 

expected mean squared error and performs well for strong 

multicollinearity. and it is  utilized in this study. It is given by   

𝐾𝐴&𝐺 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚√
𝜎̂2

𝛾̂2  , where  𝛾 = 𝜆−1 𝑅′𝑋  . Further, this 

𝐾𝐴&𝐺  estimator is used to estimate the regression coefficients 

using the ridge and (r-k) class estimators. The ridge estimator 

( γ̂𝑟)  proposed  by  Hoerl  and  Kennard (1970),  and (r-k)  class 
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estimator (  γ̂𝑟𝑘)  was proposed by Baye and Parker (1984) 

combining PCR and ridge estimator, are given by: 

 

 γ̂𝑟=(𝑅′𝑅 + 𝐾𝐴&𝐺  𝐼𝑞)−1 𝑅′𝑋,                (3) 
 

 γ̂𝑟𝑘=𝑃𝑐(𝑃𝑐
′𝑅′𝑅𝑃𝑐 + 𝐾𝐴&𝐺𝐼𝑞)−1 𝑃𝑐

′𝑅′𝑋               (4)  

 

where, 𝑃𝑐 = 𝑃1, 𝑃2, … , 𝑃𝑞 is an orthogonal matrix with principal 

components as columns, 𝐼𝑞 denotes the identity matrix 

and 𝑃𝑐
′𝑅′𝑅𝑃𝑐 = ξ𝑐 = diag(𝜆1, 𝜆2, . . , 𝜆𝑐),  𝜆1, 𝜆2, . . , 𝜆𝑐 are the 

eigenvalues of matrix 𝑅′𝑅. Further, the regression models are 

estimated using ridge and (r-k) class estimators and the 

residual-based MEWMA charts have been proposed in this 

article. 
 

3. Proposed Residual -Based MEWMA Charts 
 

3.1 Layout for the proposed residual-based MEWMA  

      charts 
 

To enhance the flow of the study and to visualize the 

process of residual-based MEWMA charts in two phases, a 

layout is constructed and is represented in Figure 1.  
 

 
Figure 1. Residual-based MEWMA control charts layout 

 

3.2 Proposed residual-based MEWMA charts 
 

A statistical method for examining the association 

between several independent variables and one dependent 

variable is the multiple linear regression model and it takes into 

account two or more predictors, in contrast to basic linear 

regression. 

The multivariate regression is given by,  
 

𝑋𝑖 = 𝛾𝑅𝑖 + 𝜖𝑖                     (5) 
 

with process mean vector µ𝑟  and variance covariance matrix    

𝛴  of correlated variables i.e., 𝑅𝑖~𝑁𝑞( µ, 𝛴)  , and  𝛴 =

(

𝜎11 𝜎12 ⋯ 𝜎1𝑞

⋮ ⋱ ⋮
𝜎𝑞1 𝜎𝑞2 ⋯ 𝜎𝑞𝑞

). The idea here is to propose residual-

based MEWMA control charts using ridge and (r-k) class 

estimators that account for multicollinearity to monitor process 

variability. The MEWMA charts of Lowry (1992) are an 

extension of the EWMA charts (Robert 1959) for detecting 

smaller shifts, based on the EWMA statistic given as, 

Zi = ξRi + (1 − ξ)Zi−1 , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚              (6) 

 

where, Z1 = 0 , and 0 < ξ ≤ 1 .  To summarize, ξ =
𝜆1, 𝜆2 … , 𝜆𝑞are the individual smoothing constants for each of 

the 𝑞  variables. These constants regulate the amount of 

smoothing applied to each variable. A low λ number (near 0) 

indicates that previous observations are weighted higher, 

lowering the chart's sensitivity to current changes. A larger λ 

value (near 1) emphasizes current data, making the graphic 

more responsive to process changes. In a multivariate situation, 

the vector of EWMA’s is as follows: 

 
Zi =∧ Ri + (1 −∧)Zi−1 , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑚            (7) 

 

where, Z1 = 0 , and ∧= ξ1, ξ2, … , ξ𝑞 ,( 0 < ξ𝑗 ≤ 1), 𝑗 =

1,2, . . , 𝑞. The MEWMA control charts signal is obtained as:   
 

𝑀𝑈𝑖
2 = 𝑍𝑖

′𝛴𝑧𝑖
′𝑍𝑖 and 𝑆𝐷( 𝑀𝑈𝑖

2) = 𝛴𝑧𝑖
=

ξ

(2−ξ)
𝛴               (8) 

 

where, 𝛴𝑧𝑖
is the variance-covariance matrix of 𝑍𝑖  (Mahmoud 

et al. 2010). 

