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The use of mathematical optimisation methods in the engineering design process has traditionally
been restricted to the detailed design stage. Using the design of a frame structure as a case study, this paper
explores the potential of a heuristicly refined multiobjective random search approach to conceptual design
stage. The key elements of this approach are 1) a random search based optimisation method (to simulate
creativity), 2) designer-specified heuristics (some grammatical rules to allow different frame configurations
to be explored), and 3) a multiobjective optimisation approach (to identify competing concepts occupying
different parts of the trade-off surface). The results presented demonstrate the success of this approach in
exploring a multiplicity of different design configurations and presenting the designer with a variety of
Pareto-optimal concepts worthy of further consideration.

Key words : generative grammars, multiobjective optimisation, topology optimisation,
conceptual design

Ph.D. CANTAB(Engineering Design), Researcher, National Metal and Materials Technology Center, National
Science and Technology Development Agency, 114 Thailand Science Park, Paholyothin Road, Klong Luang,
Pathum Thani 12120 Thailand.

E-mail: apichas@mtec.or.th

Received, 1 June 2004  Accepted, 31 August 2004



Songklanakarin J. Sci. Technol.
Vol.27 No.2 Mar. - Apr. 2005

302

UNANYD
CHEAE I RITERTATREY
a a v 4 A A Aa A cid <
mseenuuuLtFianufavedlass Nalsuarsmatingrs anasnhe
Nanoevanwaalalustu
3. JUAUATUNS NN 2548 27(2) : 301-312

lagmlluay msdszgndlimatineed@luwsuuvume q lunumadmnssui Aeuinedinaeg
lurreanasvesnszuIumseanuuy (detailed design stage) unaNnuilanandimsAnytidnemnvanaiia
M b oaa d e o - o a . 4
901 L FudTnie mSumsesnuuutBinnuAalurausn (conceptual design stage) Falamudnieins
Ha ssgduvuivaniaeuasiiiing u (heuristicly refined generation) aransdifnuvesnmsesialuiwiu
1nse SralsuiBannufa (conceptual frame design optimisation)  tnadiafiL ueaanandszneunls u
o o oA % a & ' A ~ o a v 1%
Wy 3 wude 1) msldesddlaaduuwuy U (random search) Fat Hewilumsidsuuvums 513 334
ANNAAVBINYYY 2) M3 N9 s9agdunurazlase Seiine umunseuveIineanuY (designer-specified
.. A A of A o o A a ¢ X ) = o %
heuristics) @adatdungiinmiuams ansedszavgzduvuvesiuny ludnvazidsrnulhonseilums 5
3 =S [ \ = U AW = Al Q'I A 1 o L4
M 2a wazdszlen awilummaeq  waz 3) matiadafsevaaiivestaluady Ferremld 1nse
= ~ ' X v A ' 1% v A A
wWsuiisugduvuima g vessunulaniigaauganeslumulaniniiuiimsasedl (trade-off surface) Ha
AR o v Y v o A Ao X ) o
annsdiniulase Halsuasnan u addwiuimatialine woll 1nsa 513 s3alase Halsugduvy
\J v Vv v =S Vv Vv Vv d' [ ¢ o U % d‘ a =)
e q la wieuden venes wazver weuuziiiuilszlemi wiuinesnuvuiiemsinsanluneaziden

Turunausnell

< =) v 1 a o o o a < = T a a <
gudmalulaglanzuasd quiand WnnwiauInam asuasmaluladurand 114 angndnem asdszinalng

Heuristicly refined multiobjective random search
Suppapitnarm, A.

auunaleiy o1Lnenasdriadd Janindnusi 12120

Conceptual design is the creation of functions
to fulfil customers' needs and the creation of form
and behaviour to realize those functions (Benami
and Jin, 2002). During this design stage, designers
have the freedom to generate and explore many
possible designs without being constrained by
parameters that are normally encountered at later
design stages. Design at the conceptual stage is
crucial and whether a good or bad design is attained
depends very much on this early stage of the design
process. Traditionally, ideas and conceptual designs
are generated through brainstorming where ample
time and good collaboration are necessary for
the production of such creativity. Research in
cognitive science, computer science, and design
methodology has been attempted to provide a
foundation for development of many intuitive
techniques that stimulate human creativity and,
recently, the use of optimisation methods is one
alternative for such task.

