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Abstract 
 

The objective of this study is to compare nonparametric methods for estimating the median survival time from interval-

censored data, under varying levels of right-censoring (30%, 40%, and 50%) and sample sizes (80, 200, and 400), using Monte 

Carlo simulation across scenarios. Survival times are simulated from a Weibull distribution with parameters representing constant, 

increasing, and decreasing hazard rates. Three methods – Turnbull’s EM algorithm uses linear interpolation for a non-smooth 

(𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔) stepwise survival function, the Iterative Convex Minorant (ICM), and the Kaplan-Meier applies midpoint imputation 

with linear interpolation (𝐾𝑀𝑚𝑖𝑑) – are evaluated using mean squared error (MSE). 

Simulation results indicate that all three methods perform well, with 𝐾𝑀𝑚𝑖𝑑 achieving the lowest MSE especially when 

the sample size is 200 or 400 with non-increasing hazard rates. 𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔and ICM produce similar results, with relative MSE 

values ranging from 1.37% to 36.72% higher than 𝐾𝑀. With increasing hazard rate and 50% censoring rate, 𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔 and ICM 

overestimated the median survival time, whereas 𝐾𝑀𝑚𝑖𝑑  underestimated it. Additionally, increasing the sample size generally 

lowers the MSE for all methods when the hazard rate is decreasing or constant. 
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1. Introduction  
 

In survival analysis, interval-censored data can occur 

in many areas, especially in the study of time to event where 

the data are only known to be as interval values (between 

bounds); and interval-censored data frequently arise in clinical 

trials and longitudinal studies, as well as in social or educational 

contexts, such as when studying school dropout rates, where the 

exact time of an event, such as disease progression, is unknown 

but is constrained within an interval between periodic 

observations. In social sciences and educational research, 

interval-censored data can arise in longitudinal studies that 

track student performance or societal outcomes over time. For 

instance, researchers may be interested in understanding the 

time it takes for students to reach educational milestones (e.g., 

completing a degree) or for individuals to exhibit certain social 

 

behaviors (e.g., employment after training). Similar to clinical 

trials, where exact event times are unknown due to periodic 

observation, educational and social science studies often collect 

data at intervals, leading to uncertainty in the exact timing of 

events. Even though most time-related data or events of interest 

are constrained by the duration of data collection, leading to 

right-censored data, interval-censored data can also involve 

right-censoring in many cases. Therefore, interval-censored 

data always mixes with right-censored data. The right-censored 

observations come from participants who missed follow-up or 

withdrew, or events beyond the end of the study. 

 Several well-known methods have been developed 

for estimating survival functions S(t) and median survival times 

from such data. The Kaplan-Meier (𝐾𝑀) estimator, originally 

designed for right-censored data, can be adapted to interval-

censored data by imputing the event time as the midpoint or the 

endpoint of the observed interval (Giesecke et al., 1988; Grover 

et al., 2013; Harezlak, & Tu, 2006; Law & Brookmeyer, 1992; 

Støvring and Kristiansen, 2011; Sun et al., 2013; Williams et 

al., 2004). However, midpoint imputation may introduce 

biases, especially when intervals are wide or irregular. The 
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Turnbull estimator (Turnbull, 1976) offers a nonparametric 

maximum likelihood estimate (NPMLE) for interval-censored 

data but leaves the survival function undefined over certain 

intervals, which can be addressed by interpolation techniques 

(Fay & Shaw, 2010; Hebeisen, 2014; Ratchaprapapornkul & 

Ingsrisawang, 2019). The Iterative Convex Minorant (ICM) 

algorithm further refines survival estimates under monotonicity 

and convexity constraints (Chen et al., 2012; Groeneboom & 

Wellner, 1992; Jongbloed, 1998). Although the interval-

censored data always mixes with right-censoring in real-world 

applications (Samuelsen, & Kongerud, 1994; Sun, 1995), the 

estimator of median survival time or the survival function are 

recommended for use in this mixed case that is quite 

challenging. The median survival function is commonly used 

to compare the effectiveness of treatments and to understand 

survival trends following a given treatment. It determines the 

time at which half of the population under study has 

experienced the event of interest, such as death, failure, or 

relapse. Specifically, the median survival time is the point at 

which the survival function (S(t)) equals 0.5, meaning that 50%  

of the subjects are still surviving while the other 50% have 

experienced the event. It is particularly valuable because it 

provides a more robust measure of central tendency compared 

to the mean, especially when dealing with skewed data or 

censored observations (Kleinbaum, & Klein,2012).  

