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The development of a Windows based framework to undertake probabilistic fracture mechanics

studies is reported. The reliability method used in the program is Monte-Carlo Simulation method. The

results of the computation of the program are stress intensity factor, reliability index and probability of

failure. The probabilistic studies of cruciform welded joint containing Lack of Penetration (LOP) defect and

T-butt  geometry  containing  surface  crack  at  weld  toe  are  performed  in  both  critical  crack  growth  and

fatigue problem. The results can be used as an indicator for assuring the safety of this particular type of

connection. It can also be used as a design criterion for the connection.
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Traditionally,  evaluations  of  structural
adequacy have been expressed by safety factors

SF −
C
D ,  where C is the capacity (i.e. strength)

and D is the demand (i.e. load). Whereas this
evaluation is quite simple to understand, it suffers
from many limitations: it 1) treats all loads equally;
2) does not differentiate between capacity and
demand respective uncertainties; 3) is restricted
to service loads; and last but not least 4) does not
allow comparison of relative reliabilities among
different  structures  for  different  performance
modes. Another major deficiency is that all para-
meters are assigned a single value in an analysis
which  is  then  deterministic.  An  alternative
approach, a probabilistic one, extends the factor of
safety concept to explicitly incorporate uncertain-
ties  in  the  parameters.  The  uncertainties  are
quantified through statistical analysis of existing
data.  One  engineering  discipline  which  could
particularly  benefit  from  such  a  probabilistic
approach is fracture mechanics. Indeed it has been

reported that, (Duga et al., 1983):

[The] cost of material fracture to the US [is]
$ 119 billion per year, about 4 percent of the gross
national product. The costs could be reduced by an
estimated missing $ 35 billion per year if technology
transfer were employed to assure the use of best
practice. Costs could be further reduced by as much
as $ 28 billion per year through fracture-related
research.

As such, the objective of this paper is to
marry  those  two  disciplines,  Probability  and
Fracture Mechanics into a user-friendly computer
program  which  would  determine  the  reliability
index of cracked connections with known analy-
tical expressions of stress intensity factors. Both
critical and subcritical (fatigue) crack growth will
be considered. For each class of problem, we thus
seek to determine the reliability index which can
be  perceived  as  a  universal  indicator  on  the
adequacy of a structural component.
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Theoretical Background and

Literature Survey

Critical Crack Growth

One of the underlying principles of fracture
mechanics is that unstable fracture occurs when
the stress intensity factor (K) reaches a critical
value  K

Ic
,  also  called  fracture  toughness.  K

Ic

represents the inherent ability of a material to
withstand a given stress field intensity at the tip
of a crack and to resist progressive tensile crack
extension.

Thus  a  crack  will  propagate  (under  pure
mode I), whenever the stress intensity factor K

I

(which characterizes the strength of the singularity
for a given problem) reaches a material constant
K

Ic
. Hence, under the assumptions of linear elastic

fracture  mechanics  (LEFM),  at  the  point  of
incipient crack growth:

KIc = βσ πa (1)

Thus for the design of a crack, or potentially crack
structures, the engineer would have to decide what
design variables can be selected, as only two of
these variables can be fixed, and the third must be
determined.

Subcritical Crack Growth; Fatigue

When a subcritical crack (a crack whose
stress intensity factor is below the critical value)
is subjected to either cyclic or fatigue load, or is
subjected  to  a  corrosive  environment,  crack
propagation will occur. As in many structures one
has to assume the presence of minute flaws (as
large as the smallest one which can be detected).
The  application  of  repeated  loading  will  cause

crack growth. The loading is usually caused by
vibrations.

Thus an important question that arises is
"how long would it be before this subcritical crack
grows to reach a critical size that would trigger
failure?" To predict the minimum fatigue life of
metallic structures, and to establish safe inspect-
ion  intervals,  an  understanding  of  the  rate  of
fatigue crack propagation is required.

Historically,  fatigue  life  prediction  was
based  on  S-N  curves,  Figure  1  (or  Goodman’s
Diagram) using a Strength of Material Approach
which did not assume the presence of a crack.

Fatigue crack growth can take place under:
1. Constant amplitude loading (good for

testing)
2. Variable amplitude loading (in practice)

Under  the  constant  amplitude  loading,
empirical mathematical relationships which require
the knowledge of the stress intensity factors (SIF),
have been established to describe the crack growth
rate. Models of increasing complexity have been
proposed.

All of these relationships indicate that the
number of cycles N required to extend a crack by a
given length is proportional to the effective stress
intensity  factor  range  ∆K  raised  to  a  power  n
(typically varying between 2 and 9).

The first fracture mechanics-based model
for fatigue crack growth was presented by Paris
and Erdogan (1963) in the early '60s. It is import-
ant to recognize that it is an empirical law based
on experimental observations. Most other empirical
fatigue laws can be considered as direct extensions,
or refinements of this one, given by

Figure 1.  S-N Curve and Endurance Limit
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da
dN = C(∆K)n (2)

which is a straight line on a log-log plot of 
da
dN

 vs
∆K.

∆K = Kmax − Kmin = (σmax − σmin ) f (g) πa (3)

a is the crack length; N the number of load

cycles; C  the  intercept  of  line  along  
da
dN

  and  is

of  the order of 10
-6
 and has units of length/cycle;

and n is the slope of the line and ranges from 2 to
10.