To propose the M-EWMA charts instead of 

considering the out-of-signal 𝑈𝐶𝐿 =  𝐻 >  0   (always 

generated using simulation), the current study uses 

residuals 𝑀𝑈𝑖
2 calculated using the ridge and r-k class 

estimators. Hence, the study presents an adaptive structure of 

EWMA limits to frame the M-EWMA control charts, to detect 

shifts via the Multivariate Exponentially Weighted Moving 

Average (MEWMA) control charts. The beginning value  𝑍𝑖 =
𝑍1 = 0  is set to state that the process is in control and to 

initialize the control chart for the monitoring process. With the 

univariate EWMA framework, though the control limits' form 

is consistent, the monitoring statistic is multivariate and 

residual-based to maintain the recursive nature and memory 

features. The limits offer a tractable, non-simulation-based 

technique for identifying process behaviour abnormalities in 

linked variables. By employing estimator-specific residuals, the 

adaption expands the use of EWMA limits to multivariate, 

multicollinearity contexts while maintaining their well-known 

interpretability. Without the computational strain of simulation 

to ascertain the crucial value H, this architecture enables 

practical implementation. Now, the proposed Upper Control 

Limit (UCL), Center Line (CL) and Lower Control Limit 

(LCL) for residual-based MEWMA statistics in the presence of 

multicollinearity are: 
 

𝐿𝐶𝐿 = µ𝑒𝑟𝑟 − 𝐿𝜎𝑒𝑟𝑟√
∧

(2−∧)
[1 − (1 −∧ )2𝑖]           (9) 

 

𝐶𝐿 = µ𝑒𝑟𝑟                 (10) 
 

𝑈𝐶𝐿 = µ𝑒𝑟𝑟 + 𝐿𝜎𝑒𝑟𝑟√
∧

(2−∧)
[1 − (1 − ∧)2𝑖]        (11) 

 

Here, µ𝑒𝑟𝑟 = 𝑚𝑒𝑎𝑛(𝑀𝑈𝑖
2),  𝜎𝑒𝑟𝑟 = 𝑆𝐷(𝑀𝑈𝑖

2) and L 

represents the various sigma limits 𝑖. 𝑒. ,1𝜎, 2𝜎 𝑜𝑟 3𝜎 

respectively.  

Further, the performance of the proposed control 

chart is evaluated with the Average Run Length (AvgRL) 

which measures the number of observations to signal an out-of-

control process i.e., 
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𝐴𝑣𝑔𝑅𝐿 =
1

𝑅𝑎𝑖𝑠𝑒 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚
                                        (12) 

 

To make the performance more applicable, 𝐴vgRL is 

transformed to 

 

𝐴𝑣𝑔𝑅𝐿 =
𝑁𝑜 𝑜𝑓 𝑟𝑢𝑛𝑠 𝑎𝑏𝑜𝑣𝑒 𝑈𝐶𝐿 𝑜𝑟 𝑏𝑒𝑙𝑜𝑤 𝐿𝐶𝐿

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
             (13) 

 

By proposing the MEWMA charts and checking their 

performances using AvgRL, the study presents unique 

MEWMA control charts to monitor the process variability in 

the presence of multicollinearity using regression models. 
 

