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Invented by Spear in 1952 and popularized by Tukey in 1977, the box plot is widely used for displaying

and comparing samples of continuous observations. Despite its popularity, it is less effective for showing

shape behaviour of distributions, particularly bimodality. Using robust estimators of data skewness and

kurtosis to classify the distribution into categories, we suggest a simple enhancement for indicating bimodality,

central peakedness, and skewness. We also suggest a new graphical method for displaying confidence intervals

when comparing several samples of continuous data.
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The essential features of the box plot, called
the range plot by Spear (1952) and popularized by
Tukey (1977), are (a) a rectangular box extending
from the lower quartile to the upper quartile of the
data sample with a central dot or dividing line
denoting  the  position  of  the  median,  and (b)
additional lines called whiskers extending from
each end of the box. In Spear's original definition
the whiskers extend all the way to the minimum
and maximum values, while in Tukey's modifica-
tion each whisker extends no further than a fixed
multiple  of  the  interquartile  range,  with  more
extreme data (outliers) individually plotted.

Various modifications have been suggested,
some purely cosmetic, some designed to better
reveal the distribution of the data, and others to
include confidence interval information. Using his
principle of maximizing the data-ink ratio, Tufte
(1983: 124-125) proposed that the box be entirely
removed, but Benjamini (1988) rejected this idea
on the grounds that it "gives the strange impression
of seeing no data where the data are actually mostly
concentrated".  A  recommendation  by  Frigge,
Hoaglin and Iglewicz (1989) that the whiskers
have length 1.5 times the interquartile range is now
commonly accepted (see, for example, Cleveland
1994).

To some extent the box plot can show both
skewness and bimodality in a distribution. Clearly,
if the distribution is symmetric the symbol denoting
the median is located at the centre of the box.
Moreover, as Wainer (1990) pointed out, if the
whiskers  are  sufficiently  short  relative  to  the
interquartile range the distribution cannot be uni-
modal. But the reverse statements are not true.
Like regression analyses that don't show residuals
(Anscombe, 1973), box plots can mask the shape
of a distribution, giving a misleading impression.
Figure 1  displays  histograms  of  four  rather
different sets of data each of size 100 and having
the same range, and their common box plot. Each
histogram has 15 bins of width 1.2 starting at 1.0.
The first sample comprises the normal scores for
a sample of this size, scaled to range from 1.0 to
19.0.  The  second  sample  is  a  mixture  of  two
identical symmetric clusters of data each of size 49
and centered at 7.4 and 12.6, respectively, together
with isolated values at the ends of the range. The
third sample is a mixture of 70 values spaced evenly
over the range, 15 values at 9.5, and 15 values at
10.5. The last sample comprises a value at 1.0, 24
values  at  7.4,  50  approximately  evenly  spaced
values ranging from 7.4 to 12.6, and 25 approxi-
mately evenly spaced values ranging from 12.6 to
19.0.



«.  ß¢≈“π§√‘π∑√å «∑∑.

ªï∑’Ë 27 ©∫—∫∑’Ë 3 æ.§. - ¡‘.¬. 2548
Can the box plot be improved?

Choonpradub, C. and McNeil, D.651

In  an  attempt  to  improve  the  box  plot  to
show  shape  information,  Benjamini  (1988)
suggested  a  "histplot",  obtained  by  varying  the
width of the box according to the density of the
data at the median and quartiles, where these
densities are estimated from a histogram with a
small  number  of  bins.  Benjamini  (1988)  also
suggested a variation called a "vase plot", in which
the linear segments in the histplot are replaced by
smooth curves based on a kernel density estimate.
Hintze  and  Nelson  (1998)  suggested  a  further
modification  called  a  "violin plot",  which  is
essentially the same as the vase plot, except that it
extends to cover the whole range of the data.

While these methods provide informative
and useful displays, in essence they just replace
the box plot by a kind of histogram, rather than
modifying it. The problem remains to choose the
extent of smoothing, which in turn should depend
on the sample size. The box plot has become
popular largely because of its simplicity. This
raises the question: Is there a simple modification
of the box plot that provides better information

about  the  shape  of  the  distribution,  especially
bimodality?

