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The use of mathematical optimisation methods in the engineering design process has traditionally

been restricted to the detailed design stage. Using the design of a frame structure as a case study, this paper

explores the potential of a heuristicly refined multiobjective random search approach to conceptual design

stage. The key elements of this approach are 1) a random search based optimisation method (to simulate

creativity), 2) designer-specified heuristics (some grammatical rules to allow different frame configurations

to be explored), and 3) a multiobjective optimisation approach (to identify competing concepts occupying

different parts of the trade-off surface). The results presented demonstrate the success of this approach in

exploring a multiplicity of different design configurations and presenting the designer with a variety of

Pareto-optimal concepts worthy of further consideration.
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Conceptual design is the creation of functions
to fulfil customers' needs and the creation of form
and behaviour to realize those functions (Benami
and Jin, 2002). During this design stage, designers
have the freedom to generate and explore many
possible designs without being constrained by
parameters that are normally encountered at later
design stages. Design at the conceptual stage is
crucial and whether a good or bad design is attained
depends very much on this early stage of the design
process. Traditionally, ideas and conceptual designs
are generated through brainstorming where ample
time and good collaboration are necessary for
the  production  of  such  creativity.  Research  in
cognitive science, computer science, and design
methodology  has  been  attempted  to  provide  a
foundation  for  development  of  many  intuitive
techniques that stimulate human creativity and,
recently, the use of optimisation methods is one
alternative for such task.

Optimisation has been used in the evolu-
tionary design for years. However, most practical
optimisation approaches usually start with an
existing design and attempt to vary those para-
metric parts of the design that need improvement.
In other words, the use of mathematical optimisa-
tion methods in the engineering design process has
traditionally been restricted to the detailed design
stage. While better (detailed) designs are obtained,
innovation and creativity are suppressed, because
the designer is, by this stage, working with a fixed
chosen concept. The use of optimisation, normally
in a form of a computational tool, has been con-
sidered  inappropriate  in  the  earlier  conceptual
design  stage,  because  it  is  claimed  that  the
computer, unlike the human designer, is not in
itself creative.

In recent years this viewpoint come under
strong challenge. It has been demonstrated that
evolutionary  search  algorithms  running  on
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computers can be used to evolve designs in a
seemingly limitless number of application domains
(Bentley,  1999).  According  to  Boden  (1992),
creativity is only possible by going beyond the
bounds of a representation, so it is obvious that
optimisation framework for conceptual design
must be capable of design generation beyond the
predefined representation. The successive applic-
ation of simple design modification rules defined
by a so-called generative grammar enables complex
design spaces to be explored beyond the initial
representation efficiently (Stiny and March, 1981).
Generative  grammars,  when  coupled  with  a
stochastic optimisation algorithm, most commonly
the Simulated Annealing (SA) algorithm (Kirk-
patrick et al., 1983), form a design exploration
methodology known as shape annealing (Cagan
and Mitchell, 1993). Recently (Suppapitnarm et al.,
2004) has investigated the potential benefits of
coupling a generative grammar for the design of
bicycle frames to a multiobjective SA variant. This
paper explores these ideas further and illustrates
the potential benefits of the approach to concept-
ual frame design.

1. Framework of the approach

There are three key elements in attempting
to generate conceptual design of frame structures.
These  are  a  stochastic  optimisation  method,
designer-specified heuristic rules for structural
frame design and a multiobjective optimisation
approach.

1.1 A stochastic (random) optimisation

method

The  strong  stochastic  element  to  the
search and exploration procedure is intended to
simulate the inventiveness of initial conceptual
brainstorming of the design process and to ensure
that the conceptual design space is widely explored.
In  this  study  Simulated  Annealing  (SA)  (Kirk-
patrick et al., 1983) was used to accomplish the
task. Simulated Annealing is a search technique
that, by its nature, is quite suitable for conceptual
design exploration in many ways. Besides its
strong stochastic characteristics that simulate the
inventiveness of concept generation, SA can handle

