

Roots of Matrices

Boonrod Yuttanan¹ and Chaufah Nilrat²

Abstract

Yuttanan, B. and Nilrat, C.

Roots of Matrices

Songklanakarin J. Sci. Technol., 2005, 27(3) : 659-665

A matrix S is said to be an n^{th} root of a matrix A if $S^n = A$, where n is a positive integer greater than or equal to 2. If there is no such matrix for any integer $n \geq 2$, A is called a rootless matrix. After investigating the properties of these matrices, we conclude that we always find an n^{th} root of a non-singular matrix and a diagonalizable matrix for any positive integer n . On the other hand, we find some matrix having an n^{th} root for some positive integer n . We call it p -nilpotent matrix.

Key words : roots of matrices, rootless matrix, nilpotent matrix, non-singular matrix, diagonalizable matrix

¹Student in Mathematics, ²M.S.(Mathematics), Assoc. Prof., Department of Mathematics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 Thailand.

Corresponding e-mail: chaufah.n@psu.ac.th

Received, 18 May 2004 Accepted, 11 October 2004

บทคัดย่อ

บุญรอด ยุทธนาันท์ และ ชื่อฟ้า นิลรัตน์

รากของเมทริกซ์

ว. สงขลานครินทร์ วทท. 2548 27(3) : 659-665

เรากล่าวว่า S เป็นรากที่ n ของเมทริกซ์ A ถ้า $S^n = A$ เมื่อ n เป็นจำนวนเต็มบวกที่มากกว่าหรือเท่ากับ 2 ถ้าไม่มีเมทริกซ์ S และจำนวนเต็มบวก n ดังกล่าว เราเรียก A ว่าเมทริกซ์ที่ไม่มีราก หลังจากทำการตรวจสอบ สมบัติของเมทริกซ์เหล่านี้ พนว่าสำหรับทุกจำนวนเต็มบวก n เราสามารถหารากที่ n ของเมทริกซ์ไม่เอกสารและ เมทริกซ์ที่คล้ายกับเมทริกซ์ແเบยงมุมได้เสมอ นอกจากนี้เรายังพบว่ามีบางเมทริกซ์ที่เราสามารถหารากที่ n ได้เพียง บางจำนวนเต็มบวก n เท่านั้น เมทริกซ์ดังกล่าวคือ เมทริกซ์พี-นิลโพเทนต์

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อำเภอหาดใหญ่ จังหวัดสงขลา 90110

An $m \times m$ matrix A is called *nilpotent* if $A^r = 0$ for some positive integer $r \geq 2$. Yood (2002) showed that any nilpotent $m \times m$ matrix A such that $A^{m-1} \neq 0$ is rootless. Such a matrix is called *principal nilpotent*. After we finished reading this article, we raised the question of which matrices always have an n^{th} root for any positive integer n and which have an n^{th} root only for some positive integer n . In this paper, we give the answer for these questions.

1. Roots of non-singular matrices

In this section, we prove that every non-singular matrix has an n^{th} root for any positive integer. Before discussing on a non-singular matrix, we start with a property of upper triangular matrices.

Lemma 1.1 If $A = [a_{ij}]_{m \times m}$ is an upper triangular matrix, then so is $A^n = [\alpha_{ij}]_{m \times m}$ and

$$\alpha_{ij} = \begin{cases} 0 & \text{if } i > j, \\ a_{ii}^n & \text{if } i = j, \\ \sum_{i \leq k_1 \leq \dots \leq k_{n-1} \leq j} a_{ik_1} a_{k_1 k_2} \dots a_{k_{n-1} j} & \text{if } i < j. \end{cases}$$

Proof. We give a proof by mathematical induction. For $n = 2$, we have

$$A^2 = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ 0 & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{mm} \end{pmatrix}^2 = \begin{pmatrix} a_{11}^2 & a_{11}a_{12} + a_{12}a_{22} & \dots & a_{11}a_{1m} + a_{12}a_{2m} + \dots + a_{1m}a_{mm} \\ 0 & a_{22}^2 & \dots & a_{22}a_{2m} + a_{23}a_{3m} + \dots + a_{2m}a_{mm} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{mm}^2 \end{pmatrix} = : [\alpha_{ij}].$$

