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In this work, the magnetic properties of Ising thin-films were investigated as a function of temper-

ature and thickness by means of mean-field calculation. The magnetization and the magnetic susceptibility

profiles, including layer variation, were investigated in detail. From the results, the magnetic behavior was

found changing from a two-dimensional to a three-dimensional character with increasing the film thickness.

In addition, the critical temperatures were calculated and a similar trend was found. The shift of the critical

temperatures  from  a  two-dimensional  to  a  bulk  value  was  in  good  agreement  with  previous  theoretical

prediction. This indicates the dimensional crossover of the magnetic critical behavior from thin-films to bulk

limit when the films become thick.
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The magnetic property in a reduced geometry
has recently gained much interest as a result of
both technological and fundamental importance
(Falicov et al., 1990; Johnson et al., 1996). Of
a  particular  interest  is  the  critical  behavior  of
magnetic  thin-films  for  which  the  dimensional
crossover  from  two-dimension  (2D)  to  three-
dimension (3D) or bulk limit is not well established,
especially when the surface effect is taken into
account. Consequently, it is interesting to observe
how magnetic properties such as the magnetization
per spin m, the magnetic susceptibility per spin χ,
and  the  critical  temperature  T

C
  depend  on  the

temperature T and the thickness l of the films.
Critical temperatures T

C
 in multilayered systems

are known to change from 2D- to 3D-values with
increasing  numbers  of  layers;  however,  under
the  condition  of  the  universality  of  the  critical
phenomena, a same convergence form of T

C
 from

different  lattice  structures  has  not  yet  been
analytically verified. Moreover, the variation of
the  magnetization  and  the  susceptibility  from
surfaces to the inner layers of the films are also
not well explained. Previous investigation of this
layer-dependent of magnetic properties in thin-
films was carried out by an extensive Monte Carlo
simulation (Laosiritaworn et al., 2004). However,
Monte Carlo method is prone to statistical errors

arising from random number generators, number
of configurations in making the average, the cor-
relation time, the finite size effects, etc (Newman,
1999). Accordingly, it may be prudent if an analytic
method, that is the mean-field method in this study,
is carried out to verify such a phenomena. There-
fore, to confirm this layer-variation behavior and
the condition of universality between different
structures, the Ising thin-films were considered for
investigation by means of mean-field analysis of
simple cubic (sc), body centered cubic (bcc), and
face centered cubic (fcc) coordinated thin-films.
Instead  of  using  the  more  realistic  Heisenberg
model, the Ising model was chosen because both
theoretical (Binder and Hohenberg, 1974; Bander
and  Mills,  1988)  and  experimental  (Li  and
Baberschke, 1992; Elmer et al., 1994; Dunlavy
and Venus, 2004) investigations have shown that
the magnetic behavior in thin ferro-magnetic films
is Ising-like.

In this study, a more complete picture of the
magnetic phase transition in thin-films in all cubic
structures especially at the critical point under the
framework of the mean-field analysis was aimed
for as the main objective. The study was firstly
done by investigating how the magnetic properties,
including  their  layer  resolution,  depend  on
temperature and thickness. Secondly, the shift of
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the critical temperatures T
C
 from a 2D to the bulk

limit was investigated. After that, using an empiri-
cal fit, the shift exponents of the critical temper-
atures  and  their  convergence  from  2D-  to  the
3D-values were calculated. Finally, the results
were quantitatively compared with the previous
theoretical prediction.

Background and Methodology

In  the  mean-field  analysis  of  magnetic
properties, the magnetic spins are assumed to align
in an average field created by all surrounding spins.
In this study, it is assumed that the average field is
the same for all spins in the same layer but different
for different layers. Then, within this single site
approximation, in each layer (plane), there are two
different probabilities of a site being occupied by
an up-spin or a down-spin denoted by P

i,σ
, where

i = 1,...,l is the layer index and σ = ↑,↓ are the
spin indexes referring to up-spin and down-spin
respectively. The magnetization (the average spin)
for all atomic sites in the i

th
 layer can be defined

as

mi = P
i,↑

− P
i,↓

,           i = 1,...,l. (1)