Showing skewness and kurtosis in a box plot

A possible approach is to thicken appropriate
vertical lines in the box. Thus, if a distribution is
right skewed, replace the edge of the box denoting
the  lower  quartile  by  a  thick  line.  If  it  is  left
skewed, thicken the edge corresponding to the
upper quartile. If it is bimodal, thicken both edges.
Similarly,  if  the  distribution  is  peaked  in  the
middle,  thicken  the  line  denoting  the  median.
Figure 2 shows these possibilities for some typical
samples.

An allocation rule is needed. Choonpradub
(2003) did a study of viewers' choices when asked
to classify sets of histograms into six classes as
follows: (1) bell-shaped, (2) right-skewed, (3) left-
skewed, (4) bimodal, (5) symmetric & long-tailed,
or (6) other shape. The study involved 334 under-
graduate and graduate students from Australia and
Thailand  separated  into  six  groups,  with  the
subjects in each group shown histograms of 16

Figure 1.  Histograms and box plot: four samples each of size 100
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samples with different shapes, so there were 96
samples in all. Each histogram was labeled with
its sample size (50, 100 or 200).

Since  bimodality  corresponds  to  a  low
value of the kurtosis (scaled fourth moment), it is
reasonable to use the sample skewness and kurtosis
coefficients to allocate the distribution to one of
the five classes. But Choonpradub's subjects placed
undue  attention  on  outliers,  and  she  advocated
the use of robust measures of skewness (γ) and
kurtosis (κ), based on interquantile ranges of the
sample distribution F as follows.

γ = c
1

F−1(α) + F−1(1− α) − 2F−1(0.5)

F−1(1− α) − F−1(α)
, (1)

κ = c
2

− c
3

F−1(1− β) − F−1(β)

F−1(1− α) − F−1(α)
. (2)

The robust skewness is thus defined in terms
of the extent to which the median, F

-1
(0.5), is dis-

placed from the interval F
-1
(1-α)-F

-1
(α) spanning

the area between the two α-tails, while the robust
kurtosis  is  a  linear  function  of  the  ratio  of  the
widths of two similar intervals with tail areas β
and α, respectively, where β > α. Note that if α is
0.25, γ can be computed directly from the box plot
because F

-1
(1-α)-F

-1
(α) is then the interquartile

range.
When  choosing  the  parameter  α  it  is

important to bear in mind that box plots already
show  outliers  quite  well,  as  well  as  skewness

within the central half of the distribution. These
considerations dictate that α should be sufficiently
large  to  make  γ  resistant  against  the  outliers
already shown, but substantially smaller than 0.25.
A reasonable range might be 0.05 to 0.1. The
parameter β should be at least 0.25 because the
robust kurtosis should focus on peakedness or
emptiness in the middle of the distribution, and to
achieve this, the inner interval should be enclosed
between the quartiles.

The constants c
1
, c

2
 and c

3
 could be selected

to make the robust measures agree with the con-
ventional coefficients of skewness and kurtosis
when there are no outliers. The standard outlier-
free distribution is clearly the normal distribution
with kurtosis 0. Also the minimum kurtosis (-2)
occurs  for  a  symmetric  binary  distribution.
Matching these requirements, Equation (2) gives

c
2

= 2
Φ−1(1− β)

Φ−1(1− α) − Φ−1(1− β)
, (3)

c
3

= c
2

+ 2 (4)

where  Φ  is  the  standardized  normal  distribution
function.

A reasonable choice for the pivotal skewed
distribution might be the half-normal distribution,
for which the coefficient of skewness is

γ =
(4

π − 2) 2
π

(1− 2
π) 1− 2

π
= 0.9953.

Figure 2. Box plot shapes: (from top) normal, right-skewed, left-skewed, bimodal, centrally

peaked
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Thus, using Equation (1) where F is the standard-
ized half-normal distribution, we get

c
1

= 0.9953
Φ−1(1− α / 2) − Φ−1(0.5 + α / 2)

Φ−1(α / 2) + Φ−1(1− α / 2) − 2Φ−1(0.75)
.

(5)

For α = 0.1 and β = 0.35, equations (3)-(5) give
c

1
 = 3.587, c

2
 = 0.860 and c

3
 = 2.860.

Figure 3 shows a scatter plot of the robust
skewness  and  kurtosis  coefficients  for  the  96
samples Choonpradub used. The plotting symbols
are circles for samples seen as bell-shaped, tri-
angles for samples perceived to be skewed, squares
for samples seen as bimodal or short-tailed, and
horizontal bars for samples seen as long-tailed.