The Kaplan-Meier ( 𝐾𝑀 ) estimator and Turnbull 

(𝑇𝐵) estimator are widely recognized for estimating the median 

survival functions under right-censored and interval-censored 

data, respectively. There have been several studies comparing 

the performances of median survival function estimators and 

survival function estimators at other time points. Lindsey and 

Ryan (1998) evaluated both parametric and nonparametric 

approaches and noted that Kaplan-Meier estimators with 

midpoint or left/right-point imputation could introduce biases 

depending on interval width. Nishikawa and Tango (2004) 

showed that the mid-point imputed KM estimator often yielded 

smaller mean squared error (MSE) than Turnbull under regular 

interval spacing. Gorelick (2009) investigated crossover 

behaviors between KM and Turnbull estimators, influenced by 

factors such as sample size and the frequency of follow-up. 

Ratchaprapapornkul and Ingsrisawang (2019) further 

compared KM with midpoint imputation and Turnbull with 

linear interpolation, showing that while Turnbull had smaller 

bias, KM achieved smaller MSE overall. 

Moreover, the Iterative Convex Minorant (ICM) 

algorithm is also widely used for estimating the survival 

function in cases of interval-censored data. The ICM algorithm 

works by iteratively refining an initial guess of the survival 

function, ensuring it is non-decreasing and convex, a 

requirement for survival estimates. At each iteration, the 

algorithm computes the largest convex function, known as the 

convex minorant, that fits under the current estimate, and 

continues refining until convergence to the nonparametric 

maximum likelihood estimate (NPMLE) is achieved (Chen et 

al., 2012).This lack of consensus encourages us to examine 

how well the ICM and other estimates perform, especially when 

using a linear interpolation on the intervals.  The goal of this 

study was to evaluate the performance of nonparametric 

estimators for median survival time under different conditions 

of right-censoring, sample size, and hazard rate, using a 

simulation-based approach. We designed 27 simulation 

scenarios by varying the right-censoring rates (30%, 40%, and 

50%), the sample sizes (80, 200, and 400), and the shape 

parameters of the Weibull distribution (0.8, 1.0, and 1.5). For 

each scenario, survival times were generated and follow-up 

visits were scheduled at 2-week intervals. The estimators were 

assessed based on bias, variance, mean squared error (MSE), 

and relative MSE. The estimator with the smallest MSE was 

considered the most efficient. 

 

2. Materials and Methods 
 

2.1 Imputation method and Kaplan-Meier estimator  
 

Suppose 𝑡 is the time to event and it is known to be 

within the interval (𝐿𝑖 , 𝑅𝑖] for 𝑖𝑡ℎ subject where 𝑖 = 1, 2, . . . , 𝑛. 

The midpoint imputation  𝑚𝑖 =
(𝐿𝑖+ 𝑅𝑖)

2
 can be obtained for 

each interval (𝐿𝑖 , 𝑅𝑖] where 𝑖 = 1, 2, . . . , 𝑛 . Then the imputed 

value 𝑚𝑖  is treated as an exact observation, the 𝐾𝑀  method 

could be applied to the interval-censored data in order to 

estimate the 𝑆(𝑡). Moreover, 𝐾𝑀 estimator is a nonparametric 

maximum likelihood estimator of the survival function, which 

is also known as the product-limit estimator. It is a step function 

which depends on each time point associated with an 

uncensored observation. Suppose that there are 𝑛 individuals 

with the time to event 𝑡 and there are 𝑚 unique times among 

the individuals, where  𝑚 ≤ 𝑛 . Let 𝑡(𝑗), 𝑗 = 1,2, … , 𝑚  be the 

ordered unique times of 𝑛 individuals,  𝑛𝑗  be the number of 

subjects at risk to an event at time 𝑡(𝑗), and 𝑑𝑗  be the number of 

subjects that have had the event at time 𝑡(𝑗) . Then the 𝐾𝑀 

estimator of 𝑆(𝑡) was defined as follows (Kaplan & Meier, 

1958) : 

 

𝑆(𝑡) = {

1              𝑖𝑓 𝑡 <  𝑡(1)

∏ (
𝑛𝑗 − 𝑑𝑗

𝑛𝑗

)            𝑖𝑓 𝑡(𝑞) ≤ 𝑡 <  𝑡(𝑞+1)        

𝑘

𝑗=1

                      (1) 

 

2.2 Turnbull with linear interpolation estimator 
 

Assume that the survival times 𝑇1, 𝑇2 … , 𝑇𝑛 are 𝑖𝑖𝑑 

with probability density function 𝑓 (t) and the cumulative 

distribution function 𝐹(t). Let (𝐿𝑖 , 𝑅𝑖] be the interval censored 

data for subject i, where 𝑖 = 1, 2, . . . , 𝑛 . Let 𝐴 = ⋃ (𝐿𝑖 , 𝑅𝑖]𝑛
𝑖=1   

and assume the likelihood function for these intervals is given 

by:  𝐿(𝐹) = ∏ [𝐹(𝑅𝑖 +) − 𝐹(𝐿𝑛
𝑖=1 𝑖

−)] . The procedure for 

estimating the survival function using the 𝑇𝐵 follows the self-

consistency algorithm, as described in Ratchaprapapornkul & 

Ingsrisawang (2019).  