Optimisation has been used in the evolu-
tionary design for years. However, most practical
optimisation approaches usually start with an
existing design and attempt to vary those para-
metric parts of the design that need improvement.
In other words, the use of mathematical optimisa-
tion methods in the engineering design process has
traditionally been restricted to the detailed design
stage. While better (detailed) designs are obtained,
innovation and creativity are suppressed, because
the designer is, by this stage, working with a fixed
chosen concept. The use of optimisation, normally
in a form of a computational tool, has been con-
sidered inappropriate in the earlier conceptual
design stage, because it is claimed that the
computer, unlike the human designer, is not in
itself creative.

In recent years this viewpoint come under
strong challenge. It has been demonstrated that
evolutionary search algorithms running on
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computers can be used to evolve designs in a
seemingly limitless number of application domains
(Bentley, 1999). According to Boden (1992),
creativity is only possible by going beyond the
bounds of a representation, so it is obvious that
optimisation framework for conceptual design
must be capable of design generation beyond the
predefined representation. The successive applic-
ation of simple design modification rules defined
by a so-called generative grammar enables complex
design spaces to be explored beyond the initial
representation efficiently (Stiny and March, 1981).
Generative grammars, when coupled with a
stochastic optimisation algorithm, most commonly
the Simulated Annealing (SA) algorithm (Kirk-
patrick et al., 1983), form a design exploration
methodology known as shape annealing (Cagan
and Mitchell, 1993). Recently (Suppapitnarm et al.,
2004) has investigated the potential benefits of
coupling a generative grammar for the design of
bicycle frames to a multiobjective SA variant. This
paper explores these ideas further and illustrates
the potential benefits of the approach to concept-
ual frame design.

1. Framework of the approach

There are three key elements in attempting
to generate conceptual design of frame structures.
These are a stochastic optimisation method,
designer-specified heuristic rules for structural
frame design and a multiobjective optimisation
approach.

1.1 A stochastic (random) optimisation
method

The strong stochastic element to the

search and exploration procedure is intended to
simulate the inventiveness of initial conceptual
brainstorming of the design process and to ensure
that the conceptual design space is widely explored.
In this study Simulated Annealing (SA) (Kirk-
patrick et al., 1983) was used to accomplish the
task. Simulated Annealing is a search technique
that, by its nature, is quite suitable for conceptual
design exploration in many ways. Besides its
strong stochastic characteristics that simulate the
inventiveness of concept generation, SA can handle

design problems with several requirements - a
common situation often found during conceptual
design stage, with simple implementation. Com-
pared with other search and exploration methods
with strong stochastic elements, such as Genetic
Algorithms (Goldberg, 1989) or Evolution
Strategies (Schwefel, 1995), the performance of SA
algorithm is less sensitive to the design represent-
ation and control parameters. SA smartly moves
from only the accepted designs that have potential
to be good designs or to lead to good designs.
Whether the designs it generates are accepted
depends on a rule that follows the arbitrary cooling
(annealing) state of solids. For single objective
optimisation, the implementation seeks to
minimise a given objective, f, by applying small
random changes to the control variables of a
design and considering the change in value of the
objective, Af. For a decrease in the objective (a
better design), the resulting change in solution is
accepted and further search is continued from this
point. However, if the resulting change causes an
increase in the objective (a poorer design), the new
solution is accepted with probability exp(-Af/T);
T is a control parameter referred to as the remper-
ature of the system. For large temperatures, virtually
all new designs are accepted irrespective of the
sign of Af. Conversely, for small temperatures,
only small positive excursions in Af are accepted,
if at all. Temperature, therefore, represents the level
of disorder in the search process. Thus, the search
is initiated under a high temperature to allow for as
much exploration of the design space as possible
and, as the temperature is then decreased to zero
in some regulated fashion, the search, hopefully,
converges onto a globally optimal solution. An
implication of this feature is that accepted designs
are not always better designs in SA. By allowing
the search to, sometimes, progress from poorer
designs, it can potentially move away from locally
optimal solutions.
1.2 Designer-specified heuristic rules for
structural frame design
A generative grammar is incorporated
to help achieve the goal of exploring different
design configurations - a key requirement in the
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conceptual design stage of the design process.
Generative grammars specify a set of designs by
the transformations required to generate that set
(Gips and Stiny, 1980). In the context of design,
the interest in specifying a set of alternative designs
derives from the fact that the set can then be
searched for optimal designs. A shape grammar
defines the allowable transformations of shape,
either with fixed or parametric dimensions, which
can be used to generate a language of spatial design
(Stiny, 1980). The language of structural design
defined by the grammar can be used to generate
both known designs, from which the grammar was
originally derived, and new, and often innovative,
designs that still conform to the grammar used to
generate them.

