
SHORT COMMUNICATION

Spectrophotometric determination of total lactones in *Andrographis paniculata* Nees

Chantana Aromdee¹, Penkae Wichitchote² and Napaporn Jantakun³

Abstract

Aromdee, C., Wichitchote, P. and Jantakun, N.

Spectrophotometric determination of total lactones in *Andrographis paniculata* Nees

Songklanakarin J. Sci. Technol., 2005, 27(6) : 1227-1231

A spectrophotometric method for determination of total lactones in *Andrographis paniculata* was established by using dinitrobenzoic acid and potassium hydroxide solutions as colour forming agents. The absorbance of the solution was determined at 536 nm. The linearity range was $12-72 \times 10^{-6}$ g.ml⁻¹. The detection limit was 1.2 µg, the quantitation limit was 4.23 µg. The intraday variation had an average of slope 6082.97 g.ml⁻¹, % RSD 0.10; an average intercept 0.2786, % RSD 3.66 (n=3). The interday variation had an average of 6146 g.ml⁻¹ with the % RSD of 6.30 and an average intercept 0.2628, % RSD 4.95 (n=4). The coefficients of determination were 0.998-0.999. The total lactones content, calculated as andrographolide, determined by this method was $8.61 \pm 0.52\%$ (n=4) and by the official method, Thai Herbal Pharmacopoeia, was $8.12 \pm 0.34\%$ (n=2). The results of the two methods do not differ significantly at $P=0.05$ ($P(|t| \geq 0.903 = 0.53)$

Key words : *Andrographis paniculata*, total lactones, spectrophotometric determination, colorimetry

¹Ph.D.(Pharmaceutical Sciences), Assoc. Prof. ²B.Sc.(Biotechnology) ³B.Sc.(Chemistry), Research Assistants Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002 Thailand.

Corresponding e-mail: chaaro@kku.ac.th

Received, 19 January 2005 Accepted, 18 March 2005

บทคัดย่อ

ผู้ที่นา อารมย์ดี เพ็ญแข วิจิตรโชคดี และ นภาพร จันทะกุณ
การตรวจหาปริมาณโtotอลแลคโทนส์ในฟ้าทะลายโจรโดยวิธีการตรวจวัดทาง
สเปกโตรโฟโตเมตري
ว. สงขลานครินทร์ วทท. 2548 27(6) : 1227-1231

การพัฒนาวิเคราะห์โดยวิธีการตรวจวัดทางสเปกโตรโฟโตเมตري เพื่อใช้ห้าปริมาณโtotอลแลคโทนรวมในฟ้าทะลายโจร ทำโดยอาศัยหลักการทำให้เกิดสีระหว่างแลคโทนกับสารละลายได้ในต่อเรนโซอิกและสารละลายไปและเชื่อมอ้อยครอกไซด์ จากนั้นวัดการดูดกลืนแสงด้วยเครื่องสเปกโตรโฟโตมิเตอร์ ที่ความยาวคลื่น 536 นาโนมิเตอร์ ความเข้มข้นที่แปรผันเป็นเส้นตรงกับค่าการดูดกลืนแสงอยู่ในช่วง 12.72×10^{-6} ก.มล⁻¹ ปริมาณสารที่ตรวจพบได้ต่ำสุดคือ 1.2 ในโครกรัม ปริมาณต่ำสุดที่ตรวจหาปริมาณได้คือ 4.23 ในโครกรัม ความเบี่ยงเบนภายในวันค่าความลัดชันเฉลี่ย 6082.97 ก.⁻¹.มล. %ความเบี่ยงเบนมาตรฐานสัมพันธ์ 0.10; ระยะแแกนตัด 0.2786, %ความเบี่ยงเบนมาตรฐานสัมพันธ์ 3.66 (n=3) สำหรับความเบี่ยงเบนระหว่างวันมีค่าความลัดชันเฉลี่ย 6146 ก.⁻¹.มล. %ความเบี่ยงเบนมาตรฐานสัมพันธ์ 6.30; ระยะแแกนตัด 0.2628, %ความเบี่ยงเบนมาตรฐานสัมพันธ์ 4.95 (n=4). ค่าสัมประสิทธิ์สัมพันธภาพ 0.998-0.999 ปริมาณแลคโทนรวมที่ตรวจวัดโดยวิธีนี้คือ $8.61 \pm 0.52\%$ (n=4) และโดยวิธีมาตรฐานตาม Thai Herbal Pharmacopoeia คือ $8.12 \pm 0.34\%$ (n=2) ผลการวิเคราะห์จาก 2 วิธีไม่มีความแตกต่างกันอย่างมีนัยสำคัญที่ความเชื่อมั่น 95% ($P(|t| \geq 0.903) = 0.53$)