The 𝑇𝐵 intervals are defined as 𝑚 disjoint intervals 

(𝑞1, 𝑝1], … , (𝑞𝑚, 𝑝𝑚], where the endpoints 𝑞𝑗and 𝑝𝑗 are drawn 

from the sets {𝐿𝑖} and {𝑅𝑖} , respectively and satisfy the 

ordering:  0 ≤ 𝑞1 ≤ 𝑝1 ≤ 𝑞2 ≤ 𝑝2 … ≤ 𝑞𝑚 ≤ 𝑝𝑚  . Let  𝐵 =
⋃ (𝑞𝑗 , 𝑝𝑗]𝑚

𝑗=1  be these intervals. The NPMLE of 𝑆(𝑡) over the 

set 𝐴 is piecewise constant over the gaps in 𝐵 , specifically on 

the intervals [𝑝𝑗 , 𝑞𝑗+1] for 𝑗 = 1,2, … , 𝑚 − 1, as well as on 

[0, 𝑞1]  and  [𝑝𝑚, ∞) . Let 𝑠̅ = (𝑠1, 𝑠2, … , 𝑠𝑚)  be the vector of 

probabilities where  𝑠𝑗 = 𝑃𝑟(𝑞𝑗 < 𝑇 ≤ 𝑝𝑗) = 𝐹(𝑝𝑗 +) −

𝐹(𝑞𝑗 −) . The NPMLE is obtained by maximizing the 

likelihood with respect to 𝑠1, 𝑠2, … , 𝑠𝑚:  
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𝐿(𝑠̅) = ∏ ∑ 𝛼𝑖𝑗𝑠𝑗  

𝑚

𝑗=1

,

𝑛

𝑖=1

   where  𝛼𝑖𝑗

= {
1,   (𝑞𝑗 , 𝑝𝑗] ⊆ (𝐿𝑖 , 𝑅𝑖] 

0,                Otherwise
 

  
                      (2) 

 

subject to 𝑠𝑗 > 0  and ∑ 𝑠𝑗 =𝑚
𝑗=1 1. (For more details, see 

Turnbull (1976), Gentleman & Geyer (1994).) The self-

consistent algorithm updates each 𝑠𝑗  using (Dempster, Laird, & 

Rubin, 1977)  

 

𝑠𝑗
𝑛𝑒𝑤 =

1

𝑛
∑

𝛼𝑖𝑗𝑠𝑗
𝑜𝑙𝑑

∑ 𝛼𝑖𝑘𝑠𝑘
𝑜𝑙𝑑𝑚

𝑘=1

   

𝑛

𝑖=1

 ,

𝑓𝑜𝑟 𝑗 = 1, . . 𝑚 , 𝑖 = 1, . . 𝑛                       (3) 

 

when the initial 𝑠𝑗
0 =

1

𝑚
 𝑎𝑛𝑑 ∑ 𝑠𝑗

0 =𝑚
𝑗=1 1. For 1 ≤ 𝑙 ≤ 𝑚.  

Let  𝑤𝑙 =  1 − (𝑠̂1 + 𝑠̂2 + ⋯ + 𝑠̂𝑙) , where 𝑠̂𝑗  is an 

estimated pseudo-probability obtained by iterating equation (3) 

until convergence for all 𝑗 = 1,2, . . . , 𝑙 . Then the survival 

function 𝑆(𝑡) can be expressed as: 

 

𝑆(𝑡) = {

 
1                 𝑖𝑓 𝑡 ≤ 𝑞1          

 𝑤𝑙  𝑖𝑓  𝑝𝑙 ≤ 𝑡 ≤ 𝑞𝑙+1          
0              𝑖𝑓 𝑡 ≥ 𝑝𝑚          

for 1 ≤ 𝑙 ≤ 𝑚 − 1     (4) 

 

Note that 𝑆(𝑡) is undefined within each 𝑇𝐵 interval 

(𝑞𝑗 , 𝑝𝑗] and the corresponding estimators are represented by 

the gray regions in Figure 1.  

In this study, to estimate 𝑆(𝑡) within each (𝑞𝑗 , 𝑝𝑗], 

we apply linear interpolation along the diagonal of the region. 