The graph also shows regions that could be
used to allocate samples to distributional shapes
based on the robust skewness and kurtosis. Based
on  the  subjects'  allocations  in  Choonpradub's
(2003) study the following classification rule could
be used.

1: Normal if |γ| < 0.4 and |κ| < 0.2;
2: Centrally peaked if κ > max(0.2, |γ|/2);

3: Right-skewed if γ > 0.4 and -0.2 < κ <
2γ;

4: Left-skewed if γ < -0.4 and -0.2 < κ <
2|γ|;

5: Short-tailed (possibly bimodal) if κ <
-0.2.

In Figure 3 the samples misclassified by the
viewers according to this rule are plotted as filled
symbols or, in the case of samples seen as long-
tailed,  by  plus  signs.  In  the  next  section  we
examine the more discrepant anomalies in detail.

Note  that  the  skewed  sample  shown  in
Figure 1 has robust skewness 1.40 and robust
kurtosis -0.19, which places it only slightly above
the  lower  boundary  of  the  region  classified  as
right-skewed.  This  suggests  that  the  horizontal
boundary between the "skewed" and "short-tailed"
regions should be replaced by a flat-topped hill.

Anomalous samples

Figure 4 shows histograms and modified
box plots for the eight samples where there was
greatest disagreement between the viewers' per-
ceptions and the rule. The samples are labeled as

Figure 3.  Robust skewness and kurtosis for 96 samples and allocation regions
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S1 to S96, and the viewers in Group 1 were shown
sample S1-S16, those in Group 2 were shown S17-
S32, etc. The sample sizes are shown next to the
sample identifier.

The four samples shown in the left panel
(S49, S57, S61 and S38) have robust skewness
and kurtosis coefficients (1.24, 0.10), (-0.34, -0.30),
(-0.67, -0.45) and (-0.92, -0.10), respectively, and
are  thus  classified  as  non-normal  by  the  rule.
Those graphed in the right panel (S20, S59, S60
and S72) have coefficients (0.030, -0.04), (-0.02,
-0.07), (-0.03, -0.05) and (0.10, 0.10), respectively,
and are thus classified as normal by the rule.

S49 (size 50) was seen by 34 viewers as
left-skewed, 17 as long-tailed, and the remainder
as bell-shaped. None said it was right-skewed. It
has (Fisher) coefficients of skewness and kurtosis
-0.17 and 3.90. It appears that many viewers chose
to ignore the outlier on the right but not the two on
the left when making their decisions. The same

viewers had divided opinions about the shape of
S57 (size 100): 27 said it was bell-shaped, 21
left-skewed and 7 bimodal, and these results are
acceptable, given that the sample would be classi-
fied as normal under a more liberal rule.

S61 (size 200) gave a surprising result. In
this case 28 of the 57 viewers (the same ones who
looked at S49 and S57) said it was long-tailed, 19
said it was bimodal, and the others saw it as bell-
shaped.

The results for S38 came from a different
group of viewers, and were not remarkable. Of the
53  viewers,  30  saw  bimodality  and  the  others
were evenly divided between bell-shaped, left-
skewed, or other shape.

The four samples graphed in the right panel
of Figure 4 are all classified as normal by the rule.
Experienced  teachers  of  Statistics  know  that
students attribute non-normal features to sampling
variability, so none of these results is surprising

Figure 4.  Samples where viewers saw differently to the allocation rule
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Graphing confidence intervals

Turning to modifications of the box plot to
include confidence intervals, McGill, Tukey, and
Larsen (1978) suggested using the width of the
box  to  represent  the  sample  size,  and/or  using
notches  to  denote  a  confidence  interval  for  the
median. As an alternative to notches to represent
the confidence interval, Benjamini (1988) preferred
a shaded bar centered at the median.

These  alternatives  provide  additional
information to the viewer in a single graphical
component, but given that box plots show spread
of data and confidence intervals get shorter when
sample  sizes  increase,  for  comparing  several
populations it seems better to separate the con-
fidence intervals from the box plots. For example,
one could show box plots of one or more samples
in  the  upper  panel  of  a  graph  with  confidence
intervals for the corresponding population medians
(or means, if preferred) in the lower panel.

