
ORIGINAL ARTICLE

Chemical components and biological activities of volatile oil of *Kaempferia galanga* Linn.

Supinya Tewtrakul¹, Supreeya Yuenyongsawad², Sopa Kum mee³ and Latthya Atsawajaruwan⁴

Abstract

Tewtrakul, S., Yuenyongsawad, S., Kum mee, S., and Atsawajaruwan, L.

Chemical components and biological activities of volatile oil of *Kaempferia galanga* Linn.

Songklanakarin J. Sci. Technol., 2005, 27(Suppl. 2) : 503-507

Volatile oil of dried rhizome of *Kaempferia galanga* obtained by water distillation was determined for its chemical components using gas chromatography and mass spectrometry (GC-MS). The major chemical constituents were identified as ethyl-*p*-methoxycinnamate (31.77%), methylcinnamate (23.23%), carvone (11.13%), eucalyptol (9.59%) and pentadecane (6.41%), respectively. Antimicrobial activity of the volatile oil was tested against various microbes using agar disc diffusion method with the inhibition zones from 8.0-31.0 mm. Brine shrimp toxicity of volatile oil exhibited an EC₅₀ value of 26.84 µg/ml; whereas the volatile oil was inactive for antioxidant activity (IC₅₀ >100 µg/ml).

Key words : *Kaempferia galanga*, volatile oil components, bioactivity

¹Ph.D.(Pharmaceutical Sciences), Asst. Prof., ²M.Sc.(Pharmaceutical Sciences), Asst. Prof., ³M.Sc.(Microbiology), Scientist; ⁴B.Pharm. student, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
Corresponding e-mail: supreeya.y@psu.ac.th

Received, 2 September 2004 Accepted, 7 December 2004

บทคัดย่อ

สุกิญญา ติ่วตระกูล สุปรียา ยืนยงสวัสดิ์ โสภา คำมี และ ลักษยา อัตราจารุวรรณ
การศึกษาองค์ประกอบทางเคมีและฤทธิ์ทางชีวภาพของน้ำมันหอมระเหยจากเหง้า佩ระหอม
ว.สงขลานครินทร์ วทท. 2548 27(ฉบับพิเศษ 2) : 503-507

การศึกษาองค์ประกอบทางเคมีของน้ำมันหอมระเหยจากเหง้า佩ระหอมที่กลั่นด้วยน้ำ โดยวิธีแก๊สโครมაตอกราฟ พนสารสำคัญหลักได้แก่ ethyl-p-methoxycinnamate (31.77%), methylcinnamate (23.23%), carvone (11.13%), eucalyptol (9.59%) และ pentadecane (6.41%) ตามลำดับ ในการทดสอบฤทธิ์ทางชีวภาพพบว่า น้ำมันหอมระเหยจากเหง้า佩ระหอมมีฤทธิ์ต้านจุลินทรีย์หลายชนิด โดยให้ค่า inhibition zone ในขนาด 8.0-31.0 มม. ตัววิธี agar disc diffusion method สำหรับการทดสอบ brine shrimp toxicity test ให้ค่า EC₅₀ เท่ากับ 26.84 μg/ml ในขณะที่ น้ำมันหอมระเหยไม่มีฤทธิ์ antioxidant (IC₅₀ > 100 μg/ml).

ภาควิชาเภสัชเวทและเภสัชพุกนศาสตร์ คณะเภสัชศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อำเภอหาดใหญ่ จังหวัดสงขลา 90112

Kaempferia galanga Linn. is one of the plants in Zingiberaceae family. The rhizome extract has been potently active against bacterial infections. Indigenous medical practitioners use these rhizomes for treatment of scariasis, bacterial infections, tumor and it is also applied externally for abdominal pain in women and used topically for treatment of rheumatism (Hirschhornn, 1983). In Thailand, the dried rhizome has been used as cardiotonic and CNS stimulant (Mokkhasmit *et al.*, 1971), whereas an acetone extract has an effect on monoamine oxidase inhibition (Noro *et al.*, 1983). The 95% ethanol extract of this plant possessed antibacterial activity against *Staphylococcus aureus* and hot water extract against *Escherichia coli* (George and Pandalai, 1949). The rhizome of *K. galanga* has been used for treatment of fungal derived-skin diseases as well as eczema (Tungtrongjit, 1978). The present study is aimed to determine the volatile oil components of *K. galanga* and its biological activities.

Materials and Methods

1. Plant material

The rhizomes of *Kaempferia galanga* were collected from Amphur Chana, Songkhla province, Thailand, and were identified by Assist. Prof. Supreeya Yuenyongsawad. The dried rhizome

powder (100 g) was extracted by water distillation for volatile oil content determination. The volatile oil obtained was then collected and stored at 4°C.

2. Determination of volatile oil components

The chemical components of volatile oil was determined by a Hewlett-Packard 5890 series II plus gas chromatography Hewlett-Packard 5972 series mass selective detector. The operating parameters were as follows: Column: HP 5 MS 30 m. x 0.25 mm. x 0.25 (m; inlet temperature 250°C; detector temperature 280°C; inject volume 1μl; column temperature 80°C-280°C; rate 15°C/min. The spectra were recorded and compared with the terpene library.