This interpolation is  denoted by 𝑆(𝑡)𝑙𝑖𝑛−𝑑𝑖𝑎𝑔. Define 𝑤0 = 1 

and  𝑤𝑚 = 0. Then, within each 𝑇𝐵 interval, 𝑆(𝑡)𝑙𝑖𝑛−𝑑𝑖𝑎𝑔 can 

be estimated from equation (4) as: 

 

𝑆(𝑡)𝑙𝑖𝑛−𝑑𝑖𝑎𝑔 = 𝑤𝑙 + (𝑡 − 𝑝𝑙)
(𝑤𝑙−1 − 𝑤𝑙) 

(𝑞𝑙 − 𝑝𝑙)
                        (5) 

 
for  𝑞𝑙 < 𝑡 < 𝑝𝑙 , where 1 ≤ 𝑙 ≤ 𝑚.  An example of the 

survival funtion estimated by 𝑆(𝑡)𝑙𝑖𝑛−𝑑𝑖𝑎𝑔  is shown in Figure 

1. 

 

 
 
Figure 1. Example of the survival curve estimated by Turnbull's linear 

interpolation method 

 

2.3 Iterative convex minorant estimator  
 

Another approach is the iterative convex minorant 

(ICM) algorithm which is a special case of the generalized 

gradient projection optimization method that can maximize the 

log-likelihood function 𝐿(𝐹) with respect to 𝐹̂ =

(𝐹̂1, 𝐹̂2, … , 𝐹̂𝑚)  where 𝑠̂𝑗 = 𝐹̂𝑗 − 𝐹̂𝑗−1  for j=1,2,...m by 

obtaining 

 

 𝐹̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑭∈𝜃𝑭
 𝐿(𝐹)                  (6) 

 

To maximize the quadratic function respecting 

monotonicity constraints on 𝐹, at each iteration, the 𝐹̂ estimate 

is based on its gradient projection and approximate Hessian 

taking the diagonal of the full Hessian:  

 

𝐹̃ = 𝐹 − 𝐻−1𝑔                   (7) 

 
where 𝑔 = ∇𝐿(𝐹) is the gradient vector of the log-likelihood 

with respect to 𝐹 and 𝐻  is the Hessian of  𝐿(𝐹) . Then the 

update becomes the standard Newton–Raphson step. To obtain 

a feasible point, the update 𝐹̂ = 𝑃𝑟𝑜𝑗𝜃𝐹
[𝐹,̃ 𝐻] is computed. At 

start of each new iteration 𝐹 is replaced by 𝐹̂ and iteration is 

repeated until convergence (Groeneboom and Wellner (1992) 

and Jongbloed (1998)). 

 

2.4 Simulation Design 
 

2.4.1 Data notation and assumption 
 

This study analyzes a sample of n subjects, with 

survival time 𝑡𝑖 (𝑖 = 1, 2, . . . , 𝑛) for each subject i assumed to 

follow the Weibull distribution, which is frequently used in 

survival analysis due to its flexibility in modeling various 

hazard functions. Specifically, the Weibull distribution with 

shape parameter (α) and scale parameter (𝛾) has the survival 

function  𝑆(𝑡) = 𝑒𝑥𝑝 (− (
𝑡

𝛾
)

𝛼
)  . In this study, the three shape 

parameters α = 0.8, 1, 1.5 represent decreasing hazard, constant 

hazard, and increasing hazard, respectively, with corresponding 

scale parameters γ=19.38,12.31, and 6.72 aligned with the 

desired study duration and ensuring 95% survival probability 

over the observation period. This study also assumed there are 

follow-ups twice a month and the total follow-ups are 

calculated based on each scenario’s duration. 

The interval-censored observations are defined as 
(𝐿𝑖 , 𝑅𝑖]. Each subject is scheduled for regular follow-up visits 

every 0.5 months,with a total k follow-ups of visit times 

𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑘,. The study begins at 𝑇 = 0, with 𝑣𝑖0 = 0. The 

first visit time 𝑣𝑖1 is generated from a uniform distribution 

𝑣𝑖1~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1) and each subsequent visit time is 

calculated as 𝑣𝑖𝑙 = 𝑣𝑖1 + (𝑙 − 1) ∗ 0.5.  Participants may miss 

appointments with a probability of 𝑝 = 0.3, except for the first 

and last visits, which are always attended. Left-censored data 

are not considered, and right-censoring is applied as type I 

censoring, occurring after the final scheduled visit. A data point 

is interval-censored if 𝑡𝑖  falls between two visits (𝐿𝑖 , 𝑅𝑖] =
(𝑣𝑖𝑙 , 𝑣𝑖(𝑙+1)] and right-censored if 𝑡𝑖  exceeds  𝑣𝑖𝑘 , represented 

as (𝑣𝑖𝑘 , ∞). 
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The primary outcome is the median survival time, 

which is defined as the time point at which the survival function 

S(t) has dropped to 0.5, which is estimated using the three 

nonparametric methods. 

 

2.4.2 Simulation procedure 
 

A total of 27 different simulation scenarios were 

designed, based on three sample sizes (80, 200, and 400), three 

levels of right censoring (30%, 40%, and 50%) and three values 

of the shape paremeter for the survival time distribution (0.8, 1, 

and 1.5).The simulation for each scenario follows these steps: 

1. Survival Time Generation; simulate event 

times 𝑡𝑖 (𝑓𝑜𝑟 𝑖 = 1, 2, . . . , 𝑛)  from Weibull 

distributions with parameter pairs (α, γ) = 

(0.8,19.38), (1,12.31), and (1.5,6.72). 