There are two types of grammar. Simple
generative grammars require little information to
formulate them, but the designs they generate
require further validation, normally through some
form of test mechanism. On the other hand,
knowledge-based grammars, as their name implies,
contain more application-specific knowledge, and
the designs they generate are therefore inherently
feasible. Since SA is a generate-and-test
mechanism, functional knowledge is placed in
the optimisation model. The purpose of the in-
corporated grammar is then to define an intended
design that will be further validated through
evaluation within the optimisation process. Placing
functional knowledge in the test mechanism is
attractive because it allows unbiased exploration
of topologies, which could lead to the generation
of innovative designs. In addition, a simple
generative grammar can be applied to a wider
scope of design problems making it suitable for
conceptual design exploration.

A simple grammar for rigid frame
structures has been implemented and applied to
various conceptual bicycle frame design problems
(Suppapitnarm et al., 2004). The grammar consists
of shape and size modification rules, similar to
those in the truss grammar developed by (Shea
and Cagan, 1999), and four topology modification
rules. The shape modification rule moves the
position of a node a small random amount. The

size modification rule makes a small change to the
size of the cross-section of a member (for instance,
if the member is of circular, tubular section, a small
change is made to its radius and/or thickness). The
topology modification rules modify the topology
of frame designs by adding or removing a member,
a node or a combination of two so that a new
design topology is generated.

1.3 A multiobjective optimisation ap-
proach

Straightforward optimisation that
focuses on the maximisation or minimisation of
a single objective will almost inevitably converge
on just one part of the search space. In contrast,
multiobjective optimisation that focuses on
exposing the trade-off surface between competing
objectives usually leads to the identification of a
multiplicity of equally good (from a multiobjective
perspective) designs (Pareto-optimal solutions)
where the advantages, disadvantages and com-
promises associated with each of the concepts are
highlighted.

In keeping with the choice of SA ex-
plained earlier, Multiobjective Simulated Anneal-
ing (MOSA) (Suppapitnarm et al., 2000) was
employed in this study. The MOSA method
searches for a set of non-dominated solutions, i.e.
solutions for which no other solution is better
with respect to all requirements, and provides the
designer with information about the various trade-
offs between the design objectives. MOSA does
this by iteratively comparing the quality (objectives)
of each new design with that of all the designs in
the established archive (the record of all non-
dominated solutions found). If the new design
dominates any existing designs in the archive
(i.e. has equally good or better values for every
objective and at least one objective is better), those
designs are removed and the new design is added.
If any designs of the archive dominate the new
design, it is not archived. If the new design neither
dominates nor is dominated by any design, it is
added to the archive. It is this set of archived (non-
dominated) solutions that eventually forms the
trade-off surface between each of the competing
objectives. The principle of archiving in MOSA is
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Figure 1. Archive evolution (Suppapitnarm ef al., 2000).

illustrated in Figure 1, for a two-objective problem.
MOSA keeps record of all good designs and returns
to them periodically during search. At each return,
the selection of such design favours the most
isolated and extreme solutions amongst those in
the archive, in order to try to ensure a uniformly
distributed exposure of solutions on the trade-off
surface. More implementation details of the MOSA
algorithm are given in (Suppapitnarm et al., 2000).
In this regard, MOSA makes use of prior know-
ledge for the search to continue. Other search
techniques also make use of past knowledge to
guide the search but in different ways. For example,
gradient-based techniques such as Quasi-Newton
or simplex method accumulate knowledge in terms
of the past few function evaluations and their
derivatives to direct the search. Most evolutionary
algorithms and stochastic methods, however,
maintain a database of potential solutions, normally
known as a population, and keep improving such
a database record as the search continues. They
simply train themselves through a statistic record
of generated solutions without constraining the
search direction using the established knowledge
as in gradient-based techniques. It is obvious that,
because of this, search exploration with stochastic
methods is likely to be wider - a desirable circum-
stance that is required particularly for conceptual
design development.