3. Bioactivity tests

3.1 Antioxidant activity

Volatile oil was studied for the ability to scavenge the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical by comparison with a well known synthetic antioxidant, butylated hydroxytoluene (BHT). Briefly, a portion of sample solution was mixed with the same volume of 6 x 10⁻⁵ M DPPH in ethanol and allowed to stand at room temperature for 30 minutes. The absorbance were then measured at 520 nm (Hatano *et al.*, 1989).

3.2 Antibacterial activity

Antibacterial activity of an essential oil

was assayed by the agar disc diffusion method (Barry and Thornsberry, 1991) against three Gram-positive bacteria (*Staphylococcus aureus* ATCC 25923, *Streptococcus faecalis* and *Bacillus subtilis*); three Gram-negative bacteria (*Salmonella typhi*, *Shigella flexneri*, *Escherichia coli* ATCC 25922) and a certain fungus, *Candida albicans*. These bacteria and fungus were kindly provided by the Department of Pathology, Faculty of Medicine, Prince of Songkla University.

Briefly, a sterile paper disc (6 mm diameter) impregnated with 10 μ l of an essential oil was placed on the surface of each plate previously inoculated with bacterial/fungal inoculum and incubated for 24 h at 37°C. The results of agar disc diffusion assay were evaluated by measuring the inhibition zone diameters (in mm).

3.3 Brine shrimp lethality assay

Volatile oil of different concentrations of 80, 60, 40, 20 and 10 μ g/ml of *K. galanga* were prepared by dilution the volatile oil with DMSO (dimethylsulfoxide), alcohol and sea water. Three replications of each concentration of sample were tested for brine shrimp lethality bioassay as described by Solis 1993. LD₅₀ values were determined using the probit analysis method (Finney 1971).

Results and Discussion

The volatile oil content obtained from the rhizomes of *K. galanga* was 1.11% v/w, and it exhibited yellow color with a characteristic odor. As shown in Table 1, the components of *Kaempferia galanga* oil were found to be α -pinene (1.28%), camphene (2.47%), carvone (11.13%), benzene (1.33%), eucalyptol (9.59%), borneol (2.87%), methyl cinnamate (23.23%), pentadecane (6.41%) and ethyl-*p*-methoxycinnamate (31.77%). Among them, the compound that exhibited the highest content was ethyl-*p*-methoxycinnamate. This component has been reported to show many biological activities, such as anticancer (Zheng et al., 1993) and anti-monoamine oxidase activities (Noro et al., 1983). Puthan and coworkers (Puthan et al., 1926) reported that the oil of *K. galanga* from India possessed ethylcinnamate and ethyl-*p*-methoxycinnamate as the main components, together with paraffin hydrocarbon; whereas those of the present study were methylcinnamate and ethyl-*p*-methoxycinnamate. Another report indicated that the main components of *K. galanga* oil were found to be β -phyllandrene, α -terpineol, ethylcinnamate and dihydro β -sesquiphyllandrene (Sudibyo, 2000). These results are somewhat

Table 1. Volatile oil components, retention time and peak area (%) of *Kaempferia galanga* oil.

Peak number	Components	Retention time (min.)	Peak area %
1	pinene	3.32	1.28
2	camphene	3.50	2.47
3	carvone	4.19	11.13
4	benzene	4.32	1.33
5	eucalyptol	4.45	9.59
6	borneol	5.94	2.87
7	methyl cinnamate	8.89	23.23
8	pentadecane	9.00	6.41
9	ethyl- <i>p</i> -methoxycinnamate	11.21	31.77
	unidentified		9.94
	total		100.00

Table 2. Antimicrobial activity of *K. galanga* essential oil and standard antibiotics by agar disc diffusion assay.

Microbes	Diameter of inhibition zone (mm)	
	Essential oil of <i>K. galanga</i>	Tetracycline (30 µg/disc)
A) Gram-positive bacteria		
1. <i>Staphylococcus aureus</i> ATCC 25923	+ve, ϕ 12 mm.	+ve, ϕ 31 mm.
2. <i>Streptococcus faecalis</i>	+ve, ϕ 14 mm.	+ve, ϕ 15 mm.
3. <i>Bacillus subtilis</i>	+ve, ϕ 16 mm.	+ve, ϕ 18 mm.
B) Gram-negative bacteria		
4. <i>Salmonella typhi</i>	+ve, ϕ 9 mm.	+ve, ϕ 21 mm.
5. <i>Shigella flexneri</i>	+ve, ϕ 12 mm.	+ve, ϕ 10 mm.
6. <i>Escherichia coli</i> ATCC 25922	+ve, ϕ 8 mm.	+ve, ϕ 23 mm.
C) Fungi		
7. <i>Candida albicans</i>	+ve, ϕ 31 mm.	+ve, ϕ 25 mm.

different from our result which might imply that the climatic and geographic conditions in different areas may affect the production of essential oil components.