4. Application of the Proposed Residual-Based  

    MEWMA Control Charts with Multicollinearity 
 

To demonstrate the proposed residual-based 

MEWMA charts with multicollinearity and to monitor the 

quality control process, the Indian Agro-Economy data of 

Indian States/Union territories are analyzed. These data are 

taken from the RBI website (www.rbi.org.in). The per hectare 

consumption of fertilizer (CFR) such as Nitrogen(N), 

Phosphorus(P), and Potassium(K) (N+P+K) is assumed to be 

the response variable. The explanatory variables are taken as 

the production of food grains (PFG), Area of Food grains grown 

(AFG), gross irrigated area (GIA), net irrigated area (NIA) and, 

cropping intensity (CI) for two subsequent years 2019 and 2020 

as Phase I & II data respectively. Since all the States/Union 

territories do not produce all kinds of crops, crops that are 

common for all states are taken into consideration, so we have 

a count of 27 States/Union territories under consideration. The 

entire study is completed in two phases, Phase I for 2019 data 

and Phase II for 2020 data respectively. Multicollinearity is 

inspected for both phases, and in the presence of 

multicollinearity, ridge and (r-k) class estimators are fitted to 

construct the proposed residual-based MEWMA charts for 

monitoring despite multicollinearity. The research also extends 

prior work by using 3 different ∧ values, and performance is 

evaluated using the Average run length for two different ∧ 

values to monitor the moderate and high sensitivity of 

consumption of fertilizers.  

 

4.1 Phase I and II: Residual-based MEWMA charts  

      with ridge and (r-k) class estimators 
 

From equation (1) we obtain the regression equation 

for the year 2019 data set. 
 

i.e.,   𝐶𝐹𝑅(2019 & 2020) 

=   𝛾1  𝑃𝐹𝐺 + 𝛾2  𝐴𝐹𝐺 + 𝛾3  𝐺𝐼𝐴 + 𝛾4  𝑁𝐼𝐴 + 𝛾5  𝐶𝐼 
 

After standardization of the variables. 

Multicollinearity is tested for the dataset using VIF. VIF for 

phase I is 14.53, 9.32, 49.49, 35.99, 1.09, and for phase II it is 

13.30, 10.35, 53.32, 43.49, 1.10, respectively. These values 

indicate the presence of multicollinearity, since 4 regressors’ 

are above 5 in both phases. By scree plotting the eigenvalues 

shown in Figures 2 (a) and (b) against the percentage of 

variation, we analyze the principal components, and the first 3 

components of phases I & II contribute 98 % of the variation; 

hence 𝑃𝑐  for both phases retain only the first 3 principal 

components.  

Using equations 3 and 4, we obtain  γ̂𝑟  and  γ̂𝑟𝑘 

coefficients and fit equation (1) to obtain the ridge and (r-k) 

class estimator regression models. Table 1 presents the  γ̂𝑟  and 

 γ̂𝑟𝑘  coefficients for both phases. 

After fitting the multiple regression model for the 

multivariate process, we obtain the MEWMA statistic using 

equation (7). µ𝑒𝑟𝑟  and 𝜎𝑒𝑟𝑟  are calculated to construct the 

proposed control limits equations (9), (10), and (11) that are 

used for three different values of ∧ , for ridge and (r-k) class 

estimators in phase I & II. Tables 2 and 3 present the Phase I 

MEWMA statistics along with the control limits for 3 different 

∧ values, followed by residual-based MEWMA control charts 

for Phase I using ridge and (r-k) class estimators, and these are 

visualized in Figure 3. Similarly, the Phase II MEWMA 

statistics along with the control limits for 3 different ∧ values 

are constructed, followed by residual-based MEWMA control 

charts for Phase II using ridge and (r-k) class estimators that are 

visualized in Figure 4. 

After obtaining the control limits, control charts are 

plotted for MEWMA for the initial phase and monitoring phase 

with smoothing parameters ∧= 0.1, 0.5, and 0.9 respectively. 

For both the Phases MEWMA statistics along with the control 

limits for 3 different ∧ values are constructed and are visualized 

in Figures 3 and 4 respectively. The chart supports the policy 

makers in making appropriate decisions for the geographic 

evaluation of per hectare consumption of fertilizer among 

states/union territories, better in comparison to tracking 

fluctuations over time in a conventional MEWMA. 