While  it  is  useful  to  show  confidence
intervals when comparing location parameters, a
confidence interval for the disparity between these
parameters is more informative. For two samples,
Student's t-test gives a confidence interval for the

difference between the population means, which
can be graphed on a horizontal axis together with
a vertical line passing through the origin. Thus, if
the difference between the two sample means is
statistically  significant,  the  confidence  interval
does not intersect the vertical line, and vice versa.
The graph could be placed below the conventional
graph  showing  confidence  intervals  for  the
individual population means, using the same scale
and with the point denoting the absolute value of
the difference between the means aligned with the
mean of the combined samples.

This graph can be extended to more than two
samples, using a measure of the disparity between
the means of several populations, such as the root-
mean  squared  difference.  Figure  5  shows  such
a comparison using four samples of blood lead
levels  of  schoolchildren  attending  schools  at
different locations on the Pattani River (polluted
due to historical tin mining near two villages and
a boat repair yard near the other two, see Geater
et al., 2000). The blood lead concentrations were
measured in micrograms/deciliter and then log-
transformed. Pairs of points denoting the means
are  joined  if  the  corresponding  Kramer-Tukey

Figure 5.  A graphical method showing confidence intervals for comparing means
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pairwise test based on the studentized range (see,
for  example,  Cheung  and  Cheng,  1996)  is  not
statistically significant.

Conclusions and Discussion

Tukey's  box  plot  highlights  outliers  and
shows skewness in the central half of the dis-
tribution. By masking data between the outliers,
it does not give the viewer much opportunity to
be  unduly  swayed  by  sampling  fluctuations.  We
believe that previous attempts to improve the box
plot by showing shape information have not become
popular for at least three reasons as follows.

First,  including  shape  information  makes
the graph more complicated and more difficult to
interpret, particularly if one is primarily interested
in  comparing  several  samples.  Second,  shape
variations  have  relied  on  density  estimation
requiring an additional smoothness parameter to
be estimated. Third, and perhaps most important,
showing  too  much  shape  information  when
graphing the distribution of a sample of data can
mislead  viewers  into  making  erroneous  con-
clusions.

Given that the box plot does not adequately
show bimodality and central peakedness, we have
suggested a very minor enhancement that does not
change the essential shape of the box plot, namely,
to show bimodality by thickening the ends of the
box denoting the quartiles, to show central peaked-
ness by thickening the dividing line denoting the
median, and to highlight skewness by thickening
just one end of the box. The criteria for making
such enhancements is based on robust estimators
of skewness and kurtosis that extend the statistics
used  to  create  the  box  plot  (the  median  and
quartiles) to include two further quantiles, and the
sample size is not an issue. However, the efficiency
of estimation of the quantiles used for allocation
depends on the sample size, and if the sample size
is too small, it might be better to just give the
standard box plot without any modification. But
this raises the issue of what is the minimum sample
size? This is a good topic for further investigation.

While it could be argued that trying to improve
the  box  plot  is  like  gilding  the  lily,  and  that  if
more data need to be displayed histograms are
adequate,  there  is  evidence  that  both  box  plots
and histograms can mislead viewers. Most statis-
tically literate  viewers,  when  shown  a  very  short-
whiskered  symmetric  box  plot  with  no  outliers,
describe the underlying distribution as "symmetric"
or "short-tailed" but overlook the fact that such
a  distribution  must  have  two  or  more  modes
(Wainer, 1990). Choonpradub's (2003) study based
on  over  300  university  students  with  different
majors taking Statistics courses provided evidence
of  their  inability  to  make  correct  conclusions
about distributional shape from histograms.

Attempts to improve the box plot to include
information about sample size (and thus, indirectly,
confidence intervals of location parameters) have
not been widely adopted, we believe, again because
they detract from the box plot's basic simplicity.
We argue that such information is more effectively
shown in a separate graph, or at least in a separate
panel of the graph showing the box plot(s). When
several  populations  are  to  be  compared,  we
recommend graphing confidence intervals for the
means, with pairs of points denoting the sample
means  joined  by  dotted  lines  whenever  the
corresponding pairwise multiple comparison tests
are not statistically significant, and with a separate
confidence  interval  for  the  root-mean-squared
difference in the population means.
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