Equation (2) can be rewritten as:

∆N =
∆a

C[∆K(a)]n (4)

or N = dN∫ = a f

ai
∫

da

C[K(a)]n (5)

Thus it is apparent that a small error in the SIF
calculations  would  be  magnified  greatly  as  n
ranges from 2 to 6. Because of the sensitivity of N
upon ∆K, it is essential to properly determine the
numerical values of the stress intensity factors.
However, in most practical cases, the crack shape,
boundary conditions, and load are in such a com-
bination that an analytical solution for the SIF does
not exist and large approximation errors have to
be  accepted.  Unfortunately,  analytical expressions
for K are available for only few simple cases. Thus
the stress analyst has to use handbook formulas
for  them  (Tada  et  al.,  1973).  A  remedy  to  this

problem is the usage of numerical methods, of
which  the  finite  element  method  has  achieved
greatest success.

When compared with experimental data, it
is evident that Paris law does not account for:

1. Increase in crack growth rate as K
max

approaches K
Ic

2. Slow increase in crack growth at K
min

 ≈
K

th

thus  it  was  modified  by  Forman  et  al.
(1967), Figure 2

da
dN =

C(∆K)n

(1− R)Kc − ∆K
(6)

Walker’s  model  (Walker,  1970)  is  yet  another
variation  of  Paris  Law  which  accounts  for  the

stress ratio R =
Kmin

Kmax

=
σmin

σmax

da
dN = C

∆K

(1− R)(1−m)







n

(7)

Whereas most methods attempt to obtain
numerical coefficients for empirical models which
best  approximate  experimental  data,  the  table
look-up method extracts directly from the exper-
imental data base the appropriate coefficients. In
a "round-robin" contest on fatigue life predictions,
this  model  was  found  to  be  most  satisfactory
(Miller and Gallagher, 1981).

Reliability Index Definition

The Performance Function F is a function

Figure 2.  Forman’s Fatigue Model
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which determines the performance or the state of
the system. In general F is a function of one or
more variables x

i
 which describe the geometry,

material, loads, and boundary conditions

F = F(xi ) (8)

and thus F is in turn a random variable with its
own probability distribution function, Figure 3. A
performance function evaluation typically require
a structural analysis, this may range from a simple
calculation to a detailed finite element study.

Reliability indices, β are used as a relative
measure  of  the  reliability  or  confidence  in  the
ability of a structure to perform its function in a
satisfactory  manner.  In  other  words  they  are  a
measure of the performance function. Probabilistic
methods  are  used  to  systematically  evaluate
uncertainties in parameters that affect structural
performance, and there is a relation between the
reliability index and risk.

Reliability index is defined in terms of the
performance function capacity C, and the applied
load or demand D. It is assumed that both C and
D  are  random  variables.  The  safety  margin  is
defined as Y = C-D. Failure would occur if Y < 0.
If  C  and  D  are  normal  random  variables  with
probability density function N(µ

C
,σ

C
) and N(µ

D
,σ

D
)

respectively. Y is also a normal random variable
with the probability density function N(µ

Y
,σ

Y
) in

which,

µY = µC − µD (9)

σY = σC
2 + σD

2( ) (10)

and the reliability index β can be determined by

β =
µY

σY
(11)

  
  =

µC − µD

σC
2 + σD

2( ) (12)

The probability of failure P
f
 is equal to the ratio of

the shaded area to the total area under the curve in
Figure 3. For standard distributions and for β =
3.5, it can be shown that the probability of failure

is Pf =
1

9,091  or 1.1×10
-4
. That is 1 in every 10,000

structural members designed with β = 3.5 will fail
because of either excessive load or under-strength
sometime in its lifetime. Reliability indices are
a  relative  measure  of  the  current  condition  and
provide  a  qualitative  estimate  of  the  structural
performance. Structures with relatively high reli-
ability indices will be expected to perform well.
If the value is too low, then the structure may be
classified  as  a  hazard.  Target  values  for  β  are
shown in Table 1, and in Figure 4

Monte-Carlo Simulation(MCS)

Methodology

For the general problem in engineering
system, the capacity and demand maybe functions
of the other random variables. In term of safety of

Figure 3.  Definition of Reliability Index
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Figure 4.  Probability of Failure in terms of βββββ (Ang and Tang, 1984)

Table 1. Selected βββββ values for Steel and Concrete

Structures (Ang and Tang, 1984)

Expected Performance β Failures

High 5 3/10 million
Good 4 3/100,000
Above Average 3 1/1,000
Below Average 2.5 6/1,000
Poor 2.0 2.3/100
Unsatisfactory 1.5 7/100
Hazardous 1.0 16/100

margin, the performance function can be expressed as

  g(C1,C2 ,K,Cn , D1, D2 ,K, Dn ) = C(C1,C2 ,K,Cn ) − D(D1, D2 ,K, Dn ) (13)

The failure state will occur when g < 0. The reliability index can be calculated by using Monte-Carlo
Simulation as the follows.

1. Initialize random number generators.
2. Perform n analysis, for each one:

• For each variable, determine a random number for the given distribution.
• Determine the performance function.
• Analyze, and store the results

3. Count the number of analyses, n
f
 which performance function indicate failure, the likelihood

of structural failure will be P
f
 = n

f
 / n.

4. The reliability index is then determined by using

β = Φ−1(1− pf ) (14)
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Analytical expression of SIF of geometries used in this research

In this study, there are 2 selected cracked cases which are cruciform welded joint containing lack
of penetration (LOP) defect and T-butt geometry containing surface crack at weld toe, to be considered.
Their stress intensity factors can be shown as follows.