(a)  

(b)  
 
Figure 2. (a) Scree plot for initial phase (b) scree plot for monitoring 

phase 

 

Table 1.  γ̂𝑟 and  γ̂𝑟𝑘 coefficients for phases I & II 
 

Coefficient 
 γ̂𝑟   γ̂𝑟𝑘  

Phase I Phase II Phase I Phase II 

     

     

 γ̂1 0.889 0.803 0.631 0.233 

 γ̂2 -0.449 -0.461 -0.761 0.195 

 γ̂3 0.664 0.602 0.395 -0.051 

 γ̂4 -0.792 -0.660 0.036 -0.099 

 γ̂5 0.233 0.173 0.239 0.270 
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Table 2. Residual-based MEWMA statistics and their control limits using ridge estimator in phase I for various ∧ values 

 

State/Union territory 

∧= 0.1 ∧= 0.5 ∧= 0.9 

MEWMA UCL CL LCL MEWMA UCL CL LCL MEWMA UCL CL LCL 

             

Andhra Pradesh 0.2 0.7 0.7 0.6 0.9 1.9 0.9 0.0 1.7 4.2 1.0 -2.3 

Assam 0.2 0.8 0.7 0.6 0.8 2.1 0.9 -0.2 0.8 4.2 1.0 -2.3 

Bihar 0.5 0.8 0.7 0.5 2.1 2.1 0.9 -0.2 3.1 4.2 1.0 -2.3 
Chhattisgarh 0.5 0.8 0.7 0.5 1.1 2.1 0.9 -0.2 0.5 4.2 1.0 -2.3 

NCT of Delhi 0.5 0.8 0.7 0.5 0.6 2.1 0.9 -0.2 0.0 4.2 1.0 -2.3 

Goa 0.5 0.8 0.7 0.5 0.7 2.1 0.9 -0.2 0.7 4.2 1.0 -2.3 
Gujarat 0.5 0.8 0.7 0.5 0.5 2.1 0.9 -0.2 0.3 4.2 1.0 -2.3 

Haryana 0.5 0.8 0.7 0.5 0.5 2.1 0.9 -0.2 0.5 4.2 1.0 -2.3 

Himachal Pradesh 0.5 0.8 0.7 0.5 0.6 2.1 0.9 -0.2 0.7 4.2 1.0 -2.3 
Jammu & Kashmir 0.6 0.8 0.7 0.5 0.9 2.1 0.9 -0.2 1.2 4.2 1.0 -2.3 

Jharkhand 0.6 0.8 0.7 0.5 0.9 2.1 0.9 -0.2 0.8 4.2 1.0 -2.3 
Karnataka 0.6 0.8 0.7 0.5 0.7 2.1 0.9 -0.2 0.5 4.2 1.0 -2.3 

Kerala 0.6 0.8 0.7 0.5 0.8 2.1 0.9 -0.2 0.9 4.2 1.0 -2.3 

Madhya Pradesh 0.6 0.8 0.7 0.5 0.6 2.1 0.9 -0.2 0.4 4.2 1.0 -2.3 
Maharashtra 0.6 0.8 0.7 0.5 0.4 2.1 0.9 -0.2 0.3 4.2 1.0 -2.3 

Manipur 0.5 0.8 0.7 0.5 0.3 2.1 0.9 -0.2 0.2 4.2 1.0 -2.3 

Mizoram 0.6 0.8 0.7 0.5 0.8 2.1 0.9 -0.2 1.1 4.2 1.0 -2.3 
Odisha 0.6 0.8 0.7 0.5 0.5 2.1 0.9 -0.2 0.3 4.2 1.0 -2.3 

Puducherry 1.2 0.8 0.7 0.5 3.5 2.1 0.9 -0.2 5.9 4.2 1.0 -2.3 

Punjab 1.1 0.8 0.7 0.5 1.8 2.1 0.9 -0.2 0.7 4.2 1.0 -2.3 
Rajasthan 1.0 0.8 0.7 0.5 1.0 2.1 0.9 -0.2 0.2 4.2 1.0 -2.3 

Tamil Nadu 0.9 0.8 0.7 0.5 0.8 2.1 0.9 -0.2 0.6 4.2 1.0 -2.3 

Telangana 0.9 0.8 0.7 0.5 0.8 2.1 0.9 -0.2 0.8 4.2 1.0 -2.3 
Tripura 1.1 0.8 0.7 0.5 1.6 2.1 0.9 -0.2 2.2 4.2 1.0 -2.3 