design problems with several requirements - a
common situation often found during conceptual
design stage, with simple implementation. Com-
pared with other search and exploration methods
with strong stochastic elements, such as Genetic
Algorithms  (Goldberg,  1989)  or  Evolution
Strategies (Schwefel, 1995), the performance of SA
algorithm is less sensitive to the design represent-
ation and control parameters. SA smartly moves
from only the accepted designs that have potential
to be good designs or to lead to good designs.
Whether the designs it generates are accepted
depends on a rule that follows the arbitrary cooling
(annealing) state of solids. For single objective
optimisation,  the  implementation  seeks  to
minimise a given objective, f, by applying small
random  changes  to  the  control  variables  of  a
design and considering the change in value of the
objective, ∆f. For a decrease in the objective (a
better design), the resulting change in solution is
accepted and further search is continued from this
point. However, if the resulting change causes an
increase in the objective (a poorer design), the new
solution is accepted with probability exp(-∆f/T);
T is a control parameter referred to as the temper-
ature of the system. For large temperatures, virtually
all new designs are accepted irrespective of the
sign of ∆f. Conversely, for small temperatures,
only small positive excursions in ∆f are accepted,
if at all. Temperature, therefore, represents the level
of disorder in the search process. Thus, the search
is initiated under a high temperature to allow for as
much exploration of the design space as possible
and, as the temperature is then decreased to zero
in some regulated fashion, the search, hopefully,
converges onto a globally optimal solution. An
implication of this feature is that accepted designs
are not always better designs in SA. By allowing
the search to, sometimes, progress from poorer
designs, it can potentially move away from locally
optimal solutions.

1.2 Designer-specified heuristic rules for

structural frame design

A generative grammar is incorporated
to  help  achieve  the  goal  of  exploring  different
design configurations - a key requirement in the



Songklanakarin J. Sci. Technol.

Vol.27  No.2  Mar. - Apr. 2005 304

Heuristicly refined multiobjective random search

Suppapitnarm, A.

conceptual design stage of the design process.
Generative grammars specify a set of designs by
the transformations required to generate that set
(Gips and Stiny, 1980). In the context of design,
the interest in specifying a set of alternative designs
derives from the fact that the set can then be
searched for optimal designs. A shape grammar
defines the allowable transformations of shape,
either with fixed or parametric dimensions, which
can be used to generate a language of spatial design
(Stiny, 1980). The language of structural design
defined by the grammar can be used to generate
both known designs, from which the grammar was
originally derived, and new, and often innovative,
designs that still conform to the grammar used to
generate them.

There are two types of grammar. Simple
generative grammars require little information to
formulate  them,  but  the  designs  they  generate
require further validation, normally through some
form  of  test  mechanism.  On  the  other  hand,
knowledge-based grammars, as their name implies,
contain more application-specific knowledge, and
the designs they generate are therefore inherently
feasible.  Since  SA  is  a  generate-and-test
mechanism, functional knowledge is placed in
the optimisation model. The purpose of the in-
corporated grammar is then to define an intended
design  that  will  be  further  validated  through
evaluation within the optimisation process. Placing
functional knowledge in the test mechanism is
attractive because it allows unbiased exploration
of topologies, which could lead to the generation
of  innovative  designs.  In  addition,  a  simple
generative grammar can be applied to a wider
scope of design problems making it suitable for
conceptual design exploration.

A  simple  grammar  for  rigid  frame
structures has been implemented and applied to
various conceptual bicycle frame design problems
(Suppapitnarm et al., 2004). The grammar consists
of shape and size modification rules, similar to
those in the truss grammar developed by (Shea
and Cagan, 1999), and four topology modification
rules.  The  shape  modification  rule  moves  the
position of a node a small random amount. The

size modification rule makes a small change to the
size of the cross-section of a member (for instance,
if the member is of circular, tubular section, a small
change is made to its radius and/or thickness). The
topology modification rules modify the topology
of frame designs by adding or removing a member,
a  node  or  a  combination  of  two  so  that  a  new
design topology is generated.

1.3 A  multiobjective  optimisation  ap-

proach

Straightforward  optimisation  that
focuses on the maximisation or minimisation of
a single objective will almost inevitably converge
on just one part of the search space. In contrast,
multiobjective  optimisation  that  focuses  on
exposing the trade-off surface between competing
objectives usually leads to the identification of a
multiplicity of equally good (from a multiobjective
perspective) designs (Pareto-optimal solutions)
where the advantages, disadvantages and com-
promises associated with each of the concepts are
highlighted.

