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A matrix S is said to be an nth
 root of a matrix A if Sn

 = A, where n is a positive integer greater than or

equal to 2. If there is no such matrix for any integer n > 2, A is called a rootless matrix. After investigating

the properties of these matrices, we conclude that we always find an nth
 root of a non-singular matrix and

a diagonalizable matrix for any positive integer n. On the other hand, we find some matrix having an nth
 root

for some positive integer n. We call it p-nilpotent matrix.
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An m×m matrix A is called nilpotent if A
r
 = 0 for some positive integer r > 2. Yood (2002) showed

that any nilpotent m×m matrix A such that A
m-1

  0 is rootless. Such a matrix is called  principal
nilpotent. After we finished reading this article, we raised the question of which matrices always have an
n

th
 root  for any positive integer n and which have an n

th
 root only for some positive integer n. In this

paper, we give the answer for these questions.

1. Roots of non-singular matrices

In this section, we prove that every non-singular matrix has an n
th
 root for any positive integer.

Before discussing on a non-singular matrix, we start with a property of upper triangular matrices.

Lemma 1.1  If A = [a
ij
]

m×m
 is an upper triangular matrix, then so is A

n
 = [α

ij
]

m×m
 and

α
ij

=
              0 if  i > j,

              a
ii

n if  i = j,

a
ik1

a
k1k2

...a
kn−1 j

i≤k1≤...≤kn−1≤ j
∑ if  i < j.










Proof.  We give a proof by mathematical induction. For n = 2, we have

  

A2 =

a
11

a
12

K a
1m

0 a
22

K a
2m

M M M

0 0 L a
mm



















2

=

a
11

2 a
11

a
12

+ a
12

a
22

K a
11

a
1m

+ a
12

a
2m

+...+a
1m

a
mm

0 a
22

2 K a
22

a
2m

+ a
23

a
3m

+...+a
2m

a
mm

M M M

0 0 K a
mm

2



















=  : α
ij[ ].

Apparently, A
2
 is an upper triangular matrix such that for each i, j, 1 < i, j < m,

α
ij

=
0 if  i > j,

a
ii

2 if  i = j,

a
ik1

a
k1 j

i≤k1≤ j
∑ if  i < j.









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Now, we assume that A
k
 = [α

ij
] where

α
ij

=
              0 if  i > j,

              a
ii

k if  i = j,

a
ik1

a
k1k2

...a
kk−1 j

i≤k1≤...≤kk−1≤ j
∑ if  i < j.










Then

A
k+1

 = Ak A

  

=

α
11

α
12

K α
1m

0 α
22

K α
2m

M M M

0 0 L α
mm



















a
11

a
12

K a
1m

0 a
22

K a
2m

M M M

0 0 L a
mm



















  

=

α
11

a
11

α
11

a
12

+ α
12

a
22

K α
11

a
1m

+ α
12

a
2m

+...+α
1m

a
mm

0 α
22

a
22

K α
22

a
2m

+ α
23

a
3m

+...+α
2m

a
mm

M M M

0 0 K α
mm

a
mm



















=  : ′α
ij[ ].

It is clear that ′α
ij = 0 if i > j. For each integer i, 1 < i < m, ′α

ii
= α

ii
a

ii
= a

ii

ka
ii

= a
ii

k+1.  We also obtain

′α
ij

= α
ik
a

kj
k=i

j

∑ = a
ik1

a
k1k2

...a
kk−1k

i≤k1≤...≤kk−1≤k
∑







 
k=i

j

∑ a
kj

= a
ik1

a
k1k2

...a
kk j

i≤k1≤...≤kk ≤ j
∑

for all integers i and j, 1 < i < j < m. �

Theorem 1.2 Let A be an m×m complex matrix. If A is non-singular, then A always has an n
th
 root for

any positive integer n.
Proof. Let A be non-singular. By Schur's theorem (Strang, 1988), there exists a non-singular matrix S

such that A = SBS
-1
 where B is upper triangular. Let B = b

ij[ ]
m×m

. We have det(B) ≠ 0; that is, b
ii

≠ 0  for

i = 1, 2, ..., m. Let b
ii

* be any n
th
 root of b

ii
. If b

ii
= b

′i ′i
, we let b

ii

* = b
′i ′i

* . We define C = c
ij[ ]

m×m
 as follows.

