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Abstract

The objective of this study is to compare nonparametric methods for estimating the median survival time from interval-
censored data, under varying levels of right-censoring (30%, 40%, and 50%) and sample sizes (80, 200, and 400), using Monte
Carlo simulation across scenarios. Survival times are simulated from a Weibull distribution with parameters representing constant,
increasing, and decreasing hazard rates. Three methods — Turnbull’s EM algorithm uses linear interpolation for a non-smooth
(TByin-aiag) Stepwise survival function, the Iterative Convex Minorant (ICM), and the Kaplan-Meier applies midpoint imputation
with linear interpolation (KM,,;;) — are evaluated using mean squared error (MSE).

Simulation results indicate that all three methods perform well, with KM,,,;; achieving the lowest MSE especially when
the sample size is 200 or 400 with non-increasing hazard rates. TBj;;,_4iqgand ICM produce similar results, with relative MSE
values ranging from 1.37% to 36.72% higher than KM. With increasing hazard rate and 50% censoring rate, TByin_g4iqq and ICM
overestimated the median survival time, whereas KM,,,;4; underestimated it. Additionally, increasing the sample size generally
lowers the MSE for all methods when the hazard rate is decreasing or constant.

Keywords: nonparametric estimator, interval-censored, Kaplan-Meier estimator, Turnbull estimator, Iterative Convex Minorant

1. Introduction

In survival analysis, interval-censored data can occur
in many areas, especially in the study of time to event where
the data are only known to be as interval values (between
bounds); and interval-censored data frequently arise in clinical
trials and longitudinal studies, as well as in social or educational
contexts, such as when studying school dropout rates, where the
exact time of an event, such as disease progression, is unknown
but is constrained within an interval between periodic
observations. In social sciences and educational research,
interval-censored data can arise in longitudinal studies that
track student performance or societal outcomes over time. For
instance, researchers may be interested in understanding the
time it takes for students to reach educational milestones (e.g.,
completing a degree) or for individuals to exhibit certain social
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behaviors (e.g., employment after training). Similar to clinical
trials, where exact event times are unknown due to periodic
observation, educational and social science studies often collect
data at intervals, leading to uncertainty in the exact timing of
events. Even though most time-related data or events of interest
are constrained by the duration of data collection, leading to
right-censored data, interval-censored data can also involve
right-censoring in many cases. Therefore, interval-censored
data always mixes with right-censored data. The right-censored
observations come from participants who missed follow-up or
withdrew, or events beyond the end of the study.

Several well-known methods have been developed
for estimating survival functions S(t) and median survival times
from such data. The Kaplan-Meier (KM) estimator, originally
designed for right-censored data, can be adapted to interval-
censored data by imputing the event time as the midpoint or the
endpoint of the observed interval (Giesecke et al., 1988; Grover
et al., 2013; Harezlak, & Tu, 2006; Law & Brookmeyer, 1992;
Stgvring and Kristiansen, 2011; Sun et al., 2013; Williams et
al., 2004). However, midpoint imputation may introduce
biases, especially when intervals are wide or irregular. The
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Turnbull estimator (Turnbull, 1976) offers a nonparametric
maximum likelihood estimate (NPMLE) for interval-censored
data but leaves the survival function undefined over certain
intervals, which can be addressed by interpolation techniques
(Fay & Shaw, 2010; Hebeisen, 2014; Ratchaprapapornkul &
Ingsrisawang, 2019). The Iterative Convex Minorant (ICM)
algorithm further refines survival estimates under monotonicity
and convexity constraints (Chen et al., 2012; Groeneboom &
Wellner, 1992; Jongbloed, 1998). Although the interval-
censored data always mixes with right-censoring in real-world
applications (Samuelsen, & Kongerud, 1994; Sun, 1995), the
estimator of median survival time or the survival function are
recommended for use in this mixed case that is quite
challenging. The median survival function is commonly used
to compare the effectiveness of treatments and to understand
survival trends following a given treatment. It determines the
time at which half of the population under study has
experienced the event of interest, such as death, failure, or
relapse. Specifically, the median survival time is the point at
which the survival function (S(t)) equals 0.5, meaning that 50%
of the subjects are still surviving while the other 50% have
experienced the event. It is particularly valuable because it
provides a more robust measure of central tendency compared
to the mean, especially when dealing with skewed data or
censored observations (Kleinbaum, & Klein,2012).