Uttar Pradesh 1.0 0.8 0.7 0.5 1.3 2.1 0.9 -0.2 1.1 4.2 1.0 -2.3 

Uttarakhand 1.0 0.8 0.7 0.5 0.8 2.1 0.9 -0.2 0.4 4.2 1.0 -2.3 

West Bengal 0.9 0.8 0.7 0.5 0.4 2.1 0.9 -0.2 0.1 4.2 1.0 -2.3 
             

 
Table 3. Residual-based MEWMA statistics and their control limits using (r-k) class 

 

State/Union territory 

∧= 0.1 ∧= 0.5 ∧= 0.9 

MEWMA UCL CL LCL MEWMA UCL CL LCL MEWMA UCL CL LCL 

             

Andhra Pradesh 0.2 0.7 0.7 0.6 0.9 1.9 0.9 0.0 1.7 4.2 1.0 -2.3 
Assam 0.2 0.8 0.7 0.6 0.8 2.1 0.9 -0.2 0.8 4.2 1.0 -2.3 

Bihar 0.5 0.8 0.7 0.5 2.1 2.1 0.9 -0.2 3.1 4.2 1.0 -2.3 

Chhattisgarh 0.5 0.8 0.7 0.5 1.1 2.1 0.9 -0.2 0.5 4.2 1.0 -2.3 
NCT of Delhi 0.5 0.8 0.7 0.5 0.6 2.1 0.9 -0.2 0.0 4.2 1.0 -2.3 

Goa 0.5 0.8 0.7 0.5 0.7 2.1 0.9 -0.2 0.7 4.2 1.0 -2.3 
Gujarat 0.5 0.8 0.7 0.5 0.5 2.1 0.9 -0.2 0.3 4.2 1.0 -2.3 

Haryana 0.5 0.8 0.7 0.5 0.5 2.1 0.9 -0.2 0.5 4.2 1.0 -2.3 

Himachal Pradesh 0.5 0.8 0.7 0.5 0.6 2.1 0.9 -0.2 0.7 4.2 1.0 -2.3 
Jammu & Kashmir 0.6 0.8 0.7 0.5 0.9 2.1 0.9 -0.2 1.2 4.2 1.0 -2.3 

Jharkhand 0.6 0.8 0.7 0.5 0.9 2.1 0.9 -0.2 0.8 4.2 1.0 -2.3 

Karnataka 0.6 0.8 0.7 0.5 0.7 2.1 0.9 -0.2 0.5 4.2 1.0 -2.3 
Kerala 0.6 0.8 0.7 0.5 0.8 2.1 0.9 -0.2 0.9 4.2 1.0 -2.3 

Madhya Pradesh 0.6 0.8 0.7 0.5 0.6 2.1 0.9 -0.2 0.4 4.2 1.0 -2.3 

Maharashtra 0.6 0.8 0.7 0.5 0.4 2.1 0.9 -0.2 0.3 4.2 1.0 -2.3 
Manipur 0.5 0.8 0.7 0.5 0.3 2.1 0.9 -0.2 0.2 4.2 1.0 -2.3 

Mizoram 0.6 0.8 0.7 0.5 0.8 2.1 0.9 -0.2 1.1 4.2 1.0 -2.3 

Odisha 0.6 0.8 0.7 0.5 0.5 2.1 0.9 -0.2 0.3 4.2 1.0 -2.3 
Puducherry 1.2 0.8 0.7 0.5 3.5 2.1 0.9 -0.2 5.9 4.2 1.0 -2.3 

Punjab 1.1 0.8 0.7 0.5 1.8 2.1 0.9 -0.2 0.7 4.2 1.0 -2.3 

Rajasthan 1.0 0.8 0.7 0.5 1.0 2.1 0.9 -0.2 0.2 4.2 1.0 -2.3 
Tamil Nadu 0.9 0.8 0.7 0.5 0.8 2.1 0.9 -0.2 0.6 4.2 1.0 -2.3 