Then, the Ising Hamiltonian was considered; that
is

H = − J
jk< jk>

∑ σ
j
σ

k
− h σ

j
j

∑ , (2)

where σ
j
 = ±1 is a spin at site j, J

jk
 is the exchange

interaction, and h is the external field. The sum
<jk> takes only on the first neighboring. Hence,
the interaction energy on the i

th
 layer (E

i
) of the

films is given by

E
i
= −N

/ /

Z
0

2 J
i,i
m

i

2 + Z
1
J

i,i+1
m

i
m

i+1
1− δ

i,l( )



+ Z
1
J

i,i−1
m

i
m

i−1
1− δ

i,l( ) + hm
i




, (3)

where m
i
 is the average of all spins in layer i, Z

0

is the number of nearest neighbors to a lattice
(atomic)  point  in  the  same  layer  and  Z

1
  is  the

number of nearest neighbors in one of its adjacent
layers. The values of Z

0
 and Z

1
 for each cubic

structure are given in Table 1. In each layer (plane),
there consists of N

//
 spins (atomic sites). The terms

1-δ
i,1

 and 1-δ
i,l
 in the equation refer to the use of

free surfaces below the bottommost and above
the topmost layer. Next, the entropy for an Ising
system can be written as

S
i
= −k

B
N

/ /
P

i,↑
ln P

i,↑
+ P

i,↓
ln P

i,↓[ ] =

−k
B
N

/ /

1+ m
i

2 ln
1+ m

i

2 +
1− m

i

2 ln
1− m

i

2





. (4)

Thus, by minimizing the free energy F
i
 = U

i
 - TS

i

with respect to m
i
; that is

∂Fi

∂mi

= 0,           i = 1,...,l. (5)

(where the internal energy U
i
 = E

i
 is the sum of the

interaction energy from all spins in the considered
layer i), the equilibrium magnetization in layer i
was obtained by solving the following l-coupled
equations for l-layered films (Hong, 1990),

−J Z
0
m

i
+ Z

1
m

i+1
1− δ

i,l( ) + Z
1
m

i−1
1− δ

i,l( )( )
−h +

kBT
2 ln

1+ mi

1− mi







= 0;          i = 1,...,l. (6)

Here, for simplicity, the homogeneity was assumed
and J

i,i
 = J

i,i-1
 = J

i,i+1
 = J  was set (See Appendix A for

details). However, to solve these coupled equations
analytically is very complicated especially when
the films are thick. As a result, a numerical method
(root finding) was used to solve. Unfortunately,
for h = 0, {m

i
} = 0 is also a solution. However, this

zero-magnetization solution is a stable solution
only in the para-magnetic phase. Then, to find a

Table 1. Number of nearest neighbors to a lattice

point in the same layer (Z
0
) and number

of  nearest  neighbors  in  one  of  the  ad-

jacent layers (Z
1
) for cubic lattices.

   Thin-films structures Z
0

Z
1

   Simple cubic 4 1
   Body centered cubic 0 4
   Face centered cubic 4 4
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non-zero solution, i.e. in the ferro-magnetic phase,
from the root finding, the starting (guess) answer
is required to be close to 1. The optimal choice
is  1.0-10

-15
  as  to  avoid  the  rounding  error  in  the

double  precision  variables.  For  the  magnetic
susceptibility in a zero field, it can be calculated

from χ
i
=

∂m
i

∂h
h=0

;  that is

−J Z
0
χ

i
+ Z

1
χ

i+1
1− δ

i,l( ) + Z
1
χ

i−1
1− δ

i,l( )( ) +
k

B
Tχ

i

1− m
i

2 = 1.

(7)
Apart  from  the  magnetization  and  the

susceptibility, the critical temperatures (T
C
's) were

also extracted from Equation 6. When the temper-
ature T is very close to T

C
, the magnetization {m

i
}

becomes  very  small  which  leads  to  ln
1+ m

i

1− m
i

≈

2m
i
. In this way, the critical temperatures of thin-

films  in  the  zero  magnetic  field  (h = 0)  can  be
extracted by solving a set of equations

AM = 0, (8)

where A is an l × l matrix with elements

A
ij

= (k
B
T − Z

0
J)δ

i, j
− Z

1
J[(1− δ

i,l
)δ

i, j+1
+ (1− δ

i,1
)δ

i, j−1
],

(9)
and m is an l × 1 column matrix, {m

1
,..., m

l
}. Next,

by solving det A = 0, the largest eigenvalue T can
be  associated  as  the  critical  temperature  T

C
  of

the thin-films because m is very small so this T
should be insignificantly different from T

C
.