For each i, c
ii

= b
ii

* . For i > j, let c
ij
 = 0. For j = i+1, let c

ij
= b

ij
c

ii

n−1− p

p=0

n−1

∑ c
jj

p . For j = i+k, where

2 < k < m-i,  let c
ij

= (b
ij

− R
ij
) c

ii

n−1− pc
jj

p

p=0

n−1

∑ , and R
ij
 be the sum of the products 

  
c

ik1
c

k1k2
Kc

kn−1 j
, where the

sum is taken over integers k
1
, k

2
, ..., k

n-1
 such that i < k

1
 < ... < k

n-1
 < j and none of the term in the

products contains c
ij
.
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Since b
ii

≠ 0  for i = 1, 2, ..., m, we have c
ii

≠ 0 for each i and 
  
c

i,i

n−1 + c
i,i

n−2c
i+k,i+k

+K+c
i+k,i+k

n−1 ≠ 0 for

1 < k < m-i. This guarantees that c
i,i+k

 is well-defined. We claim that C
n
 = B.

Let Cn = γ
ij[ ]

m×m
. By Lemma 1.1, we have

  

γ
ij

=
                 0 if  i > j,

                 c
ii

n if  i = j,

c
i,k1

c
k1,k2

Kc
kn−1,i+k

i≤k1≤K≤kn−1≤i+k
∑ if  j = i + k,k = 1,2,K,m − i.










If i = j,γ
ij

= c
ii

n = (b
ii

* )n = b
ii
.

If j = i +1, we have

γ
i,i+1

  
= c

i,k1
c

k1,k2
Kc

kn−1,i+1
i≤k1≤K≤kn−1≤i+1

∑

  
= c

i,i+1
(c

i,i

n−1 + c
i,i

n−2c
i+1,i+1

+K+c
i+1,i+1

n−1 )

  

=
b

i,i+1
(c

i,i

n−1 + c
i,i

n−2c
i+1,i+1

+K+c
i+1,i+1

n−1 )

c
i,i

n−1 + c
i,i

n−2c
i+1,i+1

+K+c
i+1,i+1

n−1

= b
i,i+1

.

If j = i + k , when k = 2, 3, ..., m-i, we have

γ
i,i+k

  
= c

i,k1
c

k1,k2
Kc

kn−1,i+k
i≤k1≤K≤kn−1≤i+k

∑

  
= c

i,i+k
(c

i,i

n−1 + c
i,i

n−2c
i+k,i+k

+K+c
i+k,i+k

n−1 ) + R
i,i+k

  

=
(b

i,i+k
− R

i,i+k
)(c

i,i

n−1 + c
i,i

n−2c
i+k,i+k

+K+c
i+k,i+k

n−1 )

c
i,i

n−1 + c
i,i

n−2c
i+k,i+k

+K+c
i+k,i+k

n−1 + R
i,i+k

= b
i,i+k

.

Then we obtain γ
ij[ ] = b

ij[ ]. Therefore A = (SCS
-1
)

n
. �

We illustrate the procedure in Theorem 1.2 by the following example. Let

B =

8 −12 7 −8

0 −1 0 6

0 0 1 −28

0 0 0 8



















.