1.4 Framework structure

Figure 2 presents a flow chart of the
optimisation process with the frame grammar
introduced at the design generation phase. The
process can be summarised as follows;

1. When a new design has been
generated using the grammar rules, its structural
performance is analysed (objectives and constraints
are evaluated).

2. This design is then compared with
solutions already in the archive.

3. If the new design is archived (possi-
bly replacing existing archive solutions in the
process), then it is definitely accepted.

4. If itis not archived, then it is accepted
with a probability that follows the annealing state.

5. As in conventional SA, the temper-
atures are periodically lowered.

6. In order to try to ensure that the
Pareto-optimal surface is fully explored, the
search is periodically restarted from a solution
chosen from the archive (a return to base is made).

Note that during the new design
generation with the frame grammar, shape and
size modification rules are mostly applied until a
better design (or an equally good design, in a
multiobjective context) cannot be found for a
predefined number of iterations. This ensures that
promising design topologies will be sufficiently
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Figure 2. Flow chart of the optimisation process with frame grammar
(Suppapitnarm et al., 2004).

explored, while a bad topology (one for which
feasible designs cannot readily be found) will be
rejected quite quickly.

2. Generation of conceptual frame designs

The proposed method is now attempted on
the traditional 10-bar truss problem, similar to that
presented by Bennage and Dhingra (1995), except
that the design is now converted into a frame
structure and the design space is not restricted to
10 elements. Different frame topologies can be
generated and considered simultaneously within
the design space by the proposed framework (a
conceptual design exploration within the frame
structure). The modified representation of the
structure is shown in Figure 3. The structural
members are made of aluminium with Young's
modulus, E = 68.95 GPa and density, p = 2768
kg-m'3. The structure is required to support two
loading points, each carrying 445 kN, with two
fixed (not pin) supports on the wall. The allowable
stress, 6, for all members is limited to 172 MPa
and the allowable displacement in each of the x
and y directions is also limited to 50 mm. The only

variables in the problem are the cross-sectional
areas, A, of the members of the frame where their
limits are: 64.5 mm~ < A <216 cm”. Note that
because of varying topologies, the number of
design variables changes automatically according
to the number of tube members of the frame.

With emphasis on structural and aesthetic
design goal in mind for this conceptual frame
design, three objectives were established for the
problem:

1. Minimisation of structural mass;

2. Minimisation of the average deflection
of all free nodes (i.e. to maximise the stiffness of
structure);

3. Minimisation of variation in member
length (8,). The aesthetic models used in structural
design are commonly derived from concepts such
as uniformity, proportion, contour and symmetry
(Leonhardt, 1982). It is assumed that, for this
problem, a frame design with uniform tube length
will look aesthetically pleasing in its own sim-
plicity.

The search started with a minimal number
of tube members joining 4 points of the frame



Songklanakarin J. Sci. Technol.

Heuristicly refined multiobjective random search

Vol.27 No.2 Mar. - Apr. 2005 307 Suppapitnarm, A.
P 18.28 m
j>‘l > A
9.14 m
¥
L |
1 ) T \ O
445 kKN

Figure 3. Problem representation and design space.

structure as shown in Figure 4. Note that rotation
is not allowed in all nodes so a triangulation
constraint (for a pin-jointed truss) was relaxed
and hence, the starting design could be a stable
structure as long as the stresses and deflections of
the design are within the allowable limits. This is
another advantage of the method. It does not
require much information to initialise the design
and the starting design is not necessarily feasible.
However, the design with a minimum number of
connections is likely to violate the structural
constraints, and, if that is the case, the design will
automatically be transformed to move away from
the initial structure during search.