Results and Discussion

From the calculations, the unit J/k
B
 is used

for temperatures. The magnetization m and the
susceptibility χ were extracted by solving Equa-
tions 6 and 7, and the results were found to present
the crossover of their behavior from 2D-like for
the  monolayer  (bilayer  in  bcc  since  the  first
nearest neighbor does not exist in the monolayer
bcc) to 3D-like at around 20 layers e.g. see Table
2 and Figure 1. That the phase transition point
moves from 2D- to 3D-value with increasing film
thickness is in a good agreement with previous
Monte Carlo studies (Binder, 1974; Laosiritaworn
et al., 2004). Furthermore, from the layer-depend-
ence of magnetic properties, the magnitudes of m
and χ are found to increase from the lowest values
at the surface layers to the largest values in the

Figure 1. Examples of magnetic properties of Ising sc thin-films from mean-field calculations.

As in the figure, (a) and (b) show a crossover of the magnetization m and the

magnetic susceptibility χχχχχ  from the 2D (
k

B
T

C

J == 4) to the bulk limit (
k

B
T

C

J == 6).
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interior of the films e.g. see 10-layered Ising sc
films in Table 3 and Figure 2. This layer-variation
of magnetic properties is expected because the
exchange ferro-magnetic energy associated with
each spin is greater in the bulk than at the surfaces
owing  to  the  increase  in  numbers  of  nearest
neighbors.

For  the  critical  temperature  T
C
,  it  was

calculated by solving (see Equations 8 and 9), and
the  largest  eigenvalue  T  was  associated  as  the
critical temperature T

C
. The results are presented

in Table 4. A change from 2D to bulk values as the
thickness l is increased was found. As increasing
the  thickness,  the  critical  temperature  moves

Table 2. Examples of magnetic properties of Ising sc thin-films from mean-field calculations from

monolayer to bulk limit. As a summary, the temperature-dependent data are presented with

a step of T = 0.2 J/k
B
, and the precision digits are truncated at the fifth. A crossover of from

the 2D to the bulk limit is found.

Magnetization per spin (m)         Magnetic susceptibility per spin (χχχχχ)
 T

1 layer 2 layers 4 layer 8 layers 20 layer Bulk 1 layer 2 layers 4 layer 8 layers 20 layer Bulk