Telangana 0.9 0.8 0.7 0.5 0.8 2.1 0.9 -0.2 0.8 4.2 1.0 -2.3 

Tripura 1.1 0.8 0.7 0.5 1.6 2.1 0.9 -0.2 2.2 4.2 1.0 -2.3 
Uttar Pradesh 1.0 0.8 0.7 0.5 1.3 2.1 0.9 -0.2 1.1 4.2 1.0 -2.3 

Uttarakhand 1.0 0.8 0.7 0.5 0.8 2.1 0.9 -0.2 0.4 4.2 1.0 -2.3 

West Bengal 0.9 0.8 0.7 0.5 0.4 2.1 0.9 -0.2 0.1 4.2 1.0 -2.3 
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Figure 3. Residual-based MEWMA control chart for phase I using ridge and (r-k) class estimators 
 

  
 

Figure 4. Residual-based MEWMA control chart for phase II using ridge and (r-k) class estimators 
 

Here, X-axis denotes States /Union Territories (not 

tracking process over time but instead comparing multiple 

entities at a single point or aggregate level) & the Y-axis 

denotes the MEWMA statistic. 

The average run length metric in equation 10 is used 

in the chart performance evaluations. AvgRL is demonstrated 

in Table 4 and a comparative study is done to check the 

residual-based MEWMA chart's consistency and adaptability. 

Here we consider the AvgRL values when ∧= 0.5 𝑎𝑛𝑑 ∧=
0.9, since ∧= 0.1  gives more weightage to older data. 

 

5. Inference 
 

5.1 Phase I and II breakthroughs  
 

AvgRL when ∧= 0.9 is lower than with ∧= 0.5 , 

indicating that the proposed residual-based MEWMA charts 

detect process shift more quickly in both of the estimators 

similarly when ∧= 0.5 , AvgRL is comparatively lower  

indicating that the proposed residual-based MEWMA charts 

detect  process  shift  in  both  the  estimators  with  the  average 

Table 4. Average run length for phases I and II 
 

AvgRL 
Ridge estimator (r-k) class Estimator 

∧= 0.5 ∧= 0.9 ∧= 0.5 ∧= 0.9 
     

Phase I 0.074 0.037 0.074 0.037 

Phase II 0.037 0.037 0.037 0.037 
     

 

value. Consistent performance is expected for both phases due 

to similar values. 

 

5.2 Phase I and II monitoring  
 

Λ values are not significantly affecting the residual-

based MEWMA charts. Phase I monitoring of Puducherry 

indicates significant variability or a process shift, interpreting 

deviations and fluctuations in the process of the state. 

Identifying the out-of-control signal in the per-hectare 

consumption of fertilizers has increased variability in the form 

of shifts of mean or variance factors. A closer examination and 

corrective measures might solve the issue. Since in both phases, 
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Puducherry has exceeded the UCL, a clear factor has been out 

of control and needs a quick remedy for the union territory. 

Sustainable practices, resource allocation, and policy 

formulation have to be looked upon seriously concerning 

agricultural practices. Areas for future study could be 

approached by including several alternative estimators.  

By closely monitoring stakeholders, the proposed 

charts can improve resource management and enhance 

productivity, and decrease the use of fertilizers while 

maintaining quality standards. The findings show that the 

residual-based MEWMA control charts are successful in 

detecting process shifts even when multicollinearity exists. Our 

solution incorporates a two-phase architecture, allowing for the 

initial phase of estimation and the succeeding phase of 

monitoring, which improves the control charts' sensitivity and 

accuracy. More research and corrective measures are required 

to address these discrepancies and restore the border 

boundaries. The findings are supported by the following web 

source published on 2 April 2021, in THE HINDU 

businessline;https://www.thehindubusinessline.com/economy/

agri-usiness/puducherry-telangana-punjab-top-in-fertilizer-

consumption/article34224656.ece).  

The proposed residual-based MEWMA chart can be 

extended to high-dimensional and nonlinear situations.  To do 

away with simulation-based thresholds, efforts might also be 

focused on obtaining analytical expressions for ARL. The goal 

of these initiatives is to increase MEWMA charts’ durability 

and usefulness in contemporary, data-rich settings. 
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