The Kaplan-Meier (KM ) estimator and Turnbull
(TB) estimator are widely recognized for estimating the median
survival functions under right-censored and interval-censored
data, respectively. There have been several studies comparing
the performances of median survival function estimators and
survival function estimators at other time points. Lindsey and
Ryan (1998) evaluated both parametric and nonparametric
approaches and noted that Kaplan-Meier estimators with
midpoint or left/right-point imputation could introduce biases
depending on interval width. Nishikawa and Tango (2004)
showed that the mid-point imputed KM estimator often yielded
smaller mean squared error (MSE) than Turnbull under regular
interval spacing. Gorelick (2009) investigated crossover
behaviors between KM and Turnbull estimators, influenced by
factors such as sample size and the frequency of follow-up.
Ratchaprapapornkul and  Ingsrisawang (2019) further
compared KM with midpoint imputation and Turnbull with
linear interpolation, showing that while Turnbull had smaller
bias, KM achieved smaller MSE overall.

Moreover, the lIterative Convex Minorant (ICM)
algorithm is also widely used for estimating the survival
function in cases of interval-censored data. The ICM algorithm
works by iteratively refining an initial guess of the survival
function, ensuring it is non-decreasing and convex, a
requirement for survival estimates. At each iteration, the
algorithm computes the largest convex function, known as the
convex minorant, that fits under the current estimate, and
continues refining until convergence to the nonparametric
maximum likelihood estimate (NPMLE) is achieved (Chen et
al., 2012).This lack of consensus encourages us to examine
how well the ICM and other estimates perform, especially when
using a linear interpolation on the intervals. The goal of this
study was to evaluate the performance of nonparametric
estimators for median survival time under different conditions
of right-censoring, sample size, and hazard rate, using a
simulation-based approach. We designed 27 simulation
scenarios by varying the right-censoring rates (30%, 40%, and

50%), the sample sizes (80, 200, and 400), and the shape
parameters of the Weibull distribution (0.8, 1.0, and 1.5). For
each scenario, survival times were generated and follow-up
visits were scheduled at 2-week intervals. The estimators were
assessed based on bias, variance, mean squared error (MSE),
and relative MSE. The estimator with the smallest MSE was
considered the most efficient.

2. Materials and Methods

2.1 Imputation method and Kaplan-Meier estimator

Suppose t is the time to event and it is known to be
within the interval (L;, R;] for i subject where i = 1,2,...,n.

The midpoint imputation m; =(Li;—Ri) can be obtained for
each interval (L;, R;] where i = 1,2,...,n. Then the imputed
value m; is treated as an exact observation, the KM method
could be applied to the interval-censored data in order to
estimate the S(t). Moreover, KM estimator is a nonparametric
maximum likelihood estimator of the survival function, which
is also known as the product-limit estimator. It is a step function
which depends on each time point associated with an
uncensored observation. Suppose that there are n individuals
with the time to event t and there are m unique times among
the individuals, where m < n. Let t(;), j = 1,2,..,m be the
ordered unique times of n individuals, n; be the number of
subjects at risk to an event at time ¢, and d; be the number of
subjects that have had the event at time t ;. Then the KM
estimator of S(t) was defined as follows (Kaplan & Meier,
1958) :

1 ift< tq

k
S() = 1_[ (ﬂ) if tgy St < tgan @

=iy
2.2 Turnbull with linear interpolation estimator

Assume that the survival times Ty, T, ..., T,, are iid
with probability density function f (t) and the cumulative
distribution function F(t). Let (L;, R;] be the interval censored
data for subject i, wherei =1,2,...,n. Let A = UL (L;, R;]
and assume the likelihood function for these intervals is given
by: L(F) =TI, [F(R; +) — F(L,-)] . The procedure for
estimating the survival function using the TB follows the self-
consistency algorithm, as described in Ratchaprapapornkul &
Ingsrisawang (2019).