Cruciform welded joint containing lack of penetration (LOP) defect

Maddox (1975) defined the magnification of stress intensity factor which would be present for a
crack of the same geometry but without the present of the weld. After that many researchers including
Lie (1983), Thurlbeck (1991) and Bowness and Lee (1996) have been carried out to evaluate M

k
 by

considering cracks at weld toes. For fillet welds and partially T butt welds, the initial crack may be
taken from the unpenetrated region. Frank and Fisher (1979) were the first to introduce the formula for
stress intensity factor of the root of cruciform welded joints containing lack of penetration (LOP) as
shown in Eq 15.

KI = Mkσm πasec
πa
w







0.5

(15)

where

Mk = A0 + A1

2a
w







+ A2

2a
w







2

w = B + 2h

A0 = 0.956 − 0.343
h
B







A1 = −1.219 + 0.6210
h
B







−12.220
h
B







2

+ 9.704
h
B







3

− 2.741
h
B







4

A2 = 1.954 − 7.938
h
B







+13.299
h
B







2

− 9.541
h
B







3

+ 2.513
h
B







4

σ
m
 is the membrane stress in the loaded member and the limits of validity for this formula are

within the following range;

B
T = 1,  0.2 <

h
B < 1.2,  0.1 <

2a
w < 0.7

and dimensions are indicated in Figure 5.

T-butt geometry containing surface crack at weld toe (Brennan et al., 1999)
In Figure 6, the expression for the stress intensity factor is given by

KI = βσ πa (16)

where β is stress intensity calibration factor, a is a crack depth and σ is a nominal stress. The stress
calibration intensity factors for tension and bending are functions of plate thickness (T), weld attach-
ment thickness (t), width of weld attachment (L), weld toe radius (ρ),weld angle (α), crack depth (a)
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Figure 5.  Crack and welded joint geometries (Fisher and Frank, 1979)

Figure 6.  T-butt geometry containing surface crack at weld toe

and half surface crack length (c). They are defined as follows;
• Stress calibration intensity factors for tension is given by

βt = 1.03
a
T







P

exp C0 + C1

a
T







+
a
T







2










+ C3 + C4 (17)

where

P = −0.365 + 0.207
a
c







0.5

− 0.144
a
c







+ MP

C0 = −0.963 +1.102
a
c







0.5

−1.430
a
c







+ M0

C1 = 3.084 − 6.542
a
c







0.5

+ 9.023
a
c







+ M1, if 
a
c < 0.156

C1 = 2.913 − 3.245
a
c







0.5

+1.761
a
c







+ M1, if 
a
c ≥ 0.156

C2
' = 2.627 −10.767

a
c







0.5

+ 9.553
a
c






, if 

a
c < 0.2
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C2
' = −0.0625 − 0.557

a
c







0.5

+ 0.156
a
c






, if 

a
c ≥ 0.2

if C2
' > 0.914  then C2

' = 0.914

C2 = C2
' + M2

MP = 0.172 − 0.1550α − 0.0016
T
P

M0 = 0.284 − 0.1780α − 0.0064
T
P

M1 = −0.317 + 0.0115α + 0.0099
T
P

M2 = 0.0045 + 0.206α − 0.0054
T
P

C3 = −0.45 0.2 −
a
T















0.409

1.1−
a
c















0.3
L
T







−0.549

1.0 − exp−
0.2 −

a
T







0.15



















2



















     if 
a
T < 0.2

C3 = 0     if 
a
T ≥ 0.2

C4 = −2.5 0.03 −
a
T















1.28

1.1−
a
c















2.285

α1.5 ρ
T







−0.7 L
T







−0.394

1.0 − exp−
0.03 −

a
T







S4



















2



















 

   if 
a
T < 0.03

where   S
4
 = 0.006

but   S
4
 = 0.018 if α > 0.6109 and 

ρ
T

 < 0.035 and 
L
T

 < 0.035

C4 = 0     if 
a
T ≥ 0.03

α is in radians

• Stress calibration intensity factors for bending
It is given by

βb = 0.96A ln
a
T







+ C0 + C1

a
T







+ C2

a
T







2

+ C3 + C4 + C5 (18)
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where

A = −0.388 − 0.958
a
c







0.5

+1.111
a
c







+ MA, if  
a
c < 0.1

A = −0.686 + 0.310
a
c







0.5

+ 0.0622
a
c







+ MA, if  
a
c ≥ 0.1

C0 = 0.544 − 4.125
a
c







0.5

+ 4.018
a
c







+ M0 , if  
a
c < 0.1

C0 = −0.645 +1.111
a
c







0.5

− 0.648
a
c







+ M0 , if  
a
c < 0.1

C1 = −2.664 + 22.408
a
c







0.5

− 22.264
a
c







+ M1, if  
a
c < 0.1

C1 = 3.860 − 6.128
a
c







0.5

+ 2.876
a
c







+ M1, if  
a
c ≥ 0.1

C2 = 8.758 − 41.156
a
c







0.5

+ 29.768
a
c







+ M2 , if  
a
c < 0.1

C2 = −1.648 + 0.926
a
c







0.5

+ 0.00393
a
c







+ M2 , if  
a
c ≥ 0.1

MA = 0.597 − 0.649α − 0.0028
T
ρ

M0 = 1.282 −1.325α − 0.0077
T
ρ

M1 = −2.222 + 2.154α + 0.0170
T
ρ

M2 = 0.789 − 0.621α − 0.0097
T
ρ

C3 = −0.25 0.25 −
a
T















0.5

1.1−
a
c















0.16

α2.0 ρ
T







−0.16 L
T







−0.37

1.0 − exp−
0.25 −

a
T







0.15



















2



















   if 
a
T < 0.25

C3 = 0     if 
a
T ≥ 0.25
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C4 = −4.0 0.05 −
a
T















0.565

1.1−
a
c















0.3

α1.35 ρ
T







−0.3 L
T − 0.455







0.204

1.0 − exp−
0.05 −

a
T







S4



















2



















 

   if 
a
T < 0.05 and 

L
T < 0.455

where   S
4
 = 0.05

but   S
4
 = 0.06  if α > 0.6109 and 

ρ
T

 < 0.04 and 
L
T

 < 0.035

C
4
 = 0,  if 

a
T ≥ 0.05

C5 = −0.14
a
T







− 0.35








0.098

1.1−
a
c















0.862

α0.675 ρ
T







−0.077 L
T







0.148

1.0 − exp−

a
T







− 0.35

0.2



















2



















   if 
a
T > 0.35

C5 = 0,  if 
a
T ≤ 0.35

The limits of validity for these formulae are summarized in the Table 2.

