

Original Article

Intuitionistic fuzzy α^* closed sets

Gajalaxmi P.*, and Sudha S. M.

Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043 India

Received: 19 September 2024; Revised: 17 July 2025; Accepted: 22 August 2025

Abstract

On the basis of α fuzzy closed sets and intuitionistic fuzzy sets, the conception of intuitionistic fuzzy α^* closed sets is introduced in intuitionistic fuzzy topological spaces. Here, we have deliberated the relations between the newly introduced set with other intuitionistic fuzzy closed sets and looked into their properties. In addition, we have obtained a few interesting propositions.

Keywords: intuitionistic fuzzy topology, intuitionistic fuzzy sets, intuitionistic fuzzy closed sets, intuitionistic fuzzy α^* closed sets

1. Introduction

Fuzzy sets, sets with a smooth boundary, were brought in by Zadeh (1965) as an extension of the classical notion of a set. The fuzzy notion has been applied in all branches of mathematics. Chang (1968) introduced and developed fuzzy topology. After that, the concept of intuitionistic fuzzy sets was introduced by Atanassov (1986), as an extension of fuzzy sets, which has both membership and non-membership degree. In the last two decades, various concepts of fuzzy mathematics have been extended for intuitionistic fuzzy sets. Coker (1997) founded the conceptualization of intuitionistic fuzzy topological space. In topological space, Hatir, Noiri, and Yuksel (1996) introduced α^* sets and spoke of their properties. Here, we have found a set in intuitionistic fuzzy topological spaces, as an extension of α^* set, named intuitionistic fuzzy α^* closed sets. We have examined several properties of this set type and acquired some propositions in suitable instances. The significance of a set can be identified if it is applied to real-life problems and an appropriate solution is found. Hence, the proposed set can be used in various applications like pattern recognition, decision-making problems, and image processing. In particular, the set itself can be used in decision-making problems, whereas continuity and connectedness can be used in image processing.

2. Preliminaries

Definition 2.1 (Atanassov, 1986) An intuitionistic fuzzy set (IFS) T is

$$T = \{\langle k, \mu_T(k), \nu_T(k) \rangle : k \in K\},$$

where μ_T and ν_T are functions and $\mu_T : K \rightarrow [0,1]$ and $\nu_T : K \rightarrow [0,1]$ denote the degree of membership ($\mu_T(k)$) and the degree of non-membership ($\nu_T(k)$) of each element $k \in K$ in the set T , respectively, and $0 \leq \mu_T(k) + \nu_T(k) \leq 1$ for each $k \in K$. In K , an intuitionistic fuzzy set T is represented as $T = \langle k, \mu_T, \nu_T \rangle$ instead of $T = \{\langle k, \mu_T(k), \nu_T(k) \rangle : k \in K\}$.

Definition 2.2 (Atanassov, 1986) Let T and V be two IFSs in K where $T = \langle k, \mu_T, \nu_T \rangle$ and $V = \langle k, \mu_V, \nu_V \rangle$, then

- (i) $T \subseteq V \Leftrightarrow \mu_T \leq \mu_V$ and $\nu_T \geq \nu_V$
- (ii) $T = V \Leftrightarrow T \subseteq V$ and $T \supseteq V$
- (iii) $T^c = \langle k, \nu_T, \mu_T \rangle$
- (iv) $T \cup V = \langle k, \mu_T \cup \mu_V, \nu_T \cap \nu_V \rangle$
- (v) $T \cap V = \langle k, \mu_T \cap \mu_V, \nu_T \cup \nu_V \rangle$

The whole set K and the empty set are respectively the IFSs $1_{\sim} = \langle k, 1, 0 \rangle$ and $0_{\sim} = \langle k, 0, 1 \rangle$.

Definition 2.3 (Coker, 1997) An *intuitionistic fuzzy topology* (IFT) on K is a family ζ of IFSs in K fulfilling these conditions:

- $0_{\sim}, 1_{\sim} \in \zeta$,
- $H_1 \cap H_2 \in \zeta$ for any $H_1, H_2 \in \zeta$,
- $\cup H_i \in \zeta$ for any family $\{H_i : i \in J\} \in \zeta$

*Corresponding author

Email address: pgajalaxmi1004@gmail.com

where (K, ζ) is an *intuitionistic fuzzy topological space* (IFTS) and all IFS in ζ is an *intuitionistic fuzzy open set* (IFOS) in K . The complement (T^c) of T in (K, ζ) is termed as an *intuitionistic fuzzy closed set* (IFCS) in (K, ζ) .