2. Follow-Up Visits; generate follow-up times 

𝑣𝑖1, 𝑣𝑖2, … 𝑣𝑖𝑘 per subject, allowing for 

probability of missed visits = 0.3 

3. Censoring Definition; define interval-censored 

data  (𝐿𝑖 , 𝑅𝑖] = (𝑣𝑖𝑗 , 𝑣𝑖𝑙] based on the nearest 

visits containing 𝑡𝑖. Right-censored 

observations  (𝑅𝑖 , ∞) = (𝑣𝑖𝑘 , ∞) occur when 𝑡𝑖 

exceeds the last 𝑘-th visit. 

4. Midpoint Estimation; impute event time using 

the midpoint of  (𝐿𝑖 , 𝑅𝑖]. Estimate the survival 

time via 𝐾𝑀𝑚𝑖𝑑. 

5. Turnbull Estimator; arrange Turnbull intervals 

and apply the self-consistency estimator 

iteratively for the median survival function, 

obtaining 𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔 

6. ICM Estimation; use generalized gradient 

projection optimization to calculate the ICM 

estimator  for the median survival function. 

Repeat steps 1–6 for 500 rounds and calculate 

MSE, variance, bias, and relative MSE. 

All simulation steps can be seen in the diagram of 

Figure 2. 

 

2.4.3 Performance evaluation criteria 
 

These measures are calculated based on 500 Monte 

Carlo simulation replications for each scenario where 𝑆̅(𝑡) =

 
1

500
∑ 𝑠̂𝑟(𝑡)𝑀

𝑟=1  is the average estimated median survival time. 

The measures of accuracy and consistency for the estimator are  

(i) the bias of parameter (Bias) = 𝑆̅(𝑡) − 𝑆(𝑡)  

(ii) the variance of parameter (Var) = 
1

500
∑ [500

𝑟=1 𝑆̂𝑟(𝑡) − 𝑆̅(𝑡)]𝟐 

(iii)  the mean squared error (MSE) = 
1

500
∑ [500

𝑟=1 𝑆(𝑡) − 𝑆̂𝑟(𝑡)]𝟐. 

(iv)  The relative MSE of method = 
𝑀𝑆𝐸𝑀𝑒𝑡ℎ𝑜𝑑−𝑀𝑆𝐸𝐾𝑀

𝑀𝑆𝐸𝐾𝑀
×100 

 

3. Results and Discussion 
 

The objectives are to compare the performances of 

nonparametric estimators for the median survival function 

among the 𝐾𝑀𝑚𝑖𝑑  , 𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔, and ICM estimators, and to 

evaluate effects of right censering and sample size. We used 

criteria such as mean square error (MSE), variance (VAR), bias 

(Bias), and relative MSE, which are calculated for each 

scenario as presented in Tables 1-4 and Figures 3-5.  

Overall, all three methods, 𝐾𝑀𝑚𝑖𝑑,  𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔 and 

ICM, perform well for estimating median survival time across 

most cases. As shown in Figure 3 and Table 1, 𝐾𝑀𝑚𝑖𝑑 

consistently yielded the lowest MSE values, particularly when 

the sample size is large (n= 400) and shape parameter is 0.8 or 

1.0.  𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔 and ICM have very similar MSE values up to 

the second decimal place in many cases. Additionally, when 

evaluated using relative MSE compared to 𝐾𝑀𝑚𝑖𝑑 (Table 1), 

𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔 and ICM are quite close, with relative MSE values 

ranging from 1.37% to 36.72% higher than those obtained by 

the 𝐾𝑀𝑚𝑖𝑑  method, depending on the shape parameter, 

censoring rate, and sample size.  In the case where the shape 

parameter is 1.5 and the sample size is 400, both 𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔 

and ICM clearly have higher MSE values compared to the 

𝐾𝑀𝑚𝑖𝑑 . Moreover, increasing the sample size generally 

reduces the relative MSE, particularly when shape is 0.8 or 1.0 

(Figure 3). For example, under shape = 0.8 and 50% censoring 

rate, relative MSE of  𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔 drops from 8.01% (n = 80) to 

3.70% (n = 400). However, under shape = 1.5, the relative MSE 

unexpectedly increases with sample size. 

When comparing the performances of the three 

methods across different factors, we found that  𝐾𝑀𝑚𝑖𝑑 yielded 

the smallest variance (VAR), particularly with the shape 

parameter 1.5 (Figure 4 and Tables 2-4). 