ภาควิชาเภสัชเคมี คณะเภสัชศาสตร์ มหาวิทยาลัยขอนแก่น อําเภอเมือง จังหวัดขอนแก่น 40002

Andrographis paniculata Nees is widely used as an antipyretics, antibacterials and antivirals etc. (Boonyaprapasara, N. and Chokecharoenporn, W., 1997). The constituents found in the plants were diterpene lactones and their glycosides, i.e. andrographolide, deoxyandrographolide, 11,12-didehydro-14-deoxyandrographolide, neoandrographolide. Flavonoids were also reported to be found in this plant (Rao et al., 2004). Andrographolide is the main component and is believed to be the active constituent for biological activities and represents as an identity indicator for the plant. In Thai Herbal Pharmacopoeia, the total lactones in the plant was determined by an acid-base titration (Thai Herbal Pharmacopoeia, 1995). The method takes about at least 6 hours to determine each sample. The HPLC methods using a reversed phase column and mobile phase containing methanol-water or acetonitrile phosphate buffer (Burgoes et al., 1999 and Kumaran et al., 2003) were used to determine the andrographolide in rat and rabbit serum. However, the determination is only for andrographolide content.

Zhao et al., 2002, determined andrographolide, deoxyandrographolide and neoandrographolide by capillary electrophoresis, which required a rather sophisticated instrument. The main problem of the HPLC and capillary electrophoresis analysis is the commercial unavailability of standards except andrographolide. It is the main hindrance for quality control of the plant for herbal drug dealers.

In this work, a spectrophotometric method for determination of total lactones in *Andrographis paniculata* was established by using andrographolide as the standard lactone, and dinitrobenzoic acid and potassium hydroxide solutions as colour forming agents. This is a fast, simple and convenient technique. It is a method most suitable for local medicinal herbal industries.

Materials and Method

Andrographolide used as a standard was obtained from Sigma. Dinitrobenzoic acid and potassium hydroxide were analytical grade. Alcohol was 95% ethanol obtained from the Thai Govern-

ment Distiller. The spectrophotometer was a Shimadzu's Model UV-VIS Mini-1240, the cuvette was a thick wall quartz window 1- cm thick with the minimum volume 0.150 ml.

1. Solutions

1.1 Stock standard solution: a 0.24% w/v of andrographolide solution in alcohol.

Standard solutions: A series of standard solutions containing andrographolide, 1.2-72 μ g. ml^{-1} were prepared from the stock standard solution.

1.2 Dinitrobenzoic acid solution: 2% solution of dinitrobenzoic acid in alcohol.

1.3 Potassium hydroxide: a freshly prepared 5.7% of potassium hydroxide in alcohol.

1.4 Sample solutions: a.- Eighty mg of *Andrographis paniculata* fine powder was sonicated with 50 ml of alcohol in a 50 ml volumetric flask for at least 30 minutes.

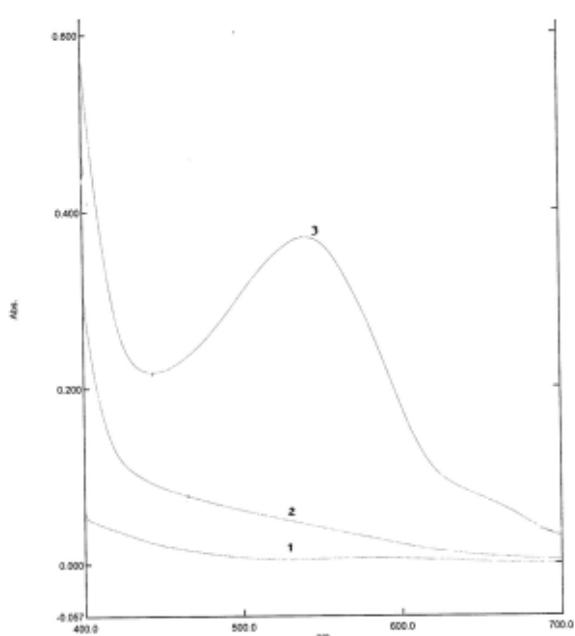
b.- Eighty mg of *Andrographis paniculata* fine powder and 40 mg of decolorizing charcoal were sonicated with 50 ml of alcohol in a 50 ml volumetric flask for at least 30 minutes. The solution was filtered and 200 μ l filtrate was used for the analysis.