Problem Formulation

In linear elastic fracture mechanics (LEFM) critical crack growth is governed by the following
equation

KI = βσ πa ≥ KIc (19)

Table 2. The limits of validity for the stress cali-

bration intensity factors for tension and

bending

Geometries Range

Weld Angle (α) 30º, 45º, 60º
Crack Aspect Ratios (a/c) 0 < a/c < 1.0
Crack Depths (a/T) 0.01 < a/T < 1.0
Weld Toe Radius (ρ/T) 0.01 < ρ/T < 0.066
Attachment Widths (L/T) 0.3 < L/T < 4.0
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where K
I
 is the mode stress intensity factor (SIF),

K
Ic
 is the fracture toughness (material property),

α the far field stress, a the flaw size
1
 in most case

a refers to half of crack length, and β a geometry
factor.

We define the performance function in terms
of demand (D) and supply (S) as:

g(S,D) = Supply - Demand (20)

and if g(S,D) < 0 than we have a "failure state", if
g(S,D) > 0 we have a "safe state", otherwise we
have a limit state if g(S,D) = 0. In the context of
LEFM we define the performance function as

g(KIc ,KI ) = KIc − KI (21)

For  the  fatigue  problem,  the  failure  mode  is
considered after N cycles of loading have been
applied.  It  is  governed  by  one  of  the  following
criteria,

1. a
n
 > a

c
 where a

n
 is the final crack length

after the N cycles of loading.
2. K

max
 > K

Ic
 where K

max
 is the stress intensity

factor  after  the  N  cycles  of  loading  due  to  the
maximum amplitude of load σ

max
.

In this report, the later is used. Therefore,
the  performance  function  in  this  case  can  be
expressed by

g(KIc ,Kmax ) = KIc − Kmax

   
 
          

 = KIc − σmaxβ πan (22)

where σ
max

 is the maximum amplitude of the stress,
β is the geometry factor and a

n
 is the crack length

after the N cycles of loading. The failure state is
given by g < 0.

Critical Crack Growth

For the critical crack growth problem, the
methods which is used to evaluating the reliability
of the selected cracked structures is and Monte-
Carlo Simulation (MCS). In this case the perform-
ance function is governed by Equation (21). The
random variables and constant values that are used
in each selected case can be summarized in the
Table 3.

In LEFM problem, to evaluate the reliability
of  the  cracked  structures,  the  Monte-Carlo
Simulation can be applied by comparing the value
of the stress intensity factor with the value of the
fracture toughness of each sample, counting the
number of the samples which perform the failure
state which is g < 0 or K

I
 > K

Ic
, and then calculat-

ing the probability of failure which is equal to the
number of the samples which perform the failure
state over the total number of the samples that
have been tested. For each sample, the process of
Monte-Carlo Simulation can be shown as follows.

1) Generate a random number for K
Ic
, a, and

σ corresponding to its distribution.
2) Compute  the  stress  intensity  factor.

Generally,

KI = σβ πa (23)

________________________________
1 in most case a refers to half of the crack length

Table 3. Summary of the random variables and constant values which are used in each

selected case

Case Random Variables Constants Equation of K
I

Figure

Cruciform welded joint containing KIc, a, σ B, h Equation (15) Figure 5
Lack Of Penetration (LOP) defect

T-butt geometry containing surface KIc, a, c, ρ, α, σ T,t Equation (16) Figure 6
crack at weld toe
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3) Compare K
I
 with K

Ic
. If K

I
 > K

Ic
, the

sample fails. Count and go to the next sample.
The whole process of Monte-Carlo Simul-

ation can be shown in Figure 7.

Subcritical Crack Growth

In  this  case,  Monte-Carlo  Simulation  is
used for evaluating the probability of failure of
the  structure.  The  probability  of  failure  can  be
calculated from n

f 
/n in which n is the total number

of the samples and n
f 
 is the number of the samples

which perform the failure state, in this case, n
f 
 is

the number of the samples which fail within the
N cycles of loading. Once the probability of failure
is obtained, the reliability index can be calculated
by using Equation (14). The process of evaluation

of reliability of fatigue problem by using Monte-
Carlo Simulation can be shown in Figure 8.

From Figure 8, to compute, in this paper,
we use Paris law and Forman law as the following.