For antioxidant activity (DPPH assay), the volatile oil of *K. galanga* was inactive at concentration 100 µg/ml. Regarding antimicrobial activity, the volatile oil of *K. galanga* exhibited marked activity against Gram-positive and Gram-negative bacteria; and also against a fungus, *C. albicans*, by using agar disc diffusion method (Table 2). The result revealed that the oil of this plant possessed marked antimicrobial activity against Gram-positive bacteria with the inhibition zones from 12.0-16.0 mm., and 8.0-12.0 mm. against Gram-negative bacteria; whereas it potently inhibited *C. albicans* with an inhibition zone of 31.0 mm., which was stronger than that of standard antifungal Clotrimazole (diameter = 25.0 mm.). It is suggested that the essential oil of this plant may be useful for treatment of the diseases caused by these bacteria and fungi, such as skin diseases and diarrhea.

For brine shrimp lethality assay, the volatile oil of *K. galanga* give appreciable activity against brine shrimp lethality test with LD₅₀ of 26.84 µg/

ml. The result indicated that essential oil of *K. galanga* might possess some physiological activities since this oil was toxic to brine shrimp.

In conclusion, the main components, especially ethyl-*p*-methoxycinnamate, could be used as a biomarker for standardization of this plant and the results of bioactivities suggest that the essential oil of *K. galanga* could to be used for treatment of some microbial infections, which also agrees with the traditional use of this plant in treatment of those fungal- and bacterial-derived skin diseases (Tungtrongjit, 1978). Moreover, *K. galanga* should also be subjected to more elaborated bioassay for specific pharmacological activities.

Acknowledgements

The authors are grateful to Faculty of Pharmaceutical Sciences and Prince of Songkla University for the financial support.

References

Barry, A.L., and Thornsberry, C. 1991. Susceptibility tests: diffusion test procedures. in Manual of Clinical Microbiology. 5th ed., Williams & Wilkins, Washington, DC. pp. 1117-1125.

Busvine, J.R. 1977. A critical review of the techniques for testing insecticides, Commonwealth agricultural bureaux London.

Finney, D.J. 1971. Probit Analysis, 3rd ed. Cambridge University Press London.

George, M. and Pandalai, K.M. 1949. Investigations on plant antibiotics part IV. further search for antibiotic substances in Indian medicinal plants. Indian J. Med. Res. 37: 169-181.

Hatano, T., Edamatsu, R., Hiramatsu, M., Mori, A., Fugita, Y., Yasuhara, T., Yoshida, T., and Okuda, T. 1989. Effect of the interaction of tannin with co-existing substances VI. Effect of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 2016-2021.

Hirschhorn, H.H. 1983. Botanical remedies of the former dutch east Indies (Indonesia). J. Ethnopharmacol. 72:123-156.

Kiuchi, F., Nakamura, N., and Tsuda, Y. 1987. 3-caren-5-one from *Kaempferia galanga*. Phytochemistry. 26 (12) : 3350-3351.

Kiuchi, F., Nakamura, N., Tsuda, Y., Kondo, K., and Yoshimura, H. 1988. Studies on crude drugs effective on visceral larva migrans II larvicidal principles in *Kaempferia* rhizome. Chem. Pharm. Bull. 36 (1) : 412-415.

Lorian, V. 1991. 3rd ed. Antifungal Drugs : mechanisms of action, drug resistance, susceptibility testing, and assay of activity in biological fluids, anti-biotics in laboratory medicine, William & Wilkins London : 198-239.

Mokkhasmit, M., Swatdimongkol, K., and Satrawah, P. 1971. Study on toxicity of Thai Medicinal Plants. Bull. Dept. Med. SCI 12 2/4 : 36-65.

Noro, T., Miyase, T., Kuroyanagi, M., Ueno, A., and Fukushima, S. 1983. Monoamine oxidase inhibitor from the rhizomes of *Kaempferia galanga* L. Chem. Pharm. Bull. 31(8): 2708-2711.

Puthan, M., Bhaskara, P., Sanjiva, R.B., and Simonsen, J. L. 1926. Constituents of some Indian essential oils. XIX. Essential oil from the rhizomes of *Kaempferia galanga*. J. Indian Institute Science. 9 A : 133-139.

Solis, P.N., and Wright, C.W. Anderson, M.M., Gupta, M.P., and Phillipson, J.D. 1993. A microwell cytotoxicity assay using *Artemia salina* (Brine Shrimp). Planta Med. 59: 250-252.

Sudibyo, R.S. 2000. The contents of volatile oil isolated from *Kaempferia galanga* rhizomes. Mass spectroscopic approach. Majalah Farmasi Indonesia. 11 (3) : 142-149.

Tungtrongjit, K. 1978. Pramuan Suphakun Ya Thai. 2nd Edition. Bangkok.

Zheng, G.Q., Kenny, P.M., Lam L.K.T. 1993. Potential anticarcinogenic natural products isolated from lemon grass oil and galanga root oil. J. Agric. & Food Chem. 41(2): 153-156.