The TB intervals are defined as m disjoint intervals
(1,011, -+ (@m, Pm], Where the endpoints q;and p; are drawn
from the sets {L;} and {R;}, respectively and satisfy the
ordering: 0<q; <P1<q <P2... <@ <Dy . Let B=
U7L1(qj, p;] be these intervals. The NPMLE of S(t) over the
set A is piecewise constant over the gaps in B, specifically on
the intervals [pj, q;41] for j =1,2,...,m —1, as well as on
[0,q1] and [p,,, ). Let § = (sq,5S,, ..., Sm) be the vector of
probabilities  where s; = Pr(q; <T <p;) =F(p; +) —
F(q;—) . The NPMLE is obtained by maximizing the
likelihood with respect to s, S5, ..., Sp:
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n m
L(3) = HZO{USJ- , where a;;

i=1 j=1
_ {1, (g, p5] € Wi R @
0, Otherwise
subject to s; >0 and X7;s; =1. (For more details, see
Turnbull (1976), Gentleman & Geyer (1994).) The self-
consistent algorithm updates each s; using (Dempster, Laird, &

Rubin, 1977)
1 = (XUS]’Old

n4 12k=1 st
i=
forj=1,.m,i=1,..n 3

s.new —

when the initial sjo = % and Z}’;lsjo =1.For1<l<m.

Let wy=1—-(% +8++ &), where § is an
estimated pseudo-probability obtained by iterating equation (3)
until convergence for all j =1,2,...,1. Then the survival
function S(t) can be expressed as:

1 ift <q
SO =3w if <t < Q1 fori<i<m-1 (4)
0 ift 2pm

Note that S(t) is undefined within each TB interval
(qj,pj] and the corresponding estimators are represented by
the gray regions in Figure 1.

In this study, to estimate S(t) within each (qj,pj],
we apply linear interpolation along the diagonal of the region.
This interpolation is denoted by S(t);in-aiag- Definewy =1
and wy, = 0. Then, within each TB interval, S(t);in—giag Can
be estimated from equation (4) as:

Wioy —wp)

S®)iin-giag =wi + (t —pp)
( )lm diag l 4] (ql _ pl)

(5)

for g <t<p,wherel<I<m. An example of the
survival funtion estimated by S(t)in—qiag iS Shown in Figure
1.

Suwival

time

Figure 1. Example of the survival curve estimated by Turnbull's linear
interpolation method

2.3 Iterative convex minorant estimator

Another approach is the iterative convex minorant
(ICM) algorithm which is a special case of the generalized
gradient projection optimization method that can maximize the
log-likelihood ~ function L(F) with respect to F =
(PP, ..., By) where $=F—F_; for j=12..m by
obtaining

F = argmaxgeg, L(F) (6)

To maximize the quadratic function respecting
monotonicity constraints on F, at each iteration, the F estimate
is based on its gradient projection and approximate Hessian
taking the diagonal of the full Hessian:

F=F-H1g @)

where g = VL(F) is the gradient vector of the log-likelihood
with respect to F and H is the Hessian of L(F). Then the
update becomes the standard Newton—Raphson step. To obtain
a feasible point, the update F = Projg, [F, H] is computed. At
start of each new iteration F is replaced by F and iteration is
repeated until convergence (Groeneboom and Wellner (1992)
and Jongbloed (1998)).

2.4 Simulation Design
2.4.1 Data notation and assumption

This study analyzes a sample of n subjects, with
survival time t; (i = 1,2,...,n) for each subject i assumed to
follow the Weibull distribution, which is frequently used in
survival analysis due to its flexibility in modeling various
hazard functions. Specifically, the Weibull distribution with
shape parameter (o) and scale parameter (y) has the survival

. t\% .
function S(t) = exp (— (;) ) . In this study, the three shape

parameters o.= 0.8, 1, 1.5 represent decreasing hazard, constant
hazard, and increasing hazard, respectively, with corresponding
scale parameters y=19.38,12.31, and 6.72 aligned with the
desired study duration and ensuring 95% survival probability
over the observation period. This study also assumed there are
follow-ups twice a month and the total follow-ups are
calculated based on each scenario’s duration.