1.0 0.99933 0.99991 0.99995 0.99997 0.99998 0.99999 0.00136 0.00018 0.00010 0.00006 0.00004 0.00002
1.2 0.99741 0.99952 0.99971 0.99981 0.99987 0.99991 0.00438 0.00081 0.00048 0.00032 0.00022 0.00015
1.4 0.99316 0.99840 0.99901 0.99932 0.99950 0.99962 0.01013 0.00231 0.00142 0.00098 0.00072 0.00054
1.6 0.98562 0.99605 0.99747 0.99818 0.99860 0.99889 0.01921 0.00505 0.00321 0.00231 0.00177 0.00140
1.8 0.97398 0.99195 0.99470 0.99606 0.99687 0.99741 0.03222 0.00933 0.00608 0.00450 0.00355 0.00292
2.0 0.95750 0.98562 0.99031 0.99260 0.99398 0.99490 0.04989 0.01537 0.01021 0.00773 0.00624 0.00525
2.2 0.93553 0.97667 0.98397 0.98751 0.98964 0.99106 0.07336 0.02342 0.01574 0.01212 0.00995 0.00850
2.4 0.90733 0.96472 0.97537 0.98050 0.98357 0.98562 0.10440 0.03376 0.02285 0.01783 0.01482 0.01281
2.6 0.87207 0.94941 0.96426 0.97131 0.97554 0.97836 0.14586 0.04680 0.03174 0.02501 0.02096 0.01827
2.8 0.82863 0.93041 0.95038 0.95972 0.96532 0.96905 0.20262 0.06312 0.04268 0.03385 0.02856 0.02503
3.0 0.77552 0.90733 0.93348 0.94549 0.95270 0.95750 0.28353 0.08352 0.05602 0.04464 0.03781 0.03326
3.2 0.71041 0.87973 0.91331 0.92841 0.93747 0.94351 0.40640 0.10923 0.07224 0.05771 0.04901 0.04320
3.4 0.62950 0.84707 0.88959 0.90823 0.91941 0.92686 0.61284 0.14211 0.09203 0.07357 0.06253 0.05517
3.6 0.52543 0.80866 0.86200 0.88468 0.89827 0.90733 1.02778 0.18510 0.11631 0.09289 0.07892 0.06960
3.8 0.37949 0.76355 0.83017 0.85745 0.87378 0.88467 2.27589 0.24314 0.14644 0.11662 0.09890 0.08709
4.0 0.00622 0.71041 0.79364 0.82616 0.84560 0.85856 9.3×102 0.32512 0.18438 0.14611 0.12355 0.10850
4.2 0.00000 0.64722 0.75183 0.79037 0.81333 0.82863 5.00000 0.44890 0.23315 0.18336 0.15439 0.13508
4.4 0.00000 0.57059 0.70399 0.74949 0.77645 0.79442 2.50000 0.65611 0.29760 0.23138 0.19377 0.16871
4.6 0.00000 0.47400 0.64911 0.70279 0.73429 0.75529 1.66698 1.07170 0.38616 0.29496 0.24539 0.21234
4.8 0.00000 0.34083 0.58569 0.64929 0.68596 0.71041 1.25000 2.32033 0.51503 0.38218 0.31542 0.27094
5.0 0.00000 0.00622 0.51130 0.58761 0.63019 0.65857 1.00000 8.3×102 0.72071 0.50775 0.41508 0.35341
5.2 0.00000 0.00000 0.42134 0.51568 0.56505 0.59793 0.83333 5.00000 1.10866 0.70212 0.56701 0.47760
5.4 0.00000 0.00000 0.30414 0.42999 0.48735 0.52543 0.71429 2.50002 2.17111 1.04213 0.82516 0.68520
5.6 0.00000 0.00000 0.08722 0.32311 0.39093 0.43515 0.62508 1.66667 2.6×101 1.80818 1.35681 1.10111
5.8 0.00000 0.00000 0.00000 0.16740 0.25994 0.31199 0.55558 1.25011 5.22761 5.97931 3.04956 2.35000
6.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00622 0.50001 1.00000 2.50046 7.50000 3.8×101 7.7×102

6.2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.45455 0.83333 1.64634 2.86472 4.10458 5.00008
6.4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.41667 0.71429 1.22881 1.78369 2.21055 2.50026
6.6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.38462 0.62500 0.98107 1.29942 1.51926 1.66667
6.8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.35714 0.55556 0.81684 1.02383 1.15941 1.25000
7.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.33333 0.50000 0.70000 0.84560 0.93820 1.00005
7.2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.31250 0.45457 0.61258 0.72070 0.78827 0.83334
7.4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.29412 0.41667 0.54469 0.62823 0.67986 0.71429
7.6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.27778 0.38462 0.49043 0.55697 0.59779 0.62500
7.8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.26316 0.35714 0.44606 0.50035 0.53347 0.55556
8.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.25003 0.33333 0.40913 0.45425 0.48171 0.49525
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Table 3. Examples of the layer dependence of the magnetization (m
k
) and the magnetic susceptibility

(χχχχχk
), where k is the layer index, for 10-layered sc films. Due to the interaction symmetry,

the properties in the layer k and layer 10-k are the same. As a summary, the temperature-

dependent data are presented with a step of T = 0.2 J/k
B
, and the precision digits are truncated

at the fifth.