However,  𝐾𝑀𝑚𝑖𝑑 also showed the most significant 

negative bias,  which  was  greater  than  those  of  the other two 

methods (Figure 5). Moreover, the biases for  𝐾𝑀𝑚𝑖𝑑  are 

noticeably further from the x-axis compared to the other 

methods,  and  this  bias  becomes  more  negative as the rate of  
 

 
 

Figure 2. Monte Carlo simulation flowchart 
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Table 1. Relative MSE (%) of median survival estimators 
 

The relative MSE (%) 

Shape parameter Right censoring (%) Method 
Sample size 

80 200 400 
      

0.8 30 TB 

ICM 

2.97 

2.97 

5.11 

5.11 

4.37 

4.36  
40 TB 

ICM 

1.37 

1.37 

4.79 

4.78 

1.63 

1.62  
50 TB 

ICM 
8.01 
8.07 

7.22 
7.23 

3.70 
3.76 

1 30 TB 

ICM 

6.47 

6.47 

3.30 

3.30 

12.60 

12.62  
40 TB 

ICM 

5.09 

5.09 

6.37 

6.36 

9.32 

9.33  
50 TM 

ICM 
8.19 
8.24 

3.23 
3.26 

5.97 
6.07 

1.5 30 TB 

ICM 

17.82 

17.83 

30.27 

30.31 

33.34 

33.65  
40 TB 

ICM 

20.98 

20.99 

21.42 

21.49 

29.64 

29.86  
50 TB 

ICM 
9.73 
9.77 

27.39 
27.51 

36.15 
36.72 

      

 

*TB = 𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔 and the KM = 𝐾𝑀𝑚𝑖𝑑 

 
Table 2. Median survival estimates: mean, SD, bias, and MSE for shape parameter α = 0.8 

 

r 

  

Method 

  

 n=80  n=200  n=400 

M (SD) 95%CI 
BIAS 
(%) 

MSE 
(%) 

M (SD) 95% CI 
BIAS 
(%) 

MSE 
(%) 

M (SD) 95% CI 
BIAS 
(%) 

MSE 
(%) 

              

0.3 KM .4986 

(.0580) 

.4859 - 

.5113 

-0.1363 0.3360 .5017 

(.0355) 

.4968 - 

.5066 

0.1670 0.1261 .4997 

(.0250) 

.4972 - 

.5022 

-0.0323 0.0622 

 
TB .4988 

(.0588) 

.4859 - 

.5117 

-0.1154 0.3460 .5018 

(.0364) 

.4968 - 

.5068 

0.1754 0.1326 .4995 

(.0255) 

.4970 - 

.5020 

-0.0497 0.0649 

  ICM .4988 
(.0588) 

.4859 - 
.5117 

-0.1154 0.3460 .5018 
(.0364) 

.4968 - 
.5068 

0.1753 0.1326 .4995 
(.0255) 

.4970 - 
.5020 

-0.0498 0.0649 

0.4 KM .4984 

(.0562) 

.4861 - 

.5107 

-0.1650 0.3155 .5000 

(.0348) 

.4952 - 

.5048 

0.0015 0.1209 .4994 

(.0246) 

.4970 - 

.5018 

-0.0570 0.0605 

 
TB .4982 

(.0566) 

.4858 - 

.5106 

-0.1790 0.3199 .4999 

(.0356) 

.4950 - 

.5048 

-0.0066 0.1267 .4992 

(.0248) 

.4968 - 

.5016 

-0.0806 0.0615 

  ICM .4982 
(.0566) 

.4858 - 
.5106 

-0.1790 0.3199 .4999 
(.0356) 

.4950 - 
.5048 

-0.0067 0.1267 .4992 
(.0248) 

.4968 - 
.5016 

-0.0806 0.0615 

0.5 KM .4960 

(.0582) 

.4846 - 

.5074 

-0.3985 0.3400 .5015 

(.0381) 

.4962 - 

.5068 

0.1459 0.1454 .5010 

(.0268) 

.4984 - 

.5036 

0.0989 0.0719 

 
TB .4944 

(.0604) 

.4812 - 

.5076 

-0.5575 0.3672 .5017 

(.0395) 

.4962 - 

.5072 

0.1679 0.1559 .5026 

(.0272) 

.4999 - 

.5053 

0.2614 0.0745 

  ICM .4944 
(.0604) 

.4812 - 
.5076 

-0.5578 0.3674 .5017 
(.0395) 

.4962 - 
.5072 

0.1679 0.1559 .5026 
(.0272) 

.4999 - 
.5053 

0.2612 0.0746 

              

 
Table 3. Median survival estimates: mean, SD, bias, and MSE for shape parameter α = 1 
 

r 

  

Method 

  

 n=80  n=200  n=400 

M (SD) 95%CI 
BIAS 
(%) 

MSE 
(%) 

M (SD) 95%CI 
BIAS 
(%) 

MSE 
(%) 