The interval-censored observations are defined as
(L;, R;]. Each subject is scheduled for regular follow-up visits
every 0.5 months,with a total k follow-ups of visit times
Vi1, Vi, -, Vik,. The study begins at T = 0, with v;; = 0. The
first visit time v;y is generated from a uniform distribution
vi1~ Uniform (0,1) and each subsequent visit time is
calculated as v; = v;; + (I — 1) = 0.5. Participants may miss
appointments with a probability of p = 0.3, except for the first
and last visits, which are always attended. Left-censored data
are not considered, and right-censoring is applied as type |
censoring, occurring after the final scheduled visit. A data point
is interval-censored if ¢t; falls between two visits (L;, R;] =
(Vi vi+1y] @nd right-censored if ¢t; exceeds vy, represented
as (vig, ).
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The primary outcome is the median survival time,
which is defined as the time point at which the survival function
S(t) has dropped to 0.5, which is estimated using the three
nonparametric methods.

2.4.2 Simulation procedure

A total of 27 different simulation scenarios were
designed, based on three sample sizes (80, 200, and 400), three
levels of right censoring (30%, 40%, and 50%) and three values
of the shape paremeter for the survival time distribution (0.8, 1,
and 1.5).The simulation for each scenario follows these steps:

1. Survival Time Generation; simulate event
times t; (fori=1,2,...,n) from Weibull
distributions with parameter pairs (o, y) =
(0.8,19.38), (1,12.31), and (1.5,6.72).

2. Follow-Up Visits; generate follow-up times
Vi1, Via, - Vi PEr subject, allowing for
probability of missed visits = 0.3

3. Censoring Definition; define interval-censored
data (L;, R;] = (vij, vy] based on the nearest
visits containing t;. Right-censored
observations (R;, ) = (v, ) occur when t;
exceeds the last k-th visit.

4. Midpoint Estimation; impute event time using
the midpoint of (L;, R;]. Estimate the survival
time via KM ;4.

5. Turnbull Estimator; arrange Turnbull intervals
and apply the self-consistency estimator
iteratively for the median survival function,
obtaining TByin—_giag

6. ICM Estimation; use generalized gradient
projection optimization to calculate the ICM
estimator for the median survival function.
Repeat steps 1-6 for 500 rounds and calculate
MSE, variance, bias, and relative MSE.

All simulation steps can be seen in the diagram of

Figure 2.

2.4.3 Performance evaluation criteria

These measures are calculated based on 500 Monte
Carlo simulation replications for each scenario where S(t) =

1 N . . . . .
ﬁﬂ‘f’:lsr(t) is the average estimated median survival time.

The measures of accuracy and consistency for the estimator are
(i)  the bias of parameter (Bias) = S(t) — S(t)
(if) the variance of parameter (Var) =
T[S0 - SO

500471
(iii)  the mean squared error (MSE) =

5 TSSO - 5O

(iv)  The relative MSE of method =

MSEpethod—MSEgm %100
MSEgy

3. Results and Discussion

The objectives are to compare the performances of
nonparametric estimators for the median survival function
among the KM,iq , TBjin—_giag, and ICM estimators, and to
evaluate effects of right censering and sample size. We used

criteria such as mean square error (MSE), variance (VAR), bias
(Bias), and relative MSE, which are calculated for each
scenario as presented in Tables 1-4 and Figures 3-5.

Overall, all three methods, KM,,;4, TBiin-giag and
ICM, perform well for estimating median survival time across
most cases. As shown in Figure 3 and Table 1, KM,,;4
consistently yielded the lowest MSE values, particularly when
the sample size is large (n=400) and shape parameter is 0.8 or
1.0. TBjin—_giag and ICM have very similar MSE values up to
the second decimal place in many cases. Additionally, when
evaluated using relative MSE compared to KM,,,;; (Table 1),
TBiin-aiag and ICM are quite close, with relative MSE values
ranging from 1.37% to 36.72% higher than those obtained by
the KM,,;; method, depending on the shape parameter,
censoring rate, and sample size. In the case where the shape
parameter is 1.5 and the sample size is 400, both TBy;,_giag
and ICM clearly have higher MSE values compared to the
KM,,;q . Moreover, increasing the sample size generally
reduces the relative MSE, particularly when shape is 0.8 or 1.0
(Figure 3). For example, under shape = 0.8 and 50% censoring
rate, relative MSE of TBj;,_g;44 drops from 8.01% (n = 80) to
3.70% (n=400). However, under shape = 1.5, the relative MSE
unexpectedly increases with sample size.