Definition 2.4 (Thakur & Chaturvedi, 2006) The necessary and sufficient condition for two IFSs T and V to be *not q-coincident* ($T \neq V$) is $T \subseteq V^c$.

Definition 2.5 (Santhi & Jayanthi, 2012) In an IFTS (K, ζ) , an IFS T is known to be an *intuitionistic fuzzy Q-set* (IFQ-set) if $\text{cl}(\text{int}(T)) = \text{int}(\text{cl}(T))$.

Definition 2.6 (Coker, 1997) If $T = \langle k, \mu_T, \nu_T \rangle$ is an IFS in an IFTS (K, ζ) , then the *IF closure and IF interior* are denoted by $\text{cl}(T) = \bigcap \{ Y / Y \text{ is an IFCS in } K \text{ and } T \subseteq Y \}$,

$\text{int}(T) = \bigcup \{ P / P \text{ is an IFOS in } K \text{ and } P \subseteq T \}$.

$$(i) \text{cl}(T^c) = (\text{int}(T))^c \quad (ii) \text{int}(T^c) = (\text{cl}(T))^c$$

Definition 2.7 (Thakur & Dhavaseelan, 2015) An IFS $T = \langle k, \mu_T, \nu_T \rangle$ in an IFTS (K, ζ) is an *IF nowhere dense set* if there exists no IFOS U such that $U \subseteq \text{cl}(T)$ so that $\text{int}(\text{cl}(T)) = 0_{\sim}$.

Result 2.8 (Thakur & Dhavaseelan (2015) Let $T = \langle k, \mu_T, \nu_T \rangle$ be an IFS in an IFTS (K, ζ) . If T is an *IF nowhere dense set* in K , then $\text{int}(T) = 0_{\sim}$.

Definition 2.9 An IFS $T = \langle k, \mu_T, \nu_T \rangle$ in an IFTS (K, ζ) is an

- (i) IF α CS (Jeon, Jun, & Park, 2005) if $\text{cl}(\text{int}(\text{cl}(T))) \subseteq T$
- (ii) IFRCS (Jeon et al., 2005) if $\text{cl}(\text{int}(T)) = T$
- (iii) IFPCS (Jeon et al., 2005) if $\text{cl}(\text{int}(T)) \subseteq T$
- (iv) IF β CS (Jeon et al., 2005) if $\text{int}(\text{cl}(\text{int}(T))) \subseteq T$
- (v) IFSCS (Jeon et al., 2005) if $\text{int}(\text{cl}(T)) \subseteq T$
- (vi) IF γ CS (Hanafy, 2009) if $\text{cl}(\text{int}(T)) \cap \text{int}(\text{cl}(T)) \subseteq T$
- (vii) IFSPCS (Jun & Song, 2005) if there exists an IFPCS V such that $\text{int}(V) \subseteq T \subseteq V$

Definition 2.10 (Coker, 1997) The IFSs T and V in an IFTS (K, ζ) satisfy the following claims:

- ❖ $\text{int}(T) \subseteq T \subseteq \text{cl}(T)$
- ❖ $T \subseteq V \Rightarrow \text{cl}(T) \subseteq \text{cl}(V)$ and $\text{int}(T) \subseteq \text{int}(V)$
- ❖ $\text{int}(\text{int}(T)) = \text{int}(T)$ and $\text{cl}(\text{cl}(T)) = \text{cl}(T)$
- ❖ $\text{int}(T \cap V) = \text{int}(T) \cap \text{int}(V)$
- ❖ $\text{cl}(T \cup V) = \text{cl}(T) \cup \text{cl}(V)$
- ❖ $\text{int}(1_{\sim}) = 1_{\sim}$ and $\text{cl}(0_{\sim}) = 0_{\sim}$