Paris law

∆a = C(∆K)n ∆N (24)

Forman Law

∆a =
C(∆K)n ∆N

(1− R)KIc − ∆K (25)

where

∆K = (σmax − σmin )β πa

Figure 7.  Monte-Carlo Simulation for the LEFM problem

Start

Stop

Monte-Carlo Simulation
N

MC

Select variables K
Ic i

, a
i
 and σ

i

Compute K
I i

= σiβ πai

Plot K
Ic i

 & K
I i

Compute probability of
failure and reliability index

CountK
Ic i

 < K
I i

YES

NO
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Monte-Carlo Simulation
N

MC

Select variables K
Ic i

, a
i

N = 0; a = a
i

N = N +∆N

Select variables
σ

max
, σ

min
 and swap

Compute K
min

, K
max

 and ∆k

Compute ∆a

Failure within N cycles
Check for K

max

Stop

a = a + ∆a
Check for K

max

Plot K
max

 & K
Ic i

Compute probability of failure and reliability index

Start

Constant : C, n, β, ∆N, N
final

 and
Geometry dimensions

∆a > 0

K
Ic i

 < K
max

Failure within N cycles
Count

NO

NO

YES

YES

Go to the next sample

Figure 8.  Monte-Carlo Simulation for the fatigue problem



Songklanakarin J. Sci. Technol.

Vol.28  No.5  Sep. - Oct. 2006

A study and development of Windows based program

Puatatsananon, W., et al.1023

and

R =
σmin

σmax

For Forman law, it has one specific case of failure
state when ∆a < 0. It can be shown as follows.

From Equation (25), we obtain

∆a =
C(∆K)n ∆N

(1− R)KIc − ∆K

=
C(∆K)n ∆N

(1−
σmin

σmax
)KIc − (σmax − σmin )β πa

=
C(∆K)n ∆Nσmax

(σmax − σmin )KIc − (σmax − σmin )σmaxβ πa

=
C(∆K)n ∆Nσmax

(σmax − σmin )(KIc − Kmax )

If K
max

 > K
Ic
, it means the sample fails. This causes

∆a < 0.

Implementation

In  this  paper,  two  windows  applications
name "SLA-CC’" (Service Life Assessment for

Cruciform  Connection)  and  "SLA-TB’"  (Service
Life  Assessment  for  T-Butt  geometry)  are
developed  by  using  Microsoft  Visual  C++  for
evaluating the reliability of the cruciform welded
joint containing lack of penetration (LOP) defect
and T-butt geometry containing surface crack at
weld toe, respectively, which can be indicated in
term of reliability index and the probability of
failure. They can perform the calculation in both
critical and subcritical crack growth problem. For
both problems, Monte-Carlo Simulation Method
is used as the criterion of the calculation. SLA are
designed to be dialog based program. Inside the
dialog, it has computation part that the user can
put input, run the program and look at the result
of the computation. When the program runs, the
windows of the program will look like in Figure 9
and Figure 10.

Numerical studies

Having developed the computational envi-
ronment in which the user can readily determine
the reliability index and the probability of failure,
we now first seek to exploit this environment to
conduct  a  preliminary  parametric  study  which
could yield valuable data to the practicing engi-

Figure 9.  SLA-CC program
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neers, and possibly shed some light on the prob-
ability  of  failure  trend  in  terms  of  the  selected
variables. Then, the effects of the stress intensity
factor range and the variation of the Coefficients
of Variation, (COV) of the selected variables on
the fatigue life of the selected problem are invest-
igated. Probability of Failure for practical purpose,
the  SLA  program  is  then  used  to  perform  the
reliability analysis of the both cracked cases in
LEFM problem in order to find their probability
of failure trend in terms of the selected variables
(K

Ic
, a and σ). The assumptions and the process

to get the probability of failure function in each
cracked case can be shown as follows.

- All random variables are assumed to be
normal random variates.

- The effect of the variation of each vari-
able in term of its COV on the reliability of the
cracked structures has been studies. The reliability
analysis of each cracked case where COV of each
variable varying with an increment of 5% from
0-20% are performed by using the Monte-Carlo
Simulation  method  with  100,000  samples  to
determine the probability of failure.

Figure 10.  SLA-TB program

- In each analysis, the mean value of the
fracture toughness KIC is normalized to 1. The
reliability analyses where the mean values of K

I
 /

K
Ic
 are 0.5, 0.7 and 0.9 are performed for given

geometries in each cracked case, i.e.,
• Cruciform  welded  joint  containing

lack of penetration (LOP) defect ; h/B = 0.3, 0.6,
0.9 and 2a/W = 0.2, 0.4, 0.6

• T-butt  geometry  containing  surface
crack at weld toe under tension where α = 30º, ρ/T
= 0.01 and L/T = 1.0 and a/c = 0.25, 0.5, and 0.75

- The results of the probability of failure
in each increment of COV of each variable are
tabulated in Tables 4 to 9.

The  effect  of  statistical  variability  of  applied

stress range, stress intensity factor and size of

the initial defects on the fatigue life

The model used in the analysis is as follows;
B = T = 1 in., h = 0.5 in., W = B+2h = 2 in and a =
0.2 in. The cruciform welded joint is made of steel
with a K

Ic
 value at the service temperature of 60

ksi in .  In  each  case  study,  the  Monte-Carlo
simulation with n = 10,000 samples is used for
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Table 4. Probability of failure of Cruciform welded joint containing lack of penetration (LOP) defect

of the case where h/B = 0.3

2a/W = 0.2 2a/W = 0.4 2a/W = 0.6
Cov

K
I
 / K

Ic
K

I
 / K

Ic
K

I
 / K

Ic

K
Ic

a σσσσσ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

0.05 0 0 0.08158 0 0 0.0992 0.00053 0.00081 0.1493
0.05 0.10 0 0.00045 0.17215 0 0.00076 0.18199 0.00047 0.00335 0.21089

0.15 0 0.00599 0.2477 0 0.00717 0.25218 0.00039 0.01302 0.26528

0.05 0 3.00E-05 0.1159 0 0.00048 0.16792 0.04823 0.05073 0.2619
0.05 0.10 0.10 0 0.00116 0.18984 0 0.00368 0.22047 0.04837 0.05687 0.2866