In keeping with the choice of SA ex-
plained earlier, Multiobjective Simulated Anneal-
ing  (MOSA)  (Suppapitnarm  et  al.,  2000)  was
employed  in  this  study.  The  MOSA  method
searches for a set of non-dominated solutions, i.e.
solutions  for  which  no  other  solution  is  better
with respect to all requirements, and provides the
designer with information about the various trade-
offs between the design objectives. MOSA does
this by iteratively comparing the quality (objectives)
of each new design with that of all the designs in
the established archive (the record of all non-
dominated solutions found). If the new design
dominates  any  existing  designs  in  the  archive
(i.e. has equally good or better values for every
objective and at least one objective is better), those
designs are removed and the new design is added.
If any designs of the archive dominate the new
design, it is not archived. If the new design neither
dominates nor is dominated by any design, it is
added to the archive. It is this set of archived (non-
dominated) solutions that eventually forms the
trade-off surface between each of the competing
objectives. The principle of archiving in MOSA is
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illustrated in Figure 1, for a two-objective problem.
MOSA keeps record of all good designs and returns
to them periodically during search. At each return,
the selection of such design favours the most
isolated and extreme solutions amongst those in
the archive, in order to try to ensure a uniformly
distributed exposure of solutions on the trade-off
surface. More implementation details of the MOSA
algorithm are given in (Suppapitnarm et al., 2000).
In this regard, MOSA makes use of prior know-
ledge for the search to continue. Other search
techniques also make use of past knowledge to
guide the search but in different ways. For example,
gradient-based techniques such as Quasi-Newton
or simplex method accumulate knowledge in terms
of  the  past  few  function  evaluations  and  their
derivatives to direct the search. Most evolutionary
algorithms  and  stochastic  methods,  however,
maintain a database of potential solutions, normally
known as a population, and keep improving such
a database record as the search continues. They
simply train themselves through a statistic record
of generated solutions without constraining the
search direction using the established knowledge
as in gradient-based techniques. It is obvious that,
because of this, search exploration with stochastic
methods is likely to be wider - a desirable circum-
stance that is required particularly for conceptual
design development.

1.4 Framework structure

Figure 2 presents a flow chart of the
optimisation process with the frame grammar
introduced at the design generation phase. The
process can be summarised as follows;

1. When  a  new  design  has  been
generated using the grammar rules, its structural
performance is analysed (objectives and constraints
are evaluated).

2. This design is then compared with
solutions already in the archive.

3. If the new design is archived (possi-
bly  replacing  existing  archive  solutions  in  the
process), then it is definitely accepted.

4. If it is not archived, then it is accepted
with a probability that follows the annealing state.

5. As in conventional SA, the temper-
atures are periodically lowered.

6. In  order  to  try  to  ensure  that  the
Pareto-optimal  surface  is  fully  explored,  the
search is periodically restarted from a solution
chosen from the archive (a return to base is made).

Note  that  during  the  new  design
generation with the frame grammar, shape and
size modification rules are mostly applied until a
better design (or an equally good design, in a
multiobjective context) cannot be found for a
predefined number of iterations. This ensures that
promising design topologies will be sufficiently

Figure 1.  Archive evolution (Suppapitnarm et al., 2000).
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explored, while a bad topology (one for which
feasible designs cannot readily be found) will be
rejected quite quickly.

2. Generation of conceptual frame designs

The proposed method is now attempted on
the traditional 10-bar truss problem, similar to that
presented by Bennage and Dhingra (1995), except
that the design is now converted into a frame
structure and the design space is not restricted to
10 elements. Different frame topologies can be
generated and considered simultaneously within
the design space by the proposed framework (a
conceptual design exploration within the frame
structure).  The  modified  representation  of  the
structure  is  shown  in  Figure 3.  The  structural
members are made of aluminium with Young's
modulus, E = 68.95 GPa and density, ρ = 2768
kg·m

-3
. The structure is required to support two

loading points, each carrying 445 kN, with two
fixed (not pin) supports on the wall. The allowable
stress, σ

a
 for all members is limited to 172 MPa

and the allowable displacement in each of the x
and y directions is also limited to 50 mm. The only

variables in the problem are the cross-sectional
areas, A

i
, of the members of the frame where their

limits are: 64.5 mm
-2
 < A

i
 < 216 cm

-2
. Note that

because  of  varying  topologies,  the  number  of
design variables changes automatically according
to the number of tube members of the frame.

With emphasis on structural and aesthetic
design goal in mind for this conceptual frame
design, three objectives were established for the
problem:

1. Minimisation of structural mass;
2. Minimisation of the average deflection

of all free nodes (i.e. to maximise the stiffness of
structure);

3. Minimisation  of  variation  in  member
length (δ

L
). The aesthetic models used in structural

design are commonly derived from concepts such
as uniformity, proportion, contour and symmetry
(Leonhardt, 1982). It is assumed that, for this
problem, a frame design with uniform tube length
will look aesthetically pleasing in its own sim-
plicity.

The search started with a minimal number
of tube members joining 4 points of the frame

Figure 2. Flow chart of the optimisation process with frame grammar

(Suppapitnarm et al., 2004).
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structure as shown in Figure 4. Note that rotation
is  not  allowed  in  all  nodes  so  a  triangulation
constraint  (for  a  pin-jointed  truss)  was  relaxed
and hence, the starting design could be a stable
structure as long as the stresses and deflections of
the design are within the allowable limits. This is
another  advantage  of  the  method.  It  does  not
require much information to initialise the design
and the starting design is not necessarily feasible.
However, the design with a minimum number of
connections  is  likely  to  violate  the  structural
constraints, and, if that is the case, the design will
automatically be transformed to move away from
the initial structure during search.