  Magnetization per spin (m)             Magnetic susceptibility per spin (χχχχχ)
T

Layer 1,10 Layer 2,9 Layer 3,8 Layer 4,7 Layer 5,6 Layer 1,10 Layer 2,9 Layer 3,8 Layer 4,7 Layer 5,6

1.0 0.99991 0.99999 0.99999 0.99999 0.99999 0.00018 0.00002 0.00002 0.00002 0.00002
1.2 0.99952 0.99991 0.99991 0.99991 0.99991 0.00081 0.00015 0.00015 0.00015 0.00015
1.4 0.99840 0.99962 0.99962 0.99962 0.99962 0.00230 0.00055 0.00054 0.00054 0.00054
1.6 0.99606 0.99888 0.99889 0.99889 0.99889 0.00501 0.00141 0.00140 0.00140 0.00140
1.8 0.99200 0.99740 0.99741 0.99741 0.99741 0.00921 0.00296 0.00292 0.00292 0.00292
2.0 0.98576 0.99485 0.99490 0.99490 0.99490 0.01506 0.00535 0.00525 0.00525 0.00525
2.2 0.97699 0.99094 0.99106 0.99106 0.99106 0.02273 0.00874 0.00851 0.00850 0.00850
2.4 0.96538 0.98537 0.98562 0.98562 0.98562 0.03240 0.01329 0.01282 0.01281 0.01281
2.6 0.95067 0.97787 0.97835 0.97836 0.97836 0.04428 0.01918 0.01829 0.01827 0.01827
2.8 0.93261 0.96817 0.96903 0.96905 0.96905 0.05867 0.02663 0.02509 0.02503 0.02503
3.0 0.91099 0.95602 0.95746 0.95750 0.95750 0.07596 0.03593 0.03339 0.03327 0.03326
3.2 0.88559 0.94115 0.94341 0.94350 0.94351 0.09669 0.04748 0.04346 0.04322 0.04320
3.4 0.85616 0.92324 0.92668 0.92685 0.92686 0.12157 0.06186 0.05566 0.05520 0.05517
3.6 0.82247 0.90195 0.90700 0.90731 0.90733 0.15152 0.07985 0.07053 0.06967 0.06960
3.8 0.78423 0.87687 0.88408 0.88462 0.88466 0.18782 0.10260 0.08880 0.08726 0.08711
4.0 0.74115 0.84749 0.85756 0.85847 0.85855 0.23216 0.13179 0.11159 0.10887 0.10855
4.2 0.69290 0.81317 0.82696 0.82845 0.82861 0.28684 0.16997 0.14063 0.13587 0.13520
4.4 0.63917 0.77311 0.79166 0.79406 0.79437 0.35504 0.22108 0.17867 0.17039 0.16901
4.6 0.57963 0.72625 0.75081 0.75460 0.75517 0.44116 0.29150 0.23038 0.21598 0.21315
4.8 0.51403 0.67119 0.70316 0.70908 0.71013 0.55150 0.39187 0.30409 0.27895 0.27310
5.0 0.44222 0.60606 0.64688 0.65600 0.65790 0.69556 0.54104 0.41600 0.37166 0.35948
5.2 0.36429 0.52832 0.57906 0.59287 0.59629 0.88933 0.77486 0.60068 0.52171 0.49581
5.4 0.28055 0.43450 0.49479 0.51520 0.52123 1.16606 1.17047 0.94370 0.80279 0.74668
5.6 0.19136 0.31955 0.38486 0.41322 0.42339 1.62170 1.93997 1.71792 1.48155 1.36109
5.8 0.09503 0.17271 0.22600 0.25712 0.27104 2.87583 4.32857 4.68792 4.57384 4.42361
6.0 0.00000 0.00000 0.00000 0.00000 0.00000 5.00052 9.00104 12.00153 14.00193 15.00216
6.2 0.00000 0.00000 0.00000 0.00000 0.00000 1.75671 2.86476 3.54577 3.93593 4.11327
6.4 0.00000 0.00000 0.00000 0.00000 0.00000 1.15479 1.77151 2.09682 2.26084 2.32919
6.6 0.00000 0.00000 0.00000 0.00000 0.00000 0.88376 1.29779 1.49048 1.57746 1.61091
6.8 0.00000 0.00000 0.00000 0.00000 0.00000 0.72457 1.02879 1.15605 1.20814 1.22674
7.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.61798 0.85394 0.94384 0.97756 0.98880
7.2 0.00000 0.00000 0.00000 0.00000 0.00000 0.54081 0.73060 0.79711 0.82014 0.82734
7.4 0.00000 0.00000 0.00000 0.00000 0.00000 0.48197 0.63871 0.68962 0.70602 0.71084
7.6 0.00000 0.00000 0.00000 0.00000 0.00000 0.43541 0.56748 0.60751 0.61956 0.62291
7.8 0.00000 0.00000 0.00000 0.00000 0.00000 0.39753 0.51060 0.54275 0.55183 0.55423
8.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.36617 0.46431 0.49060 0.49762 0.49937