Result 2.11 (Annalakshmi & Chandramouleeswaran, 2015) The IFSs T and V in an IFTS (K, ζ) satisfy the conditions:

- (i) $\text{int}(T \cup V) \supseteq \text{int}(T) \cup \text{int}(V)$
- (ii) $\text{cl}(T \cap V) \subseteq \text{cl}(T) \cap \text{cl}(V)$

3. Intuitionistic Fuzzy α^* Closed Sets

We have innovated intuitionistic fuzzy α^* closed set (IF α^* CS) and acquired the inter-connection amidst IF α^* CS and already existing intuitionistic fuzzy closed sets in IFTS.

Definition 3.1 An IFS T of an IFTS (K, ζ) is said to be an *intuitionistic fuzzy α^* closed set* (IF α^* CS) if $\text{cl}(\text{int}(\text{cl}(T))) = \text{cl}(T)$ whenever $T \subseteq L$ and L is an IFOS in (K, ζ) .

Example 3.2 Let $K = \{e, f\}$, $\zeta = \{0_{\sim}, H_1, H_2, 1_{\sim}\}$ be an IFT on K , where $H_1 = \langle k, (0.5_e, 0.4_f), (0.5_e, 0.6_f) \rangle$, $H_2 = \langle k, (0.8_e, 0.6_f), (0.2_e, 0.4_f) \rangle$ then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.4_e, 0.3_f), (0.6_e, 0.7_f) \rangle$ in K is an IF α^* CS.

Proposition 3.3 In (K, ζ) , every IFRCS is an IF α^* CS while the converse is untrue.

Proof: Given: T is an IFRCS in (K, ζ) . IFRCS \Rightarrow IFCS. Consider, $\text{cl}(\text{int}(\text{cl}(T))) = \text{cl}(\text{int}(T)) = T = \text{cl}(T)$. Hence, $\text{cl}(\text{int}(\text{cl}(T))) = \text{cl}(T)$ and T is an IF α^* CS in (K, ζ) .

Example 3.4 Let $K = \{e, f\}$, $\zeta = \{0_{\sim}, H_1, H_2, 1_{\sim}\}$ be an IFT on K where $H_1 = \langle k, (0.5_e, 0.4_f), (0.5_e, 0.6_f) \rangle$, $H_2 = \langle k, (0.8_e, 0.5_f), (0.2_e, 0.5_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.5_e, 0.3_f), (0.5_e, 0.5_f) \rangle$ in K is an IF α^* CS but not an IFRCS in K .

Remark 3.5 Every IFCS in (K, ζ) is independent of every IF α^* CS in (K, ζ) .

Example 3.6 Let $K = \{e, f\}$, $\zeta = \{0_{\sim}, H_1, H_2, 1_{\sim}\}$ be an IFT on K where $H_1 = \langle k, (0.2_e, 0.3_f), (0.8_e, 0.7_f) \rangle$, $H_2 = \langle k, (0.3_e, 0.4_f), (0.7_e, 0.6_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.3_e, 0.2_f), (0.7_e, 0.7_f) \rangle$ in K is an IF α^* CS but not an IFCS in K .

Example 3.7 Let $K = \{e, f\}$, $\zeta = \{0_{\sim}, H_1, H_2, 1_{\sim}\}$ be an IFT on K where $H_1 = \langle k, (0.4_e, 0.5_f), (0.6_e, 0.5_f) \rangle$, $H_2 = \langle k, (0.5_e, 0.6_f), (0.5_e, 0.4_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.5_e, 0.4_f), (0.5_e, 0.6_f) \rangle$ in K is an IFCS but not an IF α^* CS in K .

Remark 3.8 Every IFSCS in an IFTS (K, ζ) is independent of every IF α^* CS in (K, ζ) .

Example 3.9 Let $K = \{e, f\}$, $\zeta = \{0_{\sim}, H_1, H_2, 1_{\sim}\}$ be an IFT on K where $H_1 = \langle k, (0.3_e, 0.6_f), (0.7_e, 0.4_f) \rangle$, $H_2 = \langle k, (0.5_e, 0.9_f), (0.5_e, 0.1_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.2_e, 0.5_f), (0.8_e, 0.4_f) \rangle$ in K is an IF α^* CS but not an IFSCS in K .