Apparently, A^2 is an upper triangular matrix such that for each i, j , $1 \leq i, j \leq m$,

$$\alpha_{ij} = \begin{cases} 0 & \text{if } i > j, \\ a_{ii}^2 & \text{if } i = j, \\ \sum_{i \leq k_1 \leq j} a_{ik_1} a_{k_1 j} & \text{if } i < j. \end{cases}$$

Now, we assume that $A^k = [\alpha_{ij}]$ where

$$\alpha_{ij} = \begin{cases} 0 & \text{if } i > j, \\ a_{ii}^k & \text{if } i = j, \\ \sum_{i \leq k_1 \leq \dots \leq k_{k-1} \leq j} a_{ik_1} a_{k_1 k_2} \dots a_{k_{k-1} j} & \text{if } i < j. \end{cases}$$

Then

$$A^{k+1} = A^k A$$

$$\begin{aligned} &= \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1m} \\ 0 & \alpha_{22} & \dots & \alpha_{2m} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \alpha_{mm} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ 0 & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & a_{mm} \end{pmatrix} \\ &= \begin{pmatrix} \alpha_{11} a_{11} & \alpha_{11} a_{12} + \alpha_{12} a_{22} & \dots & \alpha_{11} a_{1m} + \alpha_{12} a_{2m} + \dots + \alpha_{1m} a_{mm} \\ 0 & \alpha_{22} a_{22} & \dots & \alpha_{22} a_{2m} + \alpha_{23} a_{3m} + \dots + \alpha_{2m} a_{mm} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \alpha_{mm} a_{mm} \end{pmatrix} \\ &= : [\alpha'_{ij}]. \end{aligned}$$

It is clear that $\alpha'_{ij} = 0$ if $i > j$. For each integer i , $1 \leq i \leq m$, $\alpha'_{ii} = \alpha_{ii} a_{ii} = a_{ii}^k a_{ii} = a_{ii}^{k+1}$. We also obtain

$$\alpha'_{ij} = \sum_{k=i}^j \alpha_{ik} a_{kj} = \sum_{k=i}^j \left(\sum_{i \leq k_1 \leq \dots \leq k_{k-1} \leq k} a_{ik_1} a_{k_1 k_2} \dots a_{k_{k-1} k} \right) a_{kj} = \sum_{i \leq k_1 \leq \dots \leq k_j \leq j} a_{ik_1} a_{k_1 k_2} \dots a_{k_j j}$$

for all integers i and j , $1 \leq i < j \leq m$. □

Theorem 1.2 Let A be an $m \times m$ complex matrix. If A is non-singular, then A always has an n^{th} root for any positive integer n .

Proof. Let A be non-singular. By Schur's theorem (Strang, 1988), there exists a non-singular matrix S such that $A = SBS^{-1}$ where B is upper triangular. Let $B = [b_{ij}]_{m \times m}$. We have $\det(B) \neq 0$; that is, $b_{ii} \neq 0$ for $i = 1, 2, \dots, m$.

Let b_{ii}^* be any n^{th} root of b_{ii} . If $b_{ii} = b_{rr}$, we let $b_{ii}^* = b_{rr}^*$. We define $C = [c_{ij}]_{m \times m}$ as follows.

For each i , $c_{ii} = b_{ii}^*$. For $i > j$, let $c_{ij} = 0$. For $j = i+1$, let $c_{ij} = b_{ij} / \sum_{p=0}^{n-1} c_{ii}^{n-1-p} c_{jj}^p$. For $j = i+k$, where

$2 \leq k \leq m-i$, let $c_{ij} = (b_{ij} - R_{ij}) / \sum_{p=0}^{n-1} c_{ii}^{n-1-p} c_{jj}^p$, and R_{ij} be the sum of the products $c_{ik_1} c_{k_1 k_2} \dots c_{k_{n-1} j}$, where the sum is taken over integers k_1, k_2, \dots, k_{n-1} such that $i \leq k_1 \leq \dots \leq k_{n-1} \leq j$ and none of the term in the products contains c_{ij} .