towards the 3D value owing to the increase of the
average  exchange  interaction  energy.  Figure 3
shows evidence of such a dimensional crossover
of the critical temperatures for the Ising thin-films
in all considered structures. The results are found
to comply with the analytic expression for T

C
 being

made on the basis of a mean-field T
C
 examination

(Haubenreisser et al., 1972) given as

T
C
(l) = T

C
(∞)

Z
0

+ 2Z
1
cos(π / (l +1))

Z
0

+ 2Z
1

, (10)

where Z
0
 and Z

1
 are number of nearest neighbors
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Figure 2. Examples of the layer dependence of the magnetization (m
k
) and the magnetic

susceptibility (χχχχχk
), where k is the layer index, for 10-layered sc films. As can be

seen, the magnitude of both m
k
 and χχχχχk

 are smallest at the surface layers (layer 1

and layer 10), but strongest at the innermost (layer 5 and layer 6).

Table 4. Critical temperatures of Ising thin-films in all 3 types of cubic lattices. The

precision digits are truncated at the 15th due to the limitation of computer

numerical accuracy.

Thin-films structures
Number of layers

Simple cubic Body centered cubic Face centered cubic

1 4 - 4
2 5 4 8
3 5.414213562373095 5.656854249492381 9.656854249492380
4 5.618033988749895 6.472135954999580 10.472135954999580
5 5.732050807568877 6.928203230275509 10.928203230275509
6 5.801937735804839 7.207750943219353 11.207750943219352
7 5.847759065022574 7.391036260090294 11.391036260090294
8 5.879385241571818 7.517540966287266 11.517540966287266
9 5.902113032590307 7.608452130361228 11.608452130361230
10 5.918985947228995 7.675943788915980 11.675943788915980
11 5.931851652578136 7.727406610312547 11.727406610312546
12 5.941883634852104 7.767534539408395 11.767534539408416
13 5.949855824363647 7.799423297454589 11.799423297454588
14 5.956295201467611 7.825180805870446 11.825180805870446
15 5.961570560806461 7.846282243225843 11.846282243225843
16 5.965946199367804 7.863784797470034 11.863784797471215
17 5.969615506024416 7.878462024097664 11.878462024097665
18 5.972722606805444 7.890890427219795 11.890890427221780
19 5.975376681190276 7.901506724761102 11.901506724761102
20 5.977661652450257 7.910646609801074 11.910646609801034

Bulk 6 8 12
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Figure 3. The critical temperatures T
C
 as a function of thickness l extracted from mean-

field calculations. The values of 
k

B
T

C

J are 4 for 2D square-lattice and 6, 8 and 12

for bulk sc, bcc, and fcc respectively. Lines are added as a viewing aid.

in the same plane and one of its adjacent planes
respectively (see Table 1). Also, from the T

C
 results,

for large enough thickness i.e. l > 4, it is found

that T
C

sc(l) < T
C

bcc(l) < T
C

fcc(l). This is due to the fact

that the number of neighboring sites has a strong
effect on the interaction energy. Hence, the more
neighboring sites the higher thermal energy is
required  to  change  from  a  ferro-magnetic  to  a
para-magnetic phase which results in the higher
critical temperature.

Apart  from  the  results  for  T
C
,  it  is  also

interesting to examine the evolution of the thin-
films  critical  temperatures  from  the  monolayer
to  the  bulk  3D-limit  in  terms  of  a  power  law
(Privman, 1990)

1−
T

C
(l)

T
C
(∞) α l−λ . (11)

Here, T
C
(1) and T

C
( ∞) are the thin-films and the

bulk critical temperatures respectively. The shift
exponent of the critical temperature λ has a value
between 1.0 and 2.0 depending on the spin model
used and the type of calculation. For thick-films,

λ  is expected to be λ = 1/ν3D
 (Barber, 1983) where

ν is the critical exponent to the correlation length
of magnetic interaction. However, if the films' size
is not thick enough, a better fit for films of a range
of thicknesses l is given by (Huang et al., 1994;
Wu et al., 1996)

1
T

C
(l) =

1
T

C
(∞) 1+

l
0

l − ′l






′λ










, (12)

where l
0
, l′ and λ′ are all adjustable parameters.