0.15 0 0.00828 0.25115 1.00E-05 0.01478 0.26749 0.04818 0.07273 0.31383

0.05 0 0.00028 0.15817 0 0.00744 0.23042 0.13393 0.13578 0.32452
0.15 0.10 0 0.00285 0.21106 0 0.01469 0.25803 0.13406 0.14107 0.33768

0.15 0 0.01292 0.25959 5.00E-05 0.03068 0.29014 0.13268 0.15766 0.35408

0.05 0 0.00256 0.18711 0 0.0033 0.19614 0.00033 0.00688 0.2227
0.05 0.10 0 0.00703 0.23224 1.00E-05 0.00821 0.23847 0.00042 0.01352 0.25659

0.15 4.00E-05 0.02093 0.27682 6.00E-05 0.02274 0.28045 0.00046 0.03029 0.292

0.05 0 0.00359 0.20001 0 0.00766 0.22941 0.0482 0.06131 0.291
0.10 0.10 0.10 0 0.00974 0.23974 1.00E-05 0.01515 0.26134 0.04719 0.07225 0.30982

0.15 0.00012 0.02419 0.28193 0.00021 0.03188 0.29407 0.04738 0.0899 0.3316

0.05 1.00E-05 0.00687 0.22061 7.00E-05 0.02048 0.26761 0.13305 0.14956 0.3433
0.15 0.10 2.00E-05 0.01464 0.25247 0.0002 0.03059 0.28811 0.13523 0.15801 0.3545

0.15 0.00016 0.02972 0.2898 0.00064 0.04782 0.31418 0.13295 0.17038 0.37153

0.05 0.00036 0.02674 0.26631 0.00041 0.0281 0.27127 0.0011 0.03325 0.28562
0.05 0.10 0.00085 0.03563 0.28306 0.0009 0.03741 0.28767 0.00163 0.04364 0.30033

0.15 0.00163 0.05184 0.31208 0.00173 0.05362 0.31439 0.00236 0.06077 0.32273

0.05 0.00063 0.02938 0.2734 0.00091 0.03614 0.28979 0.04799 0.09164 0.33463
0.15 0.10 0.10 0.0008 0.03844 0.29066 0.00113 0.04542 0.30399 0.04847 0.09963 0.34208

0.15 0.00174 0.05477 0.31542 0.00221 0.06312 0.32486 0.05091 0.11647 0.35677

0.05 0.00069 0.03418 0.27827 0.00149 0.05071 0.30883 0.13449 0.17407 0.37149
0.15 0.10 0.00127 0.04401 0.29679 0.00253 0.06073 0.3235 0.13584 0.17953 0.3827

0.15 0.00221 0.06061 0.31617 0.00377 0.07768 0.33617 0.13708 0.19401 0.39036

studying the reliability analysis of the cracked
structures and all random variables (K

Ic
, a and σ)

are assumed to be normal variables.

Case Study I

SLA program has been used to perform the
analysis of the service life in the given geometry
with different level of the stress intensity factor
range (∆K = 0.3KIC, 0.4K

Ic
, 0.5K

Ic
 and K

min
 = 0.1

K
Ic
). The COV of all random variables are 0.1. The

results of probability of failure at each increment
of cycles of loading are plotted as shown Figure
11.

The  results  show  that  initially,  the  stress
intensity factor range has no effect on the prob-
ability of failure of the cracked structures. How-
ever, as the number of cycles of loading increase,
the  wider  the  stress  intensity  range  is,  and  the
lower  the  fatigue  life  of  the  cracked  structures
obtained.

Case Study II

The effects of the variation of the COV of
the random variables (stress intensity factor, size
of the initial defects and applied stress ranges) on
the fatigue life of the given cracked structures are
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Table 5. Probability of failure of Cruciform welded joint containing lack of penetration (LOP) defect

of the case where h/B = 0.6

2a/W = 0.2 2a/W = 0.4 2a/W = 0.6
Cov

K
I
 / K

Ic
K

I
 / K

Ic
K

I
 / K

Ic

K
Ic

a σσσσσ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

0.05 0 0 0.08086 0 0 0.09384 0.00053 0.00065 0.13579
0.05 0.10 0 0.00047 0.17161 0 0.00064 0.1791 0.00047 0.00241 0.20258

0.15 0 0.00591 0.24682 0 0.00678 0.25028 0.00039 0.01124 0.26203

0.05 0 4.00E-05 0.11286 0 0.00021 0.15399 0.04823 0.04963 0.24232
0.05 0.10 0.10 0 0.0011 0.18807 0 0.00269 0.21245 0.04837 0.05387 0.27388

0.15 0 0.00778 0.25086 1.00E-05 0.01242 0.26366 0.04817 0.06779 0.306

0.05 0 0.00024 0.15371 0 0.00411 0.21339 0.13393 0.13448 0.30769
0.15 0.10 0 0.00242 0.20881 0 0.01014 0.24699 0.13406 0.1376 0.32547

0.15 0 0.01235 0.25853 2.00E-05 0.02504 0.28361 0.13268 0.15253 0.34798

0.05 0 0.00253 0.18652 0 0.00307 0.19294 0.00033 0.00584 0.21514
0.05 0.10 0 0.00709 0.23176 1.00E-05 0.00795 0.23577 0.0004 0.01195 0.2518

0.15 3.00E-05 0.02103 0.2769 4.00E-05 0.02248 0.27921 0.00042 0.02811 0.28915

0.05 0 0.00349 0.19919 0 0.00628 0.22159 0.04818 0.0575 0.27921
0.10 0.10 0.10 0 0.00978 0.23856 1.00E-05 0.01348 0.25588 0.04719 0.06774 0.30162