Example 3.10 Let $K = \{e, f\}$, $\zeta = \{0_{\sim}, H_1, H_2, 1_{\sim}\}$ be an IFT on K where $H_1 = \langle k, (0.8_e, 0.4_f), (0.2_e, 0.6_f) \rangle$, $H_2 = \langle k, (0.6_e, 0.3_f), (0.4_e, 0.7_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.2_e, 0.4_f), (0.8_e, 0.6_f) \rangle$ in K is an IFSCS but not an IF α^* CS in K .

Remark 3.11 Every IF γ CS in (K, ζ) is independent of every IF α^* CS in (K, ζ) .

Example 3.12 Let $K = \{e, f\}$, $\zeta = \{0_{\sim}, H_1, H_2, 1_{\sim}\}$ be an IFT on K where $H_1 = \langle k, (0.8_e, 0.4_f), (0.2_e, 0.6_f) \rangle$, $H_2 = \langle k, (0.6_e, 0.3_f), (0.4_e, 0.7_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.7_e, 0.3_f), (0.3_e, 0.7_f) \rangle$ in K is an IF α^* CS but not an IF γ CS in K .

Example 3.13 Let $K = \{e, f\}$, $\zeta = \{0_{\sim}, H_1, H_2, 1_{\sim}\}$ be an IFT on K where $H_1 = \langle k, (0.3_e, 0.6_f), (0.7_e, 0.4_f) \rangle$, $H_2 = \langle k, (0.5_e, 0.9_f), (0.5_e, 0.1_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.5_e, 0.4_f), (0.5_e, 0.6_f) \rangle$ in K is an IF γ CS but not an IF α^* CS in K .

Remark 3.14 Every IFPCS in (K, ζ) is independent of every $IF\alpha^*CS$ in (K, ζ) .

Example 3.15 Let $K = \{e, f\}$, $\zeta = \{0_-, H_1, H_2, 1_-\}$ be an IFT on K where $H_1 = \langle k, (0.8_e, 0.4_f), (0.2_e, 0.6_f) \rangle$, $H_2 = \langle k, (0.6_e, 0.3_f), (0.4_e, 0.7_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.8_e, 0.3_f), (0.2_e, 0.7_f) \rangle$ in K is an IF α^* CS but not an IFPCS in K .

Example 3.16 Let $K = \{e, f\}$, $\zeta = \{0_-, H_1, H_2, 1_-\}$ be an IFT on K where $H_1 = \langle k, (0.8_e, 0.4_f), (0.2_e, 0.6_f) \rangle$, $H_2 = \langle k, (0.6_e, 0.3_f), (0.4_e, 0.7_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.1_e, 0.3_f), (0.6_e, 0.7_f) \rangle$ in K is an IFPCS but not an IF α^* CS in K .

Remark 3.17 Every IF α CS in (K, ζ) is independent of every $IF\alpha^*CS$ in (K, ζ) .

Example 3.18 Let $K = \{e, f\}$, $\zeta = \{0_-, H_1, H_2, 1_-\}$ be an IFT on K where $H_1 = \langle k, (0.5_e, 0.7_f), (0.5_e, 0.3_f) \rangle$, $H_2 = \langle k, (0.3_e, 0.6_f), (0.7_e, 0.4_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.4_e, 0.5_f), (0.5_e, 0.4_f) \rangle$ in K is an IF α^* CS but not an IF α CS in K .

Example 3.19 Let $K = \{e, f\}$, $\zeta = \{0_-, H_1, H_2, 1_-\}$ be an IFT on K where $H_1 = \langle k, (0.8_e, 0.4_f), (0.2_e, 0.6_f) \rangle$, $H_2 = \langle k, (0.6_e, 0.3_f), (0.4_e, 0.7_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.1_e, 0.3_f), (0.6_e, 0.7_f) \rangle$ in K is an IF α CS but not an IF α^* CS in K .

Remark 3.20 Every IF β CS in (K, ζ) is independent of every $IF\alpha^*CS$ in (K, ζ) .