When comparing the performances of the three
methods across different factors, we found that KM,,,;, yielded
the smallest variance (VAR), particularly with the shape
parameter 1.5 (Figure 4 and Tables 2-4).

However, KM,,;, also showed the most significant
negative bias, which was greater than those of the other two
methods (Figure 5). Moreover, the biases for KM,,;; are
noticeably further from the x-axis compared to the other
methods, and this bias becomes more negative as the rate of

/ Set Simulation Scenario /

‘ Generate data

'

‘ Apply Estimation Methods ‘

v

Calculate Bias, VAR and MSE

v

Calculate Relative MSE

v

m

Figure 2. Monte Carlo simulation flowchart
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Table 1. Relative MSE (%) of median survival estimators
The relative MSE (%)
Sample size
Shape parameter Right censoring (%) Method
80 200 400
0.8 30 TB 297 511 4.37
ICM 297 5.11 4.36
40 B 1.37 4,79 1.63
ICM 1.37 4.78 1.62
50 B 8.01 7.22 3.70
ICM 8.07 7.23 3.76
1 30 TB 6.47 3.30 12.60
ICM 6.47 3.30 12.62
40 B 5.09 6.37 9.32
ICM 5.09 6.36 9.33
50 ™ 8.19 3.23 5.97
ICM 8.24 3.26 6.07
15 30 TB 17.82 30.27 33.34
ICM 17.83 30.31 33.65
40 B 20.98 21.42 29.64
ICM 20.99 21.49 29.86
50 B 9.73 27.39 36.15
ICM 9.77 27.51 36.72
*TB = TByin-giag aNd the KM = KM,
Table 2. Median survival estimates: mean, SD, bias, and MSE for shape parameter o.= 0.8
n=80 n=200 n=400
" Method BIAS MSE BIAS MSE BIAS MSE
M (SD) 95%Cl %) %) M (SD) 95% CI %) %) M (SD) 95% ClI %) %)
0.3 KM .4986 4859 - -0.1363 0.3360 .5017 4968 -  0.1670 0.1261 4997 4972 - -0.0323 0.0622
(.0580) 5113 (.0355) .5066 (.0250) .5022
B .4988 4859 - -0.1154 0.3460 .5018 4968 -  0.1754 0.1326 4995 4970 - -0.0497 0.0649
(.0588) 5117 (.0364) 5068 (.0255) 5020
ICM .4988 4859 - -0.1154 0.3460 .5018 4968 -  0.1753 0.1326 4995 4970 - -0.0498 0.0649
(.0588) 5117 (.0364) .5068 (.0255) .5020
04 KM 4984 4861 - -0.1650 0.3155 .5000 4952 - 0.0015 0.1209 4994 4970 - -0.0570 0.0605
(.0562) .5107 (.0348) .5048 (.0246) .5018
B .4982 4858 - -0.1790 0.3199 4999 4950 -  -0.0066 0.1267 4992 4968 -  -0.0806 0.0615
(.0566) 5106 (.0356) .5048 (.0248) .5016
ICM .4982 4858 - -0.1790 0.3199 4999 4950 -  -0.0067 0.1267 4992 4968 -  -0.0806 0.0615
(.0566) .5106 (.0356) .5048 (.0248) .5016
05 KM .4960 4846 - -0.3985 0.3400 .5015 4962 - 0.1459 0.1454 .5010 4984 - 0.0989 0.0719
(.0582) .5074 (.0381) .5068 (.0268) .5036
B 4944 4812 -  -0.5575 0.3672 5017 4962 - 0.1679 0.1559 .5026 4999 - 0.2614 0.0745
(.0604) .5076 (.0395) .5072 (.0272) .5053
ICM 4944 4812 -  -0.5578 0.3674 .5017 4962 - 0.1679 0.1559 .5026 4999 - 0.2612 0.0746
(.0604) .5076 (.0395) .5072 (.0272) .5053
Table 3. Median survival estimates: mean, SD, bias, and MSE for shape parameter o= 1
n=80 n=200 n=400
r Method s s s S s S