M (SD) 95%CI 
BIAS 
(%) 

MSE 
(%) 

              

0.3 KM .4989 

(.0548) 

.4869 - 

.5109 

-0.1150 0.2997 .4990 

(.0359) 

.4940 - 

.5040 

-0.1020 0.1291 .4999 

(.0241) 

.4975 - 

.5023 

-0.0123 0.0582 

 
TB .4982 

(.0565) 
.4858 - 
.5106 

-0.1764 0.3190 .4989 
(.0365) 

.4938 - 
.5040 

-0.1112 0.1333 .4998 
(.0256) 

.4973 - 
.5023 

-0.0245 0.0655 

  ICM .4982 

(.0565) 

.4858 - 

.5106 

-0.1761 0.3190 .4989 

(.0365) 

.4938 - 

.5040 

-0.1112 0.1333 .4998 

(.0256) 

.4973 - 

.5023 

-0.0247 0.0656 
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Table 3. Continued. 
 

r 

  

Method 

  

 n=80  n=200  n=400 

M (SD) 95%CI 
BIAS 
(%) 

MSE 
(%) 

M (SD) 95%CI 
BIAS 
(%) 

MSE 
(%) 

M (SD) 95%CI 
BIAS 
(%) 

MSE 
(%) 

              

0.4 KM .5009 

(.0545) 

.4890 - 

.5128 

0.0877 0.2969 .4986 

(.0366) 

.4935 - 

.5037 

-0.1369 0.1337 .5001 

(.0248) 

.4977 - 

.5025 

0.0096 0.0614 

 TB .5015 
(.0559) 

.4893 - 
.5137 

0.1515 0.3121 .4990 
(.0377) 

.4938 - 
.5042 

-0.1003 0.1422 .5002 
(.0259) 

.4977 - 
.5027 

0.0170 0.0671 

  ICM .5015 

(.0559) 

.4893 - 

.5137 

0.1515 0.3121 .4990 

(.0377) 

.4938 - 

.5042 

-0.1004 0.1422 .5002 

(.0259) 

.4977 - 

.5027 

0.0172 0.0671 

0.5 KM .4959 

(.0596) 

.4828 - 

.5090 

-0.4123 0.3564 .4976 

(.0369) 

.4925 - 

.5027 

-0.2362 0.1367 .4995 

(.0262) 

.4969 - 

.5021 

-0.0503 0.0685 

 TB .4972 
(.0621) 

.4936 - 
.5108 

-0.2808 0.3856 .5000 
(.0376) 

.4948 - 
.5052 

0.0030 0.1411 .5009 
(.0269) 

.4983 - 
.5035 

0.0942 0.0726 

  ICM .4972 

(.0621) 

.4936 - 

.5108 

-0.2809 0.3857 .5000 

(.0376) 

.4948 - 

.5052 

0.0028 0.1411 .5009 

(.0269) 

.4983 - 

.5035 

0.0945 0.0726 

              

 

Table 4. Median survival estimates: mean, SD, bias, and MSE for shape parameter α = 1.5 
 

r 

  

Method 

  

 n=80  n=200  n=400 

M (SD) 95% CI 
BIAS 

(%) 

MSE 

(%) 
M (SD) 95% CI 

BIAS 

(%) 

MSE 

(%) 
M (SD) 95% CI 

BIAS 

(%) 

MSE 

(%) 

              

0.3 KM .5023 

(.0544) 

.4904 - 

.5142 

0.2255 0.2965 .5009 

(.0355) 

.4960 - 

.5058 

0.0943 0.1256 .5004 

(.0257) 

.4979 - 

.5029 

0.0446 0.0661 

 
TB .5017 

(.0591) 
.4887 - 
.5147 

0.1650 0.3494 .5006 
(.0405) 

.4950 - 
.5062 

0.0553 0.1637 .5001 
(.0297) 

.4972 - 
.5030 

0.0068 0.0882 

  ICM .5016 

(.0591) 

.4886 - 

.5146 

0.1648 0.3494 .5006 

(.0405) 

.4950 - 

.5062 

0.0551 0.1637 .5001 

(.0297) 

.4972 - 

.5030 

0.0066 0.0884 

0.4 KM .4990 

(.0562) 

.4867 - 

.5113 

-0.1000 0.3157 .4994 

(.0360) 

.4944 - 

.5044 

-0.0578 0.1298 .4990 

(.0262) 

.4964 - 

.5016 

-0.0983 0.0685 

 
TB .4991 

(.0618) 
.4856 - 
.5126 

-0.0931 0.3819 .5006 
(.0397) 

.4954 - 
.5058 

0.0615 0.1576 .4994 
(.0298) 

.4965 - 
.5023 

-0.0555 0.0888 

  ICM .4991 

(.0618) 

.4856 - 

.5126 

-0.0931 0.3820 .5006 

(.0397) 