Example 3.21 Let $K = \{e, f\}$, $\zeta = \{0_-, H_1, H_2, 1_-\}$ be an IFT on K where $H_1 = \langle k, (0.8_e, 0.4_f), (0.2_e, 0.6_f) \rangle$, $H_2 = \langle k, (0.6_e, 0.3_f), (0.4_e, 0.7_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.8_e, 0.3_f), (0.2_e, 0.7_f) \rangle$ in K is an IF α^* CS but not an IF β CS in K .

Example 3.22 Let $K = \{e, f\}$, $\zeta = \{0_-, H_1, H_2, 1_-\}$ be an IFT on K where $H_1 = \langle k, (0.8_e, 0.4_f), (0.2_e, 0.6_f) \rangle$, $H_2 = \langle k, (0.6_e, 0.3_f), (0.4_e, 0.7_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.2_e, 0.4_f), (0.8_e, 0.6_f) \rangle$ in K is an IF β CS but not an IF α^* CS.

Remark 3.23 Every IFSPCS in (K, ζ) is independent of every $IF\alpha^*CS$ in (K, ζ) .

Example 3.24 Let $K = \{e, f\}$, $\zeta = \{0_-, H_1, H_2, 1_-\}$ be an IFT on K where $H_1 = \langle k, (0.8_e, 0.4_f), (0.2_e, 0.6_f) \rangle$, $H_2 = \langle k, (0.6_e, 0.3_f), (0.4_e, 0.7_f) \rangle$, then (K, ζ) is an IFTS. The IFSs $T = \langle k, (0.7_e, 0.3_f), (0.3_e, 0.7_f) \rangle$ and $V = \langle k, (0.8_e, 0.3_f), (0.2_e, 0.7_f) \rangle$ in K are IF α^* CSs but T is not an IFSPCS in K as V is not an IFPCS.

Example 3.25 Let $K = \{e, f\}$, $\zeta = \{0_-, H_1, H_2, 1_-\}$ be an IFT on K where $H_1 = \langle k, (0.3_e, 0.6_f), (0.7_e, 0.4_f) \rangle$, $H_2 = \langle k, (0.5_e, 0.9_f), (0.5_e, 0.1_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.4_e, 0.4_f), (0.6_e, 0.6_f) \rangle$ is an IFSPCS as $V = \langle k, (0.5_e, 0.4_f), (0.5_e, 0.6_f) \rangle$ in K is an IFPCS. But T and V are not IF α^* CSs in K .

The interconnection between various intuitionistic fuzzy closed sets with newly found IF α^* CS is provided in Figure 1.

Proposition 3.26 Let T and V be any two IF α^* CSs in an IFTS (K, ζ) , then $T \cup V$ is also an IF α^* CS in (K, ζ) .

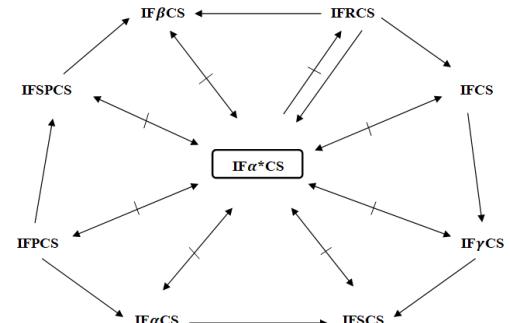


Figure 1. Interconnections

Proof: Given: T and V are IF α^* CSs in (K, ζ)
 Consider, $cl(int(cl(T \cup V))) \subseteq cl(cl(T \cup V)) = cl(T \cup V)$
 Therefore,
 $cl(int(cl(T \cup V))) \subseteq cl(T \cup V) \quad (1)$

Now, $cl(int(cl(T \cup V))) = cl(int(cl(T) \cup cl(V))) \supseteq cl(int(cl(T)) \cup int(cl(V))) = cl(int(cl(T))) \cup cl(int(cl(V))) = cl(T) \cup cl(V) = cl(T \cup V)$

Therefore,
 $cl(int(cl(T \cup V))) \supseteq cl(T \cup V) \quad (2)$

From (1) and (2), $cl(int(cl(T \cup V))) = cl(T \cup V)$ which implies $T \cup V$ is an IF α^* CS in (K, ζ) .