0.15 0.0001 0.02399 0.28065 0.00015 0.02947 0.29087 0.04726 0.08447 0.32588

0.05 1.00E-05 0.00666 0.21773 4.00E-05 0.01593 0.25553 0.13305 0.14549 0.33194
0.15 0.10 2.00E-05 0.01413 0.25103 0.00014 0.02565 0.2791 0.13521 0.15312 0.34687

0.15 0.00013 0.029 0.28848 0.00044 0.04264 0.30752 0.13284 0.16508 0.36727

0.05 0.0004 0.02633 0.26564 0.00044 0.02731 0.26962 0.00103 0.03144 0.28209
0.05 0.10 0.00091 0.03549 0.28308 0.00096 0.03703 0.28685 0.00155 0.04193 0.29727

0.15 0.00155 0.05226 0.31109 0.00163 0.05332 0.31277 0.00221 0.05881 0.32051

0.05 0.00062 0.02881 0.2733 0.00081 0.03347 0.2864 0.04782 0.08691 0.32686
0.15 0.10 0.10 0.00084 0.03847 0.28904 0.00103 0.04347 0.29935 0.04828 0.09516 0.33674

0.15 0.00174 0.05471 0.31529 0.00203 0.0609 0.32347 0.05047 0.11198 0.35292

0.05 0.0007 0.034 0.27703 0.00116 0.04578 0.3011 0.13433 0.16932 0.36539
0.15 0.10 0.00116 0.04306 0.29675 0.00197 0.05537 0.31772 0.13556 0.17476 0.37862

0.15 0.00206 0.05968 0.31583 0.00309 0.07228 0.3313 0.1367 0.1893 0.38734

Figure 11.  Service life of case B = 25
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Table 6. Probability of failure of Cruciform welded joint containing lack of penetration (LOP) defect

of the case where h/B = 0.9

2a/W = 0.2 2a/W = 0.4 2a/W = 0.6
Cov

K
I
 / K

Ic
K

I
 / K

Ic
K

I
 / K

Ic

K
Ic

a σσσσσ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

0.05 0 0 0.07946 0 0 0.09123 0.00053 0.00065 0.13306
0.05 0.10 0 0.00045 0.17094 0 0.00062 0.17782 0.00047 0.00227 0.20091

0.15 0 0.00584 0.24634 0 0.00655 0.24998 0.00039 0.01105 0.26162

0.05 0 1.00E-05 0.10786 0 0.00014 0.14627 0.04823 0.04954 0.23885
0.05 0.10 0.10 0 0.00089 0.1857 0 0.0023 0.20822 0.04837 0.05349 0.27194

0.15 0 0.00726 0.24942 1.00E-05 0.01154 0.26192 0.04817 0.06702 0.30526

0.05 0 0.00015 0.14578 0 0.00302 0.20375 0.13393 0.1343 0.30463
0.15 0.10 0 0.00205 0.20422 0 0.00861 0.24128 0.13406 0.13718 0.32371

0.15 0 0.01114 0.25615 2.00E-05 0.02273 0.28 0.13268 0.15167 0.34682

0.05 0 0.00254 0.18588 0 0.00295 0.19192 0.00033 0.00561 0.21403
0.05 0.10 0 0.00696 0.23117 0 0.00776 0.23499 0.0004 0.01161 0.25108

0.15 3.00E-05 0.02083 0.27676 4.00E-05 0.02214 0.27889 0.00041 0.02782 0.28874

0.05 0 0.00325 0.19664 0 0.00567 0.21759 0.04818 0.05701 0.27751
0.10 0.10 0.10 0 0.00948 0.23694 0 0.01276 0.25341 0.04719 0.06712 0.30027

0.15 9.00E-05 0.02348 0.27998 0.00013 0.02857 0.29017 0.04725 0.08356 0.32564

0.05 1.00E-05 0.00611 0.21338 3.00E-05 0.01417 0.25014 0.13305 0.14508 0.33001
0.15 0.10 2.00E-05 0.0131 0.24787 0.00011 0.02335 0.275 0.13521 0.15231 0.34593

0.15 0.00013 0.02773 0.28668 0.00037 0.04022 0.30501 0.13282 0.16439 0.36739

0.05 0.00039 0.02625 0.2651 0.00043 0.02707 0.26899 0.00102 0.03121 0.28153
0.05 0.10 0.00087 0.03551 0.28304 0.00095 0.03679 0.28631 0.00154 0.04163 0.29666

0.15 0.00154 0.0521 0.31085 0.00163 0.05315 0.31297 0.00217 0.05854 0.32036

0.05 0.00062 0.02838 0.27192 0.00077 0.03269 0.28464 0.04781 0.08639 0.32583
0.15 0.10 0.10 0.00084 0.03786 0.28789 0.001 0.04262 0.29784 0.04822 0.09458 0.33642

0.15 0.00173 0.05411 0.31483 0.00197 0.05991 0.32253 0.05037 0.11134 0.353

0.05 0.0007 0.03286 0.27456 0.00111 0.04347 0.29823 0.13429 0.16861 0.36461
0.15 0.10 0.00113 0.04213 0.29469 0.00182 0.05344 0.31497 0.13554 0.17426 0.3783

0.15 0.002 0.05833 0.31438 0.00291 0.07041 0.32927 0.13667 0.18886 0.38779

investigated. Given ∆K = 0.5K
Ic
 and K

min
 = 0.1K

Ic
.

We define the data sets of the analyses as shown
in Table 10.

The results of probability of failure at each
increment  of  cycles  of  loading  are  plotted  as
shown in Figure 12.