Similarly,  λ′  should  tend  to  1/ν3D
  as  l  tends  to

infinity  (bulk  limit).  However,  from  the  mean-
field theory, the critical exponents are dimensional
independent and obey Josephson scaling relation
only at the dimension D = 4 (Binney et al., 1992).
This  dimensional  independence  of  the  critical
exponents is not true and hence the weak point of
the mean-field method. So, it can be implied that
the mean-field works well only at high dimensions,
and it is expected that at the bulk limit (or at high
dimension) the mentioned λ′ should converge to
1/ν

mean-field
 = 2 since ν

mean-field
 = 1/2. Consequently,

Equation 12 was used to fit the T
C
(l)'s arising from
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the mean-field calculations. Results of the fit are
shown in Table 5. As can be seen, T

C
( ∞)'s, which

are the extrapolated thin-films critical temperatures
to the bulk limit, agree well with the theoretical
3D-values, i.e. T

C

bulk 
's, for all three structures of the

films. Hence, it can be concluded that the calculated
T

C
(l)'s  in  this  work  are  accurate  and  the  fitting

Equation 12 is useful.
However, as can be seen in Table 5, even up

to l = 20, λ′ is not close to the expected value i.e. 2.
This may be caused by some mismatch behavior
between thin-films and thick-films. Then, to clarify
the evolution from 2D- to 3D-like behavior, the
power law of Equation 11 was rearranged and
defined (See Appendix B for details)

′′λ (l) = − log
T

C

bulk − T
C
(l)

T
C

bulk − T
C
(l −1)







log

l
l −1







, (13)

where T
C
( ∞) is substituted by the theoretical 3D-

value T
C

bulk  to obtain a more accurate value. After

that, ′′λ (l)  was tabulated with l ranging from 2 to
20  layers.  These  ′′λ (l)  

's  should  converge  to  2
when l tends to infinity. A linear least square fit
between  ′′λ (l)  

's  and  1/l  gives  a  way  to  obtain
′′λ (∞)

 
's which are also given in Table 5. As can be

seen, the mean-field values of ′′λ (∞)
 
's from all

structures have a same value which is very close
to 2. This is satisfying since the mean-field ν is
well-known to be 1/2. Furthermore, the critical
exponents ( ′′λ (∞) = 1/ν

mean-field
) are structural in-

dependent  and  this  satisfies  the  condition  of
universality.

Conclusion

The magnetic behavior of Ising thin films
was studied in sc, bcc, and fcc structures using a
mean-field analysis. The dimensional crossover
of both m and χ from 2D- to 3D-like is found with
increasing film thickness. The layer components
of m and χ are found to have the lowest magni-
tudes at the surfaces while the innermost layers
have the highest value due to the free boundary
effect at the surfaces. That the films' T

C
's evolve

from  2D-  to  3D-values  with  increasing  film
thickness  is  in  good  agreement  with  previous
investigation. The empirical fit of the calculated
T

C
(l)'s for films of varying the thickness l gives

the fitted T
C
 at the limit of infinitely thick films

which agrees very well with the theoretical pre-
diction at the bulk limit. Another empirical fit for
the shift exponent also strongly suggests the
usefulness of the mean-field method at a high
dimension  and  confirms  the  condition  of  uni-
versality.
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Appendix A