Remark 3.27 In an IFTS (K, ζ) , the intersection of any two IF α^* CSs is not required to be an IF α^* CS.

Example 3.28 Let $K = \{e, f\}$, $\zeta = \{0_-, H_1, H_2, 1_-\}$ be an IFT on K where $H_1 = \langle k, (0.6_e, 0.8_f), (0.4_e, 0.2_f) \rangle$, $H_2 = \langle k, (0.5_e, 0.5_f), (0.4_e, 0.4_f) \rangle$, then (K, ζ) is an IFTS. The IFSs $T = \langle k, (0.5_e, 0.4_f), (0.4_e, 0.5_f) \rangle$ and $V = \langle k, (0.4_e, 0.6_f), (0.5_e, 0.2_f) \rangle$ are IF α^* CSs in (K, ζ) . The intersection of T and V , $T \cap V = \langle k, (0.4_e, 0.4_f), (0.5_e, 0.5_f) \rangle$ is not an IF α^* CS in (K, ζ) .

Proposition 3.29 If T is both an IFCS and an IF α^* CS in an IFTS (K, ζ) , then T is an IFRCS in (K, ζ) .

Proof: Given: T is an IFCS and IF α^* CS in (K, ζ) . Consider, $cl(int(T)) = cl(int(cl(T))) = cl(T) = T$. Therefore, T is an IFRCS in (K, ζ) .

Proposition 3.30 For an IFS T in an IFTS (K, ζ) , the following are selfsame:

- (i) $T \subseteq cl(int(cl(T)))$
- (ii) T is an IF α^* CS

Proof:

(i) \Rightarrow (ii) Let $T \subseteq cl(int(cl(T)))$. Then, $cl(T) \subseteq cl(cl(int(cl(T)))) = cl(int(cl(T)))$. Therefore, $cl(T) \subseteq cl(int(cl(T)))$. Consider, $cl(int(cl(T))) \subseteq cl(cl(T)) = cl(T)$. Therefore, $cl(int(cl(T))) \subseteq cl(T)$. Hence, $cl(int(cl(T))) = cl(T)$ and T is an IF α^* CS in (K, ζ) .

(ii) \Rightarrow (i) Assume T be an IF α^* CS in (K, ζ) .

Consider, $cl(int(cl(T))) = cl(T) \supseteq T$.

Proposition 3.31 In an IFTS (K, ζ) , every IF clopen set is an $IF\alpha^*CS$ but not necessarily vice versa.

Proof: Given: T is an IF clopen set in (K, ζ) ,
Consider, $cl(int(cl(T))) = cl(int(T)) = cl(T)$.
Hence, $cl(int(cl(T))) = cl(T)$ and T is an $IF\alpha^*CS$ in (K, ζ) .

Example 3.32 Let $K = \{e, f\}$, $\zeta = \{0_\sim, H_1, H_2, 1_\sim\}$ be an IFT on K where $H_1 = \langle k, (0.5_e, 0.7_f), (0.5_e, 0.3_f) \rangle$, $H_2 = \langle k, (0.3_e, 0.6_f), (0.7_e, 0.4_f) \rangle$, then (K, ζ) is an IFTS. The IFS $T = \langle k, (0.2_e, 0.6_f), (0.8_e, 0.4_f) \rangle$ in K is an $IF\alpha^*CS$ but not an IF clopen set in K .

Proposition 3.33 An IFS T is an $IF\alpha CS$ in an IFTS (K, ζ) if T is an IFCS and $IF\alpha^*CS$ in (K, ζ) .

Proof: Given: T is an IFCS and $IF\alpha^*CS$ in (K, ζ) ,
Consider, $cl(int(cl(T))) \subseteq cl(T) = T$. Hence, $T \supseteq cl(int(cl(T)))$ and T is an $IF\alpha CS$ in (K, ζ) .

Proposition 3.34 For an IF clopen set T in (K, ζ) , the following are equivalent:

- (i) T is an IFRCS,
- (ii) T is an $IF\alpha^*CS$ and an IF Q-set.