.4954 - 

.5058 

0.0609 0.1577 .4995 

(.0298) 

.4966 - 

.5024 

-0.0538 0.0890 

0.5 KM .4950 

(.0595) 

.4820 - 

.5080 

-0.5037 0.3564 .4962 

(.0372) 

.4917 - 

.5007 

-0.3796 0.1393 .4965 

(.0249) 

.4941 - 

.4989 

-0.3487 0.0629 

 
TB .5036 

(.0625) 
.4899 - 
.5173 

0.3607 0.3910 .5032 
(.0420) 

.4974 - 
.5090 

0.3243 0.1775 .5037 
(.0291) 

.5008 - 
.5066 

0.3733 0.0857 

  ICM .5036 

(.0625) 

.4899 - 

.5173 

0.3597 0.3912 .5032 

(.0420) 

.4974 - 

.5090 

0.3229 0.1777 .5037 

(.0291) 

.5008 - 

.5066 

0.3731 0.0861 

              

 

right censoring increases, especially for the shape parameter 

1.5. In contrast, the biases for  𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔  and ICM perform 

similarly and tend to be more positive as the rate of right 

censoring increases. Alternatively, when the shape parameter is 

1.5 with 50% right censoring, it is obvious that  𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔 and 

ICM overestimated the median survival function, whereas 

 𝐾𝑀𝑚𝑖𝑑  clearly underestimated it. Moreover, sample sizes of 

200 and 400 yield similar results for VAR and BIAS, with VAR 

decreasing as the sample size increases. However, the 

amplitude of bias is not affected by sample size; instead, it 

varies with the rate of right censoring or the shape parameter. 

 

4. Conclusions 
 

According to the objectives of this study, we 

compared the performances of the three nonparametric 

estimators Kaplan-Meier with midpoint imputation (𝐾𝑀𝑚𝑖𝑑), 

Turnbull with linear interpolation (𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔 ), and Iterative 

Convex Minorant (ICM), for estimating the median survival 

time from interval-censored data under various conditions of 

right-censoring rates, sample sizes, and hazard rate shapes. 

The results showed that 𝐾𝑀𝑚𝑖𝑑  consistently 

achieved the lowest mean squared error (MSE) across most 

scenarios. 𝐾𝑀𝑚𝑖𝑑 exhibited a tendency to underestimate the 

median survival time, particularly when the right-censoring rate 

increased. However, even under extreme conditions, 

𝐾𝑀𝑚𝑖𝑑  remained relatively stable and efficient. In contrast, 

𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔  and ICM generally performed similarly to each 

other, but their accuracy decreased when the hazard rate was 

high (shape = 1.5) and when right-censoring levels reached 

40%–50%. Under such conditions, both 𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔  and ICM 

began to overestimate the median survival time, whereas 

𝐾𝑀𝑚𝑖𝑑 continued to underestimate it but with a smaller bias 

magnitude.  

In comparison to previous studies (De Gruttola & 

Lagakos, 1989; Lindsey & Ryan, 1998; Nishikawa & Tango, 
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Figure 3.  MSE (%) of median survival estimators 
 

Figure 4. Variance (%) of median survival estimators 
 

 
 

Figure 5. Bias (%) of median survival estimators  

 

2004; Gorelick, 2009; Ratchaprapapornkul & Ingsrisawang, 

2019), some consistencies and differences were observed. Both 

the current and earlier studies agreed that 𝐾𝑀𝑚𝑖𝑑  tends to 

underestimate the median survival time, especially as the right-

censoring rate increases. Consistent with previous findings, our 

study also confirmed that the Turnbull estimator exhibited both 

underestimation and overestimation depending on the shape 

parameter and interval length. However, a notable difference 

emerged: because the current study systematically varied right-

censoring rates across multiple levels (30%, 40%, and 50%), it 

was possible to observe more clearly that 𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔   and ICM  

tended to shift toward overestimation when facing high hazard 

rates and heavy censoring. This insight extends previous 

understanding, which had mainly observed underestimation 

without considering multiple censoring levels systematically. 

From a practical perspective, the results offer important 

observations for selecting appropriate survival estimators 

depending on data characteristics. 𝐾𝑀𝑚𝑖𝑑  demonstrated 

relatively stable performance across a wide range of conditions, 

particularly when follow-up intervals were frequent and right-

censoring was moderate. Meanwhile, 𝑇𝐵𝑙𝑖𝑛−𝑑𝑖𝑎𝑔  and ICM 

showed comparable performances in many scenarios, but their 

tendency to overestimate under high hazard rates and heavy 

censoring suggests that researchers may need to consider data 

characteristics carefully when applying these methods. Further 

research could investigate different time intervals between 

visits, various time-to-event distributions, and settings with 

higher right-censoring rates, to better understand the robustness 

and limitations of these nonparametric estimators. 
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