Staring with the Ising Hamiltonian,

H = − J
jk
σ

j
σ

k
− h σ

j
j

∑
< jk>
∑ , (2)

the average Hamiltonian in layer i is given by

H
i

≡ E
i

= −N
/ /

Z
0

2 J
1,1

m
1

2 + Z
1
J

1,2
m

1
m

2
+ hm

1








, ; for i = 1,

= −N
/ /

Z
0

2 J
i,i
m

i

2 + Z
1
J

i,i+1
m

i
m

i+1
+ Z

1
J

i,i−1
m

i
m

i−1
+ hm

i








, ; for 2 < i < l-1,

= −N
/ /

Z
0

2 J
l,l
m

l

2 + Z
1
J

l,l−1
m

l
m

l−1
+ hm

i








, ; for i = l,

where the average of spin in layer i (<σ
i
>), under the mean-field framework, is the magnetiz-

ation in that layer (m
i
), and N

//
 is the number of spins in one layer. In general, we can write

E
i
= −N

/ /

Z
0

2 J
i,i
m

i

2 + Z
1
J

i,i+1
m

i
m

i+1
(1− δ

i,l
) + Z

1
J

i,i−1
m

i
m

i−1
(1− δ

i,1
) + hm

i








, (3)

or E
i
= U

i
= −N

/ /
J

Z
0

2 m
i

2 + Z
1
m

i
m

i+1
(1− δ

i,l
) + Z

1
m

i
m

i−1
(1− δ

i,1
) + hm

i








,

where the exchange interaction J
i,j
 is assumed isotropic i.e. J

i,i
 = J

i,i-1
 = J

i,i+1
 = J, and U

i
 denotes

the internal energy in layer i. Next, the entropy of all spins j in layer i can be written as S
i
 =

−k
B

P
j
ln P

j
all possible states at  j

∑



j∈ i

∑ , where P
j
 is the spin-probability at site j. In the Ising Hamiltonian,

in layer i, the probability can be only P
i,↑

 or P
i,↓

, where ↑ and ↓ refer to up (+1) and down (-1)
spin respectively. In this study, P

i,↑
 or P

i,↓
 are allowed to vary from to layer to layer. Since m

i
 =

P
i,↑

 - P
i,↓

, P
i,↑

 + P
i,↓ 

= 1, and there are N
//
 in each layer, it is possible to write

S
i
= −k

B
N

/ /
[P

i,↑
ln P

i,↑
+ P

i,↓
ln P

i,↓
] = −k

B
N

/ /
[P

i,↑
ln P

i,↑
+ (1− P

i,↑
)ln(1− P

i,↑
)].

S
i
= −k

B
N

/ /

1+ m
i

2 ln
1+ m

i

2 +
1− m

i

2 ln
1− m

i

2






(4)

Next, by considering the free energy in layer i,

F
i
= U

i
− TS

i
= −N

/ /
J

Z
0

2 m
i

2 + Z
1
m

i
m

i+1
(1− δ

i,l
) + Z

1
m

i
m

i−1
(1− δ

i,1
) + hm

i









−k
B
TN

/ /

1+ m
i

2 ln
1+ m

i

2 +
1− m

i

2 ln
1− m

i

2






,
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it is possible to calculate the stable magnetization in layer i i.e. m
i
 from where the free energy

in layer i has its minimum i.e. 
∂F

i

∂m
i

= 0.  Then, from this derivative, it is easy to obtain

−J(Z0mi + Z1mi+1(1− δi,l ) + Z1mi−1(1− δi,1)) − h +
kBT
2 ln

1+ mi

1− mi







= 0;  i = 1,...,l. (6)

As a result, by performing the root-finding method to solve these l-coupled equations, the set
{m

i
} is obtained as a function of temperature.

Appendix B

Starting with Equation 11,

1−
T

C
(l)

T
C
(∞) α l−λ , (11)

for l layered and l-1 layered films, we may write  1−
T

C
(l)

T
C
(∞) ≈ cl− ′′λ and 1−

T
C
(l −1)

T
C
(∞) ≈ c(l −1)− ′′λ ,

where c is a proportional constant. As a result,

1−
T

C
(l)

T
C
(∞)

1−
T

C
(l −1)

T
C
(∞)

=
cl− ′′λ

c(l −1)− ′′λ ,

T
C
(∞) − T

C
(l)

T
C
(∞) − T

C
(l −1) =

l
l −1







− ′′λ

,

and ′′λ ≡ ′′λ (l) = − log
T

C

bulk − T
C
(l)

T
C

bulk − T
C
(l −1)







log

l
l −1






, (13)

where T
C
(∞)  is substituted by T

C

bulk and ′′λ (l)  is l-dependent (see text).