A third root of B is a matrix C = c
ij[ ] where c

ij
 = 0, if i > j and c

11
 = 2, c

22
 = -1, c

33
 = 1, c

44
 = 2,

c
12

= b
12

c
11

2 + c
11

c
22

+ c
22

2[ ] = (−12) 22 + (2)(−1) + (−1)2[ ] = −4,

c
23

= b
23

c
22

2 + c
22

c
33

+ c
33

2[ ] = (0) (−1)2 + (−1)(1) +12[ ] = 0,
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c
34

= b
34

c
33

2 + c
33

c
44

+ c
44

2[ ] = (−28) 12 + (1)(2) + 22[ ] = −4,

c
13

= b
13

−{c
11

c
12

c
23

+ c
12

c
22

c
23

+ c
12

c
23

c
33

}[ ] c
11

2 + c
11

c
33

+ c
33

2[ ]
     = 7 −{(2)(−4)(0) + (−4)(−1)(0) + (−4)(0)(1)}[ ] 22 + (2)(1) +12[ ] = 1,

c
24

= b
24

−{c
22

c
23

c
34

+ c
23

c
33

c
34

+ c
23

c
34

c
44

}[ ] c
22

2 + c
22

c
44

+ c
44

2[ ]
     = 6 −{(−1)(0)(−4) + (0)(1)(−4) + (0)(−4)(2)}[ ] (−1)2 + (−1)(2) + 22[ ] = 2,

c
14

= b
14

−{c
11

c
12

c
24

+ c
11

c
13

c
34

+ c
12

c
22

c
24

+ c
12

c
23

c
34

+ c
12

c
24

c
44

+ c
13

c
33

c
34

+ c
13

c
34

c
44

}[ ] c
11

2 + c
11

c
44

+ c
44

2[ ]
= −8 −{(2)(−4)(2) + (2)(1)(−4) + (−4)(−1)(2) + (−4)(0)(−4) + (−4)(2)(2) + (1)(1)(−4) +[

          (1)(−4)(2)}] 22 + (2)(2) + 22[ ] = 3.

That is 

2 −4 1 3

0 −1 0 2

0 0 1 −4

0 0 0 2



















 is a third root of B.

Some singular matrices also have an n
th
 root such as

1 0

0 0






=
1 0

0 0






n

.

Moreover, we have a singular matrix 
0 1

0 0




 as a rootless matrix (Yood, 2002).

Corollary 1.3  If all eigenvalues of A are not zero, then A has an n
th
 root.

Proof.  Since A has all non-zero eigenvalues, A is a non-singular matrix. �

Note. If only one eigenvalue of A is zero, in Theorem 1.2, we have b
ii
 = 0 for only one value of i.

That means we still have 
  
c

i,i

n−1 + c
i,i

n−2c
i+k,i+k

+K+c
i+k,i+k

n−1 ≠ 0. Then we can say that "A matrix with only one

zero eigenvalue always has an n
th
 root".

2. Roots of diagonalizable matrices

In this section, we consider an n
th
 root of a diagonalizable matrix.

Theorem 2.1 Let A be an m×m complex matrix. If A is diagonalizable, then A has an n
th
 root, for any

positive integer n.
Proof.  Let A be a diagonalizable matrix, i.e., there exists a non-singular matrix S such that A = SDS

-1

where D = d
ij[ ]

m×m
 is a diagonal matrix.

Let D1/n = d
ij

1/n[ ]
m×m

, where d
ij

1/n is an n
th
 root of d

ij
. So A = S(D

1/n
)

n
S

-1
 = (SD

1/n
S

-1
)

n
. Therefore an n

th

root of A exists. �
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However, we have some non-diagonalizable matrices having an n
th
 root, for example,

2 0 0

0 2 0

2 0 2















has an n
th
 root because it is a non-singular matrix. Moreover, we see that diagonalizable matrices and

non-singular matrices are not the only matrices which have an n
th
 root, since

1 1 1

0 1 1

0 0 0















=
1

1
n

1
n

0 1 1

0 0 0



















n

,n ≥ 2.

There  are  some  further  questions  the  reader  might  like  to  consider.  For  instance,  what  is  a
necessary and sufficient condition for a matrix to have an n

th
 root?

As an immediate consequence of the above theorem, we can conclude that a matrix A with all
distinct eigenvalues has an n

th
 root. On the other hand, a real symmetric matrix also has an n

th
 root for

any positive integer n, as well as a complex Hermitian matrix and a normal matrix.