Since $b_{ii} \neq 0$ for $i = 1, 2, \dots, m$, we have $c_{ii} \neq 0$ for each i and $c_{i,i}^{n-1} + c_{i,i}^{n-2}c_{i+k,i+k} + \dots + c_{i+k,i+k}^{n-1} \neq 0$ for $1 \leq k \leq m-i$. This guarantees that $c_{i+k,i+k}$ is well-defined. We claim that $C^n = B$.

Let $C^n = [\gamma_{ij}]_{m \times m}$. By Lemma 1.1, we have

$$\gamma_{ij} = \begin{cases} 0 & \text{if } i > j, \\ c_{ii}^n & \text{if } i = j, \\ \sum_{i \leq k_1 \leq \dots \leq k_{n-1} \leq i+k} c_{i,k_1} c_{k_1,k_2} \dots c_{k_{n-1},i+k} & \text{if } j = i+k, k = 1, 2, \dots, m-i. \end{cases}$$

If $i = j$, $\gamma_{ij} = c_{ii}^n = (b_{ii}^*)^n = b_{ii}$.

If $j = i+1$, we have

$$\begin{aligned} \gamma_{i,i+1} &= \sum_{i \leq k_1 \leq \dots \leq k_{n-1} \leq i+1} c_{i,k_1} c_{k_1,k_2} \dots c_{k_{n-1},i+1} \\ &= c_{i,i+1} (c_{i,i}^{n-1} + c_{i,i}^{n-2}c_{i+1,i+1} + \dots + c_{i+1,i+1}^{n-1}) \\ &= \frac{b_{i,i+1} (c_{i,i}^{n-1} + c_{i,i}^{n-2}c_{i+1,i+1} + \dots + c_{i+1,i+1}^{n-1})}{c_{i,i}^{n-1} + c_{i,i}^{n-2}c_{i+1,i+1} + \dots + c_{i+1,i+1}^{n-1}} \\ &= b_{i,i+1}. \end{aligned}$$

If $j = i+k$, when $k = 2, 3, \dots, m-i$, we have

$$\begin{aligned} \gamma_{i,i+k} &= \sum_{i \leq k_1 \leq \dots \leq k_{n-1} \leq i+k} c_{i,k_1} c_{k_1,k_2} \dots c_{k_{n-1},i+k} \\ &= c_{i,i+k} (c_{i,i}^{n-1} + c_{i,i}^{n-2}c_{i+k,i+k} + \dots + c_{i+k,i+k}^{n-1}) + R_{i,i+k} \\ &= \frac{(b_{i,i+k} - R_{i,i+k}) (c_{i,i}^{n-1} + c_{i,i}^{n-2}c_{i+k,i+k} + \dots + c_{i+k,i+k}^{n-1})}{c_{i,i}^{n-1} + c_{i,i}^{n-2}c_{i+k,i+k} + \dots + c_{i+k,i+k}^{n-1}} + R_{i,i+k} \\ &= b_{i,i+k}. \end{aligned}$$

Then we obtain $[\gamma_{ij}] = [b_{ij}]$. Therefore $A = (SCS^{-1})^n$. □

We illustrate the procedure in Theorem 1.2 by the following example. Let

$$B = \begin{pmatrix} 8 & -12 & 7 & -8 \\ 0 & -1 & 0 & 6 \\ 0 & 0 & 1 & -28 \\ 0 & 0 & 0 & 8 \end{pmatrix}.$$

A third root of B is a matrix $C = [c_{ij}]$ where $c_{ij} = 0$, if $i > j$ and $c_{11} = 2$, $c_{22} = -1$, $c_{33} = 1$, $c_{44} = 2$,

$$c_{12} = b_{12} / [c_{11}^2 + c_{11}c_{22} + c_{22}^2] = (-12) / [2^2 + (2)(-1) + (-1)^2] = -4,$$

$$c_{23} = b_{23} / [c_{22}^2 + c_{22}c_{33} + c_{33}^2] = (0) / [(-1)^2 + (-1)(1) + 1^2] = 0,$$