Figure 5 shows the evolution of the trade-
off  surface  obtained  after  20000,  50000  and
100000 iterations of one test run with the optimi-
sation framework applied for this conceptual frame
design. It is clear that a better, more uniform trade-
off  surface  was  established  as  the  time  is  left
running longer. Note that, because it is the three
objective problem, the trade-off surface does not
appear  as  a  single  line  as  illustrated  earlier  in
Figure 1. It is interesting to see that the strength of
the trade-off between the aesthetic measure and
the other objectives are similar to that of the trade-
off between the mass and deflection (which, for
structural design, is normally a strong compromise).
This suggests that, based on the current optimi-
sation  model,  there  is  also  a  compromise  on
structural performance for aesthetics.

Among the 348 optimal designs identified
after  100000  iterations,  16  different  frame
topologies  were  explored  and  are  as  shown  in
Figure 6. None of these optimal designs has an
exact  10-bar  topology,  although  many  designs
having this topology had been generated during
search, see Figure 7. However, considering a design
in Figure 7(e) with that in Figure 6(b), it is clear
that many designs with a 10-bar topology were
gradually transformed towards the optimal designs.
Therefore, for this problem, it is not surprising
why such a topology is not identified as optimal.
It can also be seen from Figure 8, where a direct
comparison of the trade-off between the mass and
deflection objectives is performed between the
fixed 10-bar structure optimisation (Suppapitnarm
et al., 2000) and the present conceptual frame
design (with varying topology), that the 10-bar
topology has, overall, an inferior quality according
to these two objectives alone. Note that the trade-
off surface established during the 100000 iteration
search may not yet represent the final trade-off
surface of the variable topology, and, it is anti-
cipated that if the search is left running longer,
better frame designs will be explored. Since the
proposed approach is not intended to find the true
global optimal designs but rather to establish the
trend  of  the  trade-off  surface  and  to  discover
possible optimal conceptual designs, the 100000
iterations search is considered sufficient for the
intended study of the problem.

Figure 3.  Problem representation and design space. Figure 4.  Starting design.
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Figure 5. Evolution  of  trade-off  surface  in  two-objective  projection  of  the  three  objectives  after

20,000, 50,000 and 100,000 iterations for conceptual frame design generation.

The most common of the optimal designs
have topology (f), the topology that favours the
light-weight consideration as seen from Figure 9
(refer to Figure 6 for layout of each topology in
bracket). Note that, for clarity and ease of dis-
cussion, not all the optimal topologies are shown
in Figure 9. If stiffness is the concern, three
topologies, (d), (e) and (l) tend to highlight desir-
able feature in this objective performance. Regard-
ing aesthetics, designs having topology (g) are
identified as the most beautiful designs although
their structural performances in the other two
objectives are not that desirable. Many designs
with topologies (h) and (m), however, highlight
attractive  aesthetic  measures  without  too  much
compromise in structural performances as opposed
to designs with topology (g).

It is clear that different design topologies
can have different emphases on objective perform-

ances. With the multiobjective trade-off study
combined with designer-specified heuristic rules
for different design generation, the relationship
between design configurations (forms) and the
required performances (functions) can be identi-
fied. This feature of the approach helps fulfilling
the conceptual design goal as it provides a good
source of knowledge to the designer so that he can
make an informed decision on the chosen design
configuration before focussing on its details during
the later design stages.

Conclusions

An  optimisation  approach  to  conceptual
design based on a combination of grammatical
transformation (designer-specified heuristics) and
stochastic, multiobjective search has been presented
and illustrated using the case study of conceptual
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Figure 6. Optimal topologies of the conceptual frame design problem (each with a number

of designs found in the trade-off surface) identified after 100000 iterations.
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Figure 7.  Generated designs with 10-bar topology.

Figure 8. Comparison of the trade-off surface between variable topology and the 10-bar

topology (Suppapitnarm et al., 2000).

frame design. The simultaneous use of topological,
shape and sizing optimisation allows practical
design considerations to be incorporated into the
search process, while the stochastic, multiobjective
search facilitates a thorough exploration of the
conceptual design space.

The results presented demonstrate that the
approach is capable of generating (from a mini-

mally simple initial design) and then optimising
a wide variety of different design concepts. The
trade-off surface obtained illustrates, for the benefit
of the designer, the relationships between different
concepts and performance matrices, as different
design topologies tend to cluster on and highlight
particular parts of the trade-off surface. The insight
this gives can only enhance the designer's under-
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standing of the nature of the design space pertain-
ing  to  the  problem  at  hand.  A  wide  variety  of
different concepts are explored and their advan-
tages and disadvantages revealed to assist the
designer in choosing concepts worthy of further,
more detailed investigation.
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