Figure 5 shows the evolution of the trade-
off surface obtained after 20000, 50000 and
100000 iterations of one test run with the optimi-
sation framework applied for this conceptual frame
design. It is clear that a better, more uniform trade-
off surface was established as the time is left
running longer. Note that, because it is the three
objective problem, the trade-off surface does not
appear as a single line as illustrated earlier in
Figure 1. It is interesting to see that the strength of
the trade-off between the aesthetic measure and
the other objectives are similar to that of the trade-
off between the mass and deflection (which, for
structural design, is normally a strong compromise).
This suggests that, based on the current optimi-
sation model, there is also a compromise on
structural performance for aesthetics.

Figure 4. Starting design.

Among the 348 optimal designs identified
after 100000 iterations, 16 different frame
topologies were explored and are as shown in
Figure 6. None of these optimal designs has an
exact 10-bar topology, although many designs
having this topology had been generated during
search, see Figure 7. However, considering a design
in Figure 7(e) with that in Figure 6(b), it is clear
that many designs with a 10-bar topology were
gradually transformed towards the optimal designs.
Therefore, for this problem, it is not surprising
why such a topology is not identified as optimal.
It can also be seen from Figure 8, where a direct
comparison of the trade-off between the mass and
deflection objectives is performed between the
fixed 10-bar structure optimisation (Suppapitnarm
et al., 2000) and the present conceptual frame
design (with varying topology), that the 10-bar
topology has, overall, an inferior quality according
to these two objectives alone. Note that the trade-
off surface established during the 100000 iteration
search may not yet represent the final trade-off
surface of the variable topology, and, it is anti-
cipated that if the search is left running longer,
better frame designs will be explored. Since the
proposed approach is not intended to find the true
global optimal designs but rather to establish the
trend of the trade-off surface and to discover
possible optimal conceptual designs, the 100000
iterations search is considered sufficient for the
intended study of the problem.
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Figure 5. Evolution of trade-off surface in two-objective projection of the three objectives after
20,000, 50,000 and 100,000 iterations for conceptual frame design generation.

The most common of the optimal designs
have topology (f), the topology that favours the
light-weight consideration as seen from Figure 9
(refer to Figure 6 for layout of each topology in
bracket). Note that, for clarity and ease of dis-
cussion, not all the optimal topologies are shown
in Figure 9. If stiffness is the concern, three
topologies, (d), (e) and (1) tend to highlight desir-
able feature in this objective performance. Regard-
ing aesthetics, designs having topology (g) are
identified as the most beautiful designs although
their structural performances in the other two
objectives are not that desirable. Many designs
with topologies (h) and (m), however, highlight
attractive aesthetic measures without too much
compromise in structural performances as opposed
to designs with topology (g).

It is clear that different design topologies
can have different emphases on objective perform-

ances. With the multiobjective trade-off study
combined with designer-specified heuristic rules
for different design generation, the relationship
between design configurations (forms) and the
required performances (functions) can be identi-
fied. This feature of the approach helps fulfilling
the conceptual design goal as it provides a good
source of knowledge to the designer so that he can
make an informed decision on the chosen design
configuration before focussing on its details during
the later design stages.

Conclusions

An optimisation approach to conceptual
design based on a combination of grammatical
transformation (designer-specified heuristics) and
stochastic, multiobjective search has been presented
and illustrated using the case study of conceptual
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of designs found in the trade-off surface) identified after 100000 iterations.
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Figure 8. Comparison of the trade-off surface between variable topology and the 10-bar
topology (Suppapitnarm ef al., 2000).

frame design. The simultaneous use of topological,
shape and sizing optimisation allows practical
design considerations to be incorporated into the
search process, while the stochastic, multiobjective
search facilitates a thorough exploration of the
conceptual design space.

The results presented demonstrate that the
approach is capable of generating (from a mini-

mally simple initial design) and then optimising
a wide variety of different design concepts. The
trade-off surface obtained illustrates, for the benefit
of the designer, the relationships between different
concepts and performance matrices, as different
design topologies tend to cluster on and highlight
particular parts of the trade-off surface. The insight
this gives can only enhance the designer's under-
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standing of the nature of the design space pertain-
ing to the problem at hand. A wide variety of
different concepts are explored and their advan-
tages and disadvantages revealed to assist the
designer in choosing concepts worthy of further,
more detailed investigation.
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