Proof: Assume T be an IF clopen set,

(i) \Rightarrow (ii) Assume T be an IFRCS. Since, T is an IF clopen set, by proposition 3.31, T is an $IF\alpha^*CS$ in (K, ζ) .
Consider, $int(cl(T)) = int(T) = T = cl(int(T))$.

Therefore, $cl(int(T)) = int(cl(T))$ and T is an IF Q-set in (K, ζ) .

(ii) \Rightarrow (i) Let T be an $IF\alpha^*CS$ and IF Q-set in (K, ζ)

Consider, $cl(int(cl(T))) = cl(T)$
 $cl(cl(int(T))) = T$
 $cl(int(T)) = T$

Hence, T is an IFRCS in (K, ζ) .

Proposition 3.35 In an IFTS (K, ζ) , an IFCS T is an $IF\alpha^*CS$ if $T_{\bar{q}}N \Rightarrow [cl(int(cl(T))) = cl(T)]_{\bar{q}}N$ for all IFCS N of K .

Proof: Assume N be an IFCS. Let $T_{\bar{q}}N$, then $T \subseteq N^c$.

Consider, $cl(int(cl(T))) = cl(T) = T \subseteq N^c$.

Therefore, $[cl(int(cl(T))) = cl(T)]_{\bar{q}}N$.

Proposition 3.36 In an IFTS (K, ζ) , an IFS T is an $IF\gamma CS$ if T is both IFCS and $IF\alpha^*CS$.

Proof: Let T be an IFCS and $IF\alpha^*CS$,
Consider, $cl(int(T)) \cap int(cl(T)) = cl(int(cl(T))) \cap int(T) = cl(T) \cap int(T) = int(T) \subseteq T$.
Hence, $cl(int(T)) \cap int(cl(T)) \subseteq T$ and T is an $IF\gamma CS$ in (K, ζ) .

Proposition 3.37 If an IFCS T is both nowhere dense and $IF\alpha^*CS$ in (K, ζ) , then T is $IF\gamma CS$ in K .

Proof: Let T be an IFCS, nowhere dense and $IF\alpha^*CS$ in K
Consider, $cl(int(T)) \cap int(cl(T)) = cl(int(cl(T))) \cap int(cl(T)) = cl(L) \cap 0_\sim = 0_\sim \subseteq T$. Hence, T is an $IF\gamma CS$ in (K, ζ) .

Proposition 3.38: If an IFCS T is both $IF\beta CS$ and $IF\alpha^*CS$ in (K, ζ) , then T is an IFSCS in K .

Proof: Let T be an IFCS, $IF\beta CS$ and $IF\alpha^*CS$ in K .

Then, $int(cl(int(T))) \subseteq T$
 $t(cl(int(cl(T)))) \subseteq T$
 $int(cl(T)) \subseteq T$

Hence, T is an IFSCS in (K, ζ) .

Proposition 3.39: If an IFS T is both IF Q-set and $IF\alpha^*CS$ in (K, ζ) , then T is an IFSOS in K .

Proof: Let T be an IF Q-set and $IF\alpha^*CS$
Then, $cl(int(cl(T))) = cl(T)$
 $cl(cl(int(T))) = cl(T)$
 $cl(int(T)) = cl(T) \supseteq T$

Hence, T is an IFSOS in (K, ζ) .

Proposition 3.40: The following claims are equivalent for an IFS T of an IFTS (K, ζ) .

- (i) T is both $IF\alpha CS$ and $IF\alpha^*CS$
- (ii) T is an IFRCS in (K, ζ) .

Proof:

(i) \Rightarrow (ii) Let T be an $IF\alpha CS$ and $IF\alpha^*CS$ in K ,
 $cl(int(cl(T))) \subseteq T$ (1)

$cl(int(cl(T))) = cl(T)$ (2)

From (1) & (2),
 $cl(T) \subseteq T$ (3)

W.K.T., $T \subseteq cl(T)$ (4)

From (3) & (4) $T = cl(T)$

Consider, $cl(int(T)) = cl(int(cl(T))) = cl(T) = T$. Hence,
 $cl(int(T)) = T$. Therefore, T is an IFRCS in (K, ζ) .