2. Procedure

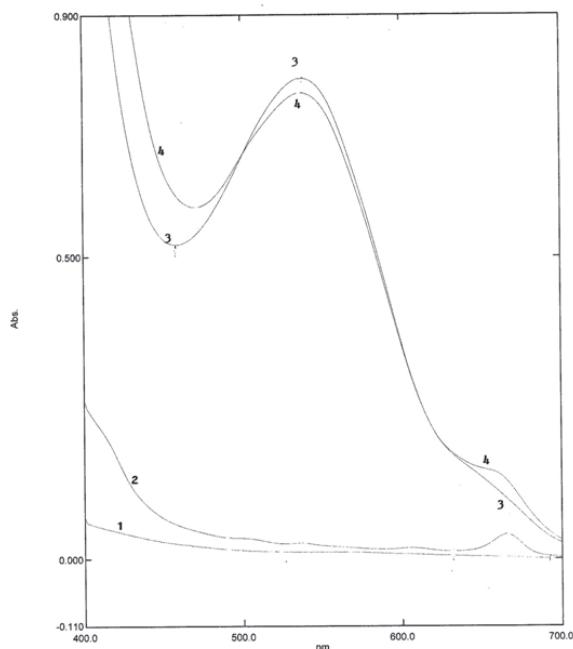
A 200 μ l of standard or sample solution was transferred in to the cuvette, 50 μ l of dinitrobenzoic acid and 50 μ l of potassium hydroxide solution were added, respectively. The mixture was mixed gently and immediately placed in the sample holder. The absorbance was recorded at the maximum reading which usually occurred after 3-5 minutes. Blank reagents and the blank sample were measured to correct the absorbancy.

3. Validation of the method

The limit of detection and limit of quantitation were determined from the $3s_0/\text{slope}$ and $10s_0/\text{slope}$ respectively, where s_0 is the intercept (ICH Guidelines 1996). The precision was determined by repeating the experiment twice in a day for intraday variation and once a day in 3 days for interday variation. The accuracy was validated by


comparing with the official method, Thai Herbal Pharmacopoeia.

Results and Discussion


When dinitrobenzoic acid and potassium hydroxide solutions (Kedde's reagents) were added to the andrographolide, a pink colour was formed. This reaction is used for a screening test for cardiac glycosides. The reaction is adapted for quantitative determination. In this method, the reaction mixture, andrographolide and reagents were mixed in the cuvette and allowed to wait for the maximum absorption to take place, which was around 3-5 minutes. The absorbance was scanned from 700-400 nm. Figure 1 shows the spectra of the resultant solution of andrographolide 36 μ g. ml^{-1} , solvent and reagent blank. Figure 2 shows the spectra of the plant extract with and without decolorizing agent.

1. Accuracy

The accuracy of the method was evaluated by comparing with the official method, the Thai Herbal Pharmacopoeia. The total lactones content determined by this method was 8.61+0.52% (8.72, 7.85, 8.94 and 8.93%) whereas that results obtained from Thai Herbal Pharmacopoeia method was 8.12% (8.19 and 7.18%). The paired t-test, using SPSS 9.0 for Window, gave $t = 0.903$, $P = 0.53$ (two-tailed). The Thai Herbal Pharmacopoeia method is time-consuming and the titration end point is quite difficult to determine. The end point detection needs some experience of the analyst. In the method, the total lactones were extracted from *Andrographis paniculata* powder by refluxing with alcohol. The interfered components of the extract were eliminated by treating with activated charcoal, lead subacetate and sodium sulfate. The extract was then digested with a known amount of sodium hydroxide standard solution, thus the lactones were hydrolysed to hydroxyl acid and, in turn, interacted with the standard sodium hydroxide solution. The excess sodium hydroxide was then determined with the standard acid.

Figure 1. Visible spectra of (1) 95% ethanol; (2) 200 μ l ethanol and reagents and (3) standard andrographolide 36 μ g ml^{-1} , 200 μ l and reagents.