BIA! MSE BIA! MSE BIA! MSE
M (SD) 95%Cl %) %) M (SD) 95%CI %) %) M (SD) 95%Cl %) %)
0.3 KM .4989 4869 - -0.1150 0.2997 4990 4940 -  -0.1020 0.1291 4999 4975 - -0.0123 0.0582
(.0548) .5109 (.0359) .5040 (.0241) .5023
TB .4982 4858 - -0.1764 0.3190 .4989 4938 - -0.1112 0.1333 .4998 4973 - -0.0245 0.0655
(.0565) .5106 (.0365) .5040 (.0256) .5023
ICM 4982 4858 - -0.1761 0.3190 .4989 4938-  -0.1112 0.1333 .4998 4973 - -0.0247 0.0656
(.0565) 5106 (.0365) 5040 (.0256) 5023
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Table 3. Continued.
n=80 n=200 n=400
r Method BIAS MSE BIAS MSE BIAS MSE
M (SD) 95%Cl %) %) M (SD) 95%ClI %) %) M (SD) 95%ClI %) %)
04 KM .5009 4890 -  0.0877 0.2969 .4986 4935~ -0.1369 0.1337 .5001 4977 - 0.0096 0.0614
(.0545) 5128 (.0366) 5037 (.0248) 5025
B 5015 4893 -  0.1515 0.3121 .4990 4938 - -0.1003 0.1422 .5002 4977 - 0.0170 0.0671
(.0559) 5137 (.0377) .5042 (.0259) .5027
ICM .5015 4893 - 0.1515 0.3121 4990 4938 - -0.1004 0.1422 .5002 4977 - 0.0172 0.0671
(.0559) 5137 (.0377) .5042 (.0259) .5027
05 KM .4959 4828 - -0.4123 0.3564 4976 4925 - -0.2362 0.1367 .4995 4969 - -0.0503 0.0685
(.0596) .5090 (.0369) .5027 (.0262) 5021
B 4972 4936 -  -0.2808 0.3856 .5000 4948 - 0.0030 0.1411 5009 4983 -  0.0942 0.0726
(.0621) .5108 (.0376) .5052 (.0269) .5035
ICM 4972 14936 - -0.2809 0.3857 .5000 4948 - 0.0028 0.1411 .5009 4983 - 0.0945 0.0726
(.0621) .5108 (.0376) .5052 (.0269) .5035
Table 4. Median survival estimates: mean, SD, bias, and MSE for shape parameter a.= 1.5
n=80 n=200 n=400
r Method BIAS MSE BIAS MSE BIAS MSE
M(SD)  95%Cl %) %) M(SD)  95%Cl %) %) M(SD)  95%Cl %) %)
0.3 KM .5023 14904 - 0.2255 0.2965 .5009 4960 -  0.0943 0.1256 .5004 4979 - 0.0446 0.0661
(.0544) 5142 (.0355) .5058 (.0257) .5029
B .5017 4887 - 0.1650 0.3494 .5006 4950 -  0.0553 0.1637 .5001 4972 - 0.0068 0.0882
(.0591) .5147 (.0405) .5062 (.0297) .5030
ICM .5016 4886 -  0.1648 0.3494 .5006 4950-  0.0551 0.1637 .5001 4972 - 0.0066 0.0884
(.0591) .5146 (.0405) .5062 (.0297) .5030
0.4 KM .4990 .4867 - -0.1000 0.3157 4994 4944 - -0.0578 0.1298 .4990 4964 - -0.0983 0.0685
(.0562) 5113 (.0360) .5044 (.0262) 5016
B 4991 4856 - -0.0931 0.3819 .5006 4954 - 0.0615 0.1576 .4994 4965 - -0.0555 0.0888
(.0618) .5126 (.0397) .5058 (.0298) .5023
ICM 4991 4856 - -0.0931 0.3820 5006 4954 - 0.0609 0.1577 .4995 4966 - -0.0538 0.0890
(.0618) .5126 (.0397) .5058 (.0298) .5024
05 KM .4950 4820 -  -0.5037 0.3564 4962 4917 - -0.3796 0.1393 .4965 4941 - -0.3487 0.0629
(.0595) .5080 (.0372) .5007 (.0249) .4989
B .5036 4899 - 0.3607 0.3910 .5032 4974 - 0.3243 0.1775 .5037 .5008 -  0.3733 0.0857
(.0625) 5173 (.0420) .5090 (.0291) .5066
ICM .5036 4899 - 0.3597 0.3912 .5032 4974 - 0.3229 0.1777 5037 5008 -  0.3731 0.0861
(.0625) 5173 (.0420) .5090 (.0291) .5066