$$\begin{aligned}
 c_{34} &= b_{34} / [c_{33}^2 + c_{33}c_{44} + c_{44}^2] = (-28) / [1^2 + (1)(2) + 2^2] = -4, \\
 c_{13} &= [b_{13} - \{c_{11}c_{12}c_{23} + c_{12}c_{22}c_{23} + c_{12}c_{23}c_{33}\}] / [c_{11}^2 + c_{11}c_{33} + c_{33}^2] \\
 &= [7 - \{(2)(-4)(0) + (-4)(-1)(0) + (-4)(0)(1)\}] / [2^2 + (2)(1) + 1^2] = 1, \\
 c_{24} &= [b_{24} - \{c_{22}c_{23}c_{34} + c_{23}c_{33}c_{34} + c_{23}c_{34}c_{44}\}] / [c_{22}^2 + c_{22}c_{44} + c_{44}^2] \\
 &= [6 - \{(-1)(0)(-4) + (0)(1)(-4) + (0)(-4)(2)\}] / [(-1)^2 + (-1)(2) + 2^2] = 2, \\
 c_{14} &= [b_{14} - \{c_{11}c_{12}c_{24} + c_{11}c_{13}c_{34} + c_{12}c_{22}c_{24} + c_{12}c_{23}c_{34} + c_{12}c_{24}c_{44} + c_{13}c_{33}c_{34} + c_{13}c_{34}c_{44}\}] / [c_{11}^2 + c_{11}c_{44} + c_{44}^2] \\
 &= [-8 - \{(2)(-4)(2) + (2)(1)(-4) + (-4)(-1)(2) + (-4)(0)(-4) + (-4)(2)(2) + (1)(1)(-4) + \\
 &\quad (1)(-4)(2)\}] / [2^2 + (2)(2) + 2^2] = 3.
 \end{aligned}$$

That is $\begin{pmatrix} 2 & -4 & 1 & 3 \\ 0 & -1 & 0 & 2 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 2 \end{pmatrix}$ is a third root of B.

Some singular matrices also have an n^{th} root such as

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}^n.$$

Moreover, we have a singular matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ as a rootless matrix (Yood, 2002).

Corollary 1.3 If all eigenvalues of A are not zero, then A has an n^{th} root.

Proof. Since A has all non-zero eigenvalues, A is a non-singular matrix. \square

Note. If only one eigenvalue of A is zero, in Theorem 1.2, we have $b_{ii} = 0$ for only one value of i . That means we still have $c_{i,i}^{n-1} + c_{i,i}^{n-2}c_{i+k,i+k} + \dots + c_{i+k,i+k}^{n-1} \neq 0$. Then we can say that "A matrix with only one zero eigenvalue always has an n^{th} root".

2. Roots of diagonalizable matrices

In this section, we consider an n^{th} root of a diagonalizable matrix.

Theorem 2.1 Let A be an $m \times m$ complex matrix. If A is diagonalizable, then A has an n^{th} root, for any positive integer n.

Proof. Let A be a diagonalizable matrix, i.e., there exists a non-singular matrix S such that $A = SDS^{-1}$ where $D = [d_{ij}]_{m \times m}$ is a diagonal matrix.

Let $D^{1/n} = [d_{ij}^{1/n}]_{m \times m}$, where $d_{ij}^{1/n}$ is an n^{th} root of d_{ij} . So $A = S(D^{1/n})^n S^{-1} = (SD^{1/n}S^{-1})^n$. Therefore an n^{th} root of A exists. \square

However, we have some non-diagonalizable matrices having an n^{th} root, for example,

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$

has an n^{th} root because it is a non-singular matrix. Moreover, we see that diagonalizable matrices and non-singular matrices are not the only matrices which have an n^{th} root, since

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{n} & \frac{1}{n} \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}^n, n \geq 2.$$

There are some further questions the reader might like to consider. For instance, what is a necessary and sufficient condition for a matrix to have an n^{th} root?

As an immediate consequence of the above theorem, we can conclude that a matrix A with all distinct eigenvalues has an n^{th} root. On the other hand, a real symmetric matrix also has an n^{th} root for any positive integer n , as well as a complex Hermitian matrix and a normal matrix.