Figure 2. Visible spectra of (1) *Andrographis paniculata* and charcoal alcohol extract; (2) *Andrographis paniculata* alcohol extract; (3) solution of 1 after adding coloring reagent and (4) solution of 2 after adding reagents.

2. Precision

The intraday variation slope was 6082.97 $g^{-1} \cdot ml$, % RSD 0.10, intercept was 0.2786, %RSD 3.66 (n=3). The interday variation slope was 6146 $g^{-1} \cdot ml$, %RSD 6.30 and intercept was 0.2628, %RSD 4.95 (n=4), respectively. The coefficients of determination were 0.998-0.999.

3. Linearity

A series of standards was measured from 1.2-72 μ g. ml^{-1} . It was found that the linearity range was 12-72 μ g. ml^{-1} , with the regression of 0.998-0.999. The detection limit was 1.2 μ g, the quantitation limit was 4.23 μ g.

4. Factors affecting the spectroscopic absorption

The spectrophotometric determination of a plant is very difficult to determine, due to the interference from indigenous substances. However, for this method the colour formed is pink,

thus the yellow and green colour from the plant exerts no effect. Decolourisation of the sample (80 mg) with activated charcoal (40 mg) in 50 ml of alcohol gave a colourless solution, this was confirmed by scanning the solution at the same wavelengths (see the spectrum shown in Figure 2). The solution of *Andrographis paniculata* 80 mg in 50 ml 95% alcohol is pale greenish yellow, while the red colour is absorbed around 536 nm thus the green and yellow colour should not interfere. To avoid the possible interference from the indigenous substances, the absorbance of the sample at 536 nm was measured before the addition of the reagents.

5. Stability of the reagents

The 2% dinitrobenzoic acid solution in 95% ethanol turned to very pale yellow within 2 weeks, whereas the potassium hydroxide solution in 95% alcohol turned from pale yellow to light brown

within 2 days. There was no change in appearance of solution of potassium hydroxide and dinitrobenzoic acid in absolute alcohol within 6 months. However, the freshly prepared solutions in 95% and absolute alcohol did not give different result, thus for an economic reason, the freshly prepared solution in 95% alcohol were used.

6. Concentration of andrographolide and reagents

If 2.0 ml, instead of 0.2 ml, of the sample or standard of the same concentration was used for the reaction, the sensitivity decreased. Increment of the reagents concentration increased the reaction rate but solution usually became turbid.

7. Solvent for sample and standard

Acetonitrile was found to give a bright violet colour to dinitrobenzoic acid and potassium hydroxide. Andrographolide in methanol or chloroform does not form the colour.

Conclusion

The reaction between the Kedde's reagents and andrographolide is fast and rapid compared to the titration method described in the Thai Pharmacopoeia. The HPLC method requires a more sophisticated instrument, pure components as standards. This method is suitable for determination of total lactones in *Andropgaphis paniculata* especially for the local herbal industries for a rapid result and comparable to the titration method.

Acknowledgements

This is a part of the work done under the support of the Thailand Research Fund, Grant No.RDG4720012. We also thanks for Professor N. Boonyaprapasara, Faculty of Pharmaceutical Sciences, Mahidol University for her encouragement.

References

ICH Steering Committee, 1996 Step 4 of the ICH Process, 10, 11.

Bunyapraphatsara, N. and Chokecharoenporn, V. 1997. Native herbs Prachachon Co. Ltd. Bangkok, Thailand

Burgoes, R.A., Schroeder, R.A. and Hanke, J.L. 1999. Determination of andrographolide from *Andrographis paniculata* in serum of rats by high pressure liquid chromatography. *Acta Horticulturae WOCMAP II*, 501.

Kumaran, K.S., Thirugnanasambantham, P., Viswathan, S. and Ramamurthy. M.S. 2003. An HPLC method for estimation of andrographolide in rabbit serum. *Ind. J. Pharmacol.* 35, 109-112.

Medical Sciences Department "Fa-Tha-Lai". 1995. Thai Herbal Pharmacopoeia vol. I, Prachachon Co. Ltd. Bangkok, Thailand.

Zhao, J., Yang, G., Liu, H., Wang, D., Song, X. and Chen, Y. 2002. Determination of andrographolide, deoxyandrographolide and neoandrographolide in the Chinese herb *Andrographis paniculata* by micellar electrokinetic capillary chromatography. *Phytochem. Anal.* 13: 222-227.