right censoring increases, especially for the shape parameter
1.5. In contrast, the biases for TBy,_giqg and ICM perform
similarly and tend to be more positive as the rate of right
censoring increases. Alternatively, when the shape parameter is
1.5 with 50% right censoring, it is obvious that TBj;;—giq4 and
ICM overestimated the median survival function, whereas
KM,,;q clearly underestimated it. Moreover, sample sizes of
200 and 400 yield similar results for VAR and BIAS, with VAR
decreasing as the sample size increases. However, the
amplitude of bias is not affected by sample size; instead, it
varies with the rate of right censoring or the shape parameter.

4. Conclusions

According to the objectives of this study, we
compared the performances of the three nonparametric
estimators Kaplan-Meier with midpoint imputation (KM,,;4),
Turnbull with linear interpolation (T'Byin—giqg ), and lterative

Convex Minorant (ICM), for estimating the median survival
time from interval-censored data under various conditions of
right-censoring rates, sample sizes, and hazard rate shapes.

The results showed that KM,,;; consistently
achieved the lowest mean squared error (MSE) across most
scenarios. KM,,,;4 exhibited a tendency to underestimate the
median survival time, particularly when the right-censoring rate
increased. However, even under extreme conditions,
KM,,;q remained relatively stable and efficient. In contrast,
TBiin-diag and ICM generally performed similarly to each
other, but their accuracy decreased when the hazard rate was
high (shape = 1.5) and when right-censoring levels reached
40%-50%. Under such conditions, both TB;,_giqg and ICM
began to overestimate the median survival time, whereas
KM,,,;4 continued to underestimate it but with a smaller bias
magnitude.

In comparison to previous studies (De Gruttola &
Lagakos, 1989; Lindsey & Ryan, 1998; Nishikawa & Tango,
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2004; Gorelick, 2009; Ratchaprapapornkul & Ingsrisawang,
2019), some consistencies and differences were observed. Both
the current and earlier studies agreed that KM,,;,; tends to
underestimate the median survival time, especially as the right-
censoring rate increases. Consistent with previous findings, our
study also confirmed that the Turnbull estimator exhibited both
underestimation and overestimation depending on the shape
parameter and interval length. However, a notable difference
emerged: because the current study systematically varied right-
censoring rates across multiple levels (30%, 40%, and 50%), it
was possible to observe more clearly that By, _giqgy and ICM
tended to shift toward overestimation when facing high hazard
rates and heavy censoring. This insight extends previous
understanding, which had mainly observed underestimation
without considering multiple censoring levels systematically.

From a practical perspective, the results offer important
observations for selecting appropriate survival estimators
depending on data characteristics. KM,,;; demonstrated
relatively stable performance across a wide range of conditions,
particularly when follow-up intervals were frequent and right-
censoring was moderate. Meanwhile, TBy;_giqg and ICM
showed comparable performances in many scenarios, but their
tendency to overestimate under high hazard rates and heavy
censoring suggests that researchers may need to consider data
characteristics carefully when applying these methods. Further
research could investigate different time intervals between
visits, various time-to-event distributions, and settings with
higher right-censoring rates, to better understand the robustness
and limitations of these nonparametric estimators.
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