3. Roots of p -nilpotent matrices

In the previous two sections, we considered matrices whose n^{th} root always exists for any positive integer n . In this section, we consider some kind of matrices which has an n^{th} root for just some value of n .

An $m \times m$ matrix A is called p -nilpotent if A is a nilpotent matrix but not principal nilpotent and p is the least positive integer such that $A^p = 0$ but $A^{p-1} \neq 0$. Before discussing on p -nilpotent matrices, we first give the following lemma.

Lemma 3.1 *Let A be an $m \times m$ complex matrix. If $A^k = 0$ for some $k \geq 2$, then $A^m = 0$.*

Proof. If $2 \leq k \leq m$, then we are done. Now we suppose $k > m$. By Schur's theorem (Strang, 1988), there exists a non-singular matrix S such that $A = SBS^{-1}$ where B is upper triangular. Since $A^k = 0$, we have $B^k = 0$.

Let $B = [b_{ij}]_{m \times m}$ and $B^k = [\beta_{ij}]_{m \times m}$. For $1 \leq i \leq m$, we have $\beta_{ii} = b_{ii}^k$, so $b_{ii} = 0$. Then B is strictly upper triangular. It was proved by Yood (2002) that $B^m = 0$. Therefore $A^m = 0$. \square

Theorem 3.2 *Let A be an $m \times m$ p -nilpotent matrix. If an n^{th} root of A exists, then $n \leq m - p + 1$.*

Proof. The proof is by contradiction. Suppose that $A = S^r$, for $r \geq m - p + 2$. Then $S^{rp} = A^p = 0$ so that S is an $m \times m$ nilpotent matrix. By Lemma 3.1, the m^{th} power of S is zero. Therefore, $S^k = 0$ for all positive integers $k \geq m$. But we also have $S^{r(p-1)} = A^{p-1} \neq 0$. Now $p \geq 2$, hence, $2r - 2 \leq rp - p$, so that $r + p - 2 \leq rp - r$. Since $r \geq m - p + 2$, $m \leq r + p - 2 \leq rp - r$. Therefore $S^{rp-r} = 0$ or $A^{p-1} = 0$, which is contrary to the hypotheses on A . Hence, if an n^{th} root of p -nilpotent matrix exists, then $n \leq m - p + 1$. \square

Let A be a 2-nilpotent matrix of size 3×3 , i.e., $A^2 = 0$. By Schur's theorem, A is of the form SBS^{-1} where S is non-singular and B is upper triangular. Hence $B^2 = 0$. This implies $B^3 = 0$. By Yood (2002), B is a strictly upper triangular matrix. It is possible to classify B which is not principal nilpotent as five different types:

$$\begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix},$$

where $a, b \neq 0$.

We observe that

$$\begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^2,$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & a \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}^2,$$

$$\begin{pmatrix} 0 & 0 & a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^2,$$

$$\begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -a & 0 \\ 0 & -1 & -\frac{b}{a} \\ 0 & \frac{a}{b} & 1 \end{pmatrix}^2,$$

$$\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -\frac{b}{a} & 0 \\ a & \frac{b}{a} & -1 \\ 0 & 0 & 0 \end{pmatrix}^2.$$

Then we see that all five types of B has a square root, say T . Therefore $A = ST^2S^{-1} = (STS^{-1})^2$. This shows that a square root of any 2-nilpotent matrix of size 3×3 always exists.

Conclusion and Discussion

According to this article, we obtain a formula for calculating an n^{th} root of a matrix which is non-singular or diagonalizable.

However, being non-singular or diagonalizable are not necessary for matrices to have n^{th} roots. The reader may try to find other properties of his own. In addition, a matrix having an n^{th} root for some positive integer n is not only a p -nilpotent matrix.

References

Nicholson, W.K. 1990. Elementary Linear Algebra with Applications, 2nd ed., PWS-KENT, Boston.
 Strang, G. 1988. Linear Algebra and Its Applications, 3rd ed., Harcourt, New York.
 Yood, B. 2002. Rootless Matrices, Math. Mag., 75: 219-223.