3. Roots of p-nilpotent matrices

In the previous two sections, we considered matrices whose n
th
 root always exists for any positive

integer n. In this section, we consider some kind of matrices which has an n
th
 root for just some value

of n.
An m×m matrix A is called p-nilpotent if A is a nilpotent matrix but not principal nilpotent and p

is the least positive integer such that A
p
 = 0 but A

p-1
  0. Before discussing on  p-nilpotent matrices,

we first give the following lemma.

Lemma 3.1  Let A be an m×m complex matrix. If A
k
 = 0 for some k > 2, then A

m
 = 0.

Proof.  If 2 < k < m, then we are done. Now we suppose k > m. By Schur's theorem (Strang, 1988),
there exists a non-singular matrix S such that A = SBS

-1
 where B is upper triangular. Since A

k
 = 0, we

have B
k
 = 0.

Let B = b
ij[ ]

m×m
 and Bk = β

ij[ ]
m×m

. For 1 < i < m, we have β
ii

= b
ii

k , so b
ii
 = 0. Then B is strictly

upper triangular. It was proved by Yood (2002) that B
m
 = 0. Therefore A

m
 = 0. �

Theorem 3.2  Let A be an m×m p-nilpotent matrix. If an n
th
 root of A exists, then n < m - p + 1.

Proof.  The proof is by contradiction. Suppose that A = S
r
, for r > m - p + 2. Then S

rp
 = A

p
 = 0  so that

S is an m×m nilpotent matrix. By Lemma 3.1, the m
th
 power of S is zero. Therefore, S

k
 = 0 for all positive

integers k > m. But we also have S
r(p-1)

 = A
p-1

  0. Now  p > 2, hence, 2r - 2 < rp - p, so that
r + p - 2 < rp - r. Since r > m - p + 2, m < r + p - 2 < rp - r. Therefore S

rp-r
 = 0 or A

p-1
 = 0, which is contrary

to the hypotheses on A. Hence, if an n
th
 root of p-nilpotent matrix exists, then n < m - p + 1. �

Let A be a 2-nilpotent matrix of size 3×3, i.e., A
2
 = 0. By Schur's theorem, A is of the form SBS

-1

where S is non-singular and B is upper triangular. Hence B
2
 = 0. This implies B

3
 = 0. By Yood (2002),

B is a strictly upper triangular matrix. It is possible to classify B which is not principal nilpotent as five
different types:
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0 a 0

0 0 0

0 0 0














,

0 0 0

0 0 a

0 0 0














,

0 0 a

0 0 0

0 0 0














,

0 a b

0 0 0

0 0 0














,

0 0 b

0 0 a

0 0 0














,

where a, b  0.
We observe that

0 a 0

0 0 0

0 0 0















=
0 0 a

0 0 0

0 1 0















2

,

0 0 0

0 0 a

0 0 0















=
0 0 a

1 0 0

0 0 0















2

,

0 0 a

0 0 0

0 0 0















=
0 a 0

0 0 1

0 0 0















2

,

0 a b

0 0 0

0 0 0















=
0 −a 0

0 −1 −
b
a

0
a
b 1



















2

,

0 0 b

0 0 a

0 0 0















=

1 −
b
a 0

a
b −1 −a

0 0 0





















2

.

Then we see that all five types of B has a square
root, say T. Therefore A = ST

2
S

-1
 = (STS

-1
)

2
. This

shows that a square root of any 2-nilpotent matrix
of size 3×3 always exists.

Conclusion and Discussion

According  to  this  article,  we  obtain  a
formula  for  calculating  an  n

th
  root  of  a  matrix

which is non-singular or diagonalizable.
However, being non-singular or diagonaliz-

able  are  not  necessary  for  matrices  to  have  n
th

roots. The reader may try to find other properties
of  his  own.  In  addition,  a  matrix  having  an  n

th

root for some positive integer n is not only a p-
nilpotent matrix.
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