(ii) \Rightarrow (i) Let T be an IFRCS. $IFRCS \Rightarrow IFCS$.

By Proposition 3.3, T is an $IF\alpha^*CS$ in (K, ζ) .

Consider, $cl(int(cl(T))) = cl(T) = T \subseteq T$.

Hence, T is an $IF\alpha CS$ in (K, ζ) .

4. Conclusions

In the field of general topology, the theory of α^* closed sets is essential. Since its inception in general topology, weak and strong forms of α closed sets have been introduced in fuzzy topology, and in intuitionistic fuzzy topology. In this article, we defined intuitionistic fuzzy α^* closed sets in intuitionistic fuzzy topological spaces. The proposed set's dependence on and independence from other existing sets were investigated, with several related propositions. Numerous examples are provided to demonstrate the results. It is possible to deduce new kinds of continuity, a new decomposition of continuity, and a new separation axiom using intuitionistic fuzzy α^* closed sets. This set may be used in the fields of decision-making, pattern recognition, and image processing.

Acknowledgements

We would like to thank the anonymous reviewers for their very careful reading and valuable comments/suggestions.

References

Annalakshmi, M., & Chandramouleeswaran, M. (2015). Interior and closure of fuzzy open sets in fuzzy topological TM-system. *Global Journal of Pure and Applied Mathematics*, 11(5), 3157–3164.

Atanassov, K. (1986). Intuitionistic fuzzy sets. *Fuzzy sets and Systems*, 87–96. Retrieved from [https://doi.org/10.1016/S0165-0114\(86\)80034-3](https://doi.org/10.1016/S0165-0114(86)80034-3)

Chang, C. L. (1968). Fuzzy topological spaces. *Journal of Mathematical Analysis and Applications*, 24, 182–190. Retrieved from [https://doi.org/10.1016/0022-247X\(68\)90057-7](https://doi.org/10.1016/0022-247X(68)90057-7)

Coker, D. (1997). An introduction to intuitionistic fuzzy topological spaces. *Fuzzy sets and Systems*, 81–89. Retrieved from [https://doi.org/10.1016/S0165-0114\(96\)00076-0](https://doi.org/10.1016/S0165-0114(96)00076-0)

Hanafy, I. M. (2009). Intuitionistic fuzzy γ -continuity. *Canadian Mathematical Bulletin*, 52, 544–554. Retrieved from <https://doi.org/10.4153/CMB-2009-055-0>

Hatir, E., Noiri, T., & Yuksel, S. (1996). A decomposition of continuity. *Acta Mathematica Hungarica*, 70, 145–150. Retrieved from <https://dx.doi.org/10.1007/BF00113919>

Jeon, J. K., Jun, Y. B., & Park, J. P. (2005). Intuitionistic fuzzy alpha-continuity and intuitionistic fuzzy precontinuity. *International Journal of Mathematics and Mathematical Sciences*, 19, 3091–3101. Retrieved from <https://doi.org/10.1155/IJMMS.2005.3091>

Jun, Y. B., & Song, S. Z. (2005). Intuitionistic fuzzy semi pre open sets and intuitionistic fuzzy semi-pre continuous mappings. *Journal of Applied Mathematics and Computing*, 19, 467–474.

Santhi, R., & Jayanthi, D. (2012). Generalized semi-pre connectedness in intuitionistic fuzzy topological space. *Annals of Fuzzy Mathematics and Informatics*, 3, 243–253.

Thakur, S. S., & Dhavaseelan, R. (2015). Nowhere dense sets in intuitionistic fuzzy topological spaces. *Proceedings of National Seminar on Recent Developments in Topology*, 11–12.

Thakur, S. S., & Chaturvedi, R. (2006). Regular generalized closed set in intuitionistic fuzzy topological spaces. *Universitatea Din Bacau*, 16, 257–272.

Zadeh, L. A. (1965). Fuzzy sets. *Information and Control*, 8, 338–353. Retrieved from [https://doi.org/10.1016/S0019-9958\(65\)90241-X](https://doi.org/10.1016/S0019-9958(65)90241-X)