We use the performance of unsatisfactory or
the probability of failure of the cracked structures
= 0.07 to be the state where the connection should
be repaired. From Figure 12, the numbers of cycles
at which each analysis reaches the given perform-
ance are 328900, 12000, 68100 and 6300 cycles,
respectively. The results show that the increment

of COV of each variable will reduce the service
life of the cracked structures. The variation of the
COV of the variable which affects on the fatigue
life of the given crack structures the most is the
COV  of  the  stress  range  (∆σ).  Therefore,  the
knowledge of dispersion characteristic of each
random  variable  is  very  important  in  order  to
evaluate the service life of the cracked structures
accurately.

Conclusions

SLA is a windows application for evaluat-



Songklanakarin J. Sci. Technol.

Vol.28  No.5  Sep. - Oct. 2006 1028

A study and development of Windows based program

Puatatsananon, W., et al.

Table 7. Probability of failure of T-butt geometry containing surface crack at weld toe under tension

where and a/c = 0.25

2a/W = 0.2 2a/W = 0.4 2a/W = 0.6
Cov

K
I
 / K

Ic
K

I
 / K

Ic
K

I
 / K

Ic

K
Ic

a σσσσσ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

0.05 0 0 0.07798 0 0 0.0901 0 1.00E-05 0.09312
0.05 0.10 0 0.00043 0.16765 0 0.0006 0.1734 0 0.00064 0.17464

0.15 0 0.00555 0.24303 0 0.00643 0.24453 0 0.00672 0.24334

0.05 0 1.00E-05 0.10246 0 0.00014 0.13819 0 0.00023 0.14509
0.05 0.10 0.10 0 0.00062 0.1804 0 0.00184 0.19764 0 0.00213 0.19922

0.15 0 0.00761 0.24716 0 0.01076 0.25417 0 0.01151 0.25219

0.05 0 8.00E-05 0.13115 0 0.00148 0.18211 0 0.00208 0.18767
0.15 0.10 0 0.00185 0.18822 0 0.00635 0.21815 0 0.00752 0.22004

0.15 1.00E-05 0.01034 0.24756 1.00E-05 0.0185 0.26127 1.00E-05 0.02017 0.25873

0.05 0 0.00271 0.18558 1.00E-05 0.00303 0.19107 1.00E-05 0.00308 0.19127
0.05 0.10 1.00E-05 0.0075 0.22988 2.00E-05 0.00819 0.23262 2.00E-05 0.00837 0.23245

0.15 4.00E-05 0.01947 0.27692 6.00E-05 0.02067 0.27808 7.00E-05 0.02104 0.27742

0.05 0 0.00325 0.19223 1.00E-05 0.00507 0.20902 1.00E-05 0.00553 0.21006
0.10 0.10 0.10 5.00E-05 0.00918 0.23238 6.00E-05 0.01221 0.24254 6.00E-05 0.01303 0.24116

0.15 7.00E-05 0.02219 0.27684 0.00012 0.02681 0.28119 0.00012 0.02754 0.27916

0.05 0 0.00502 0.20506 0 0.01004 0.23323 1.00E-05 0.0116 0.23311
0.15 0.10 0 0.01255 0.23727 3.00E-05 0.01995 0.25568 5.00E-05 0.02138 0.25365

0.15 5.00E-05 0.02643 0.27316 0.00017 0.03571 0.28251 0.00026 0.03751 0.27791

0.05 0.00049 0.02571 0.26153 0.00057 0.02688 0.26404 0.00056 0.02707 0.26364
0.05 0.10 0.00073 0.03557 0.28431 0.00075 0.03653 0.28588 0.00076 0.03671 0.28525

0.15 0.00142 0.05189 0.30923 0.00143 0.05302 0.30934 0.00146 0.05297 0.30877

0.05 0.00051 0.02819 0.26552 0.0006 0.0318 0.27147 0.0006 0.03222 0.27013
0.15 0.10 0.10 0.00086 0.03772 0.28277 0.00102 0.04147 0.28746 0.00109 0.04221 0.2854

0.15 0.00163 0.05226 0.31238 0.00184 0.05624 0.31403 0.00187 0.05675 0.31106

0.05 0.00071 0.03119 0.26624 0.00096 0.03914 0.27909 0.001 0.03987 0.27545
0.15 0.10 0.00107 0.0401 0.28379 0.00137 0.04791 0.29207 0.00148 0.04869 0.28809

0.15 0.00179 0.05602 0.30827 0.00237 0.06474 0.31355 0.00255 0.06535 0.30855

Figure 12. The probability of failure at each increment of cycles of loading of the given

geometry in each set of analysis.



Songklanakarin J. Sci. Technol.

Vol.28  No.5  Sep. - Oct. 2006

A study and development of Windows based program

Puatatsananon, W., et al.1029

Table 8. Probability of failure of T-butt geometry containing surface crack at weld toe under tension

where and a/c = 0.5

2a/W = 0.2 2a/W = 0.4 2a/W = 0.6
Cov

K
I
 / K

Ic
K

I
 / K

Ic
K

I
 / K

Ic

K
Ic

a σσσσσ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

0.05 0 0 0.07495 0 0 0.08095 0 0 0.08258
0.05 0.10 0 0.0004 0.16539 0 0.0005 0.16824 0 0.00052 0.16841

0.15 0 0.00544 0.24035 0 0.00592 0.24118 0 0.00611 0.24006

0.05 0 0 0.09291 0 4.00E-05 0.11224 0 5.00E-05 0.11595
0.05 0.10 0.10 0 0.00055 0.17311 0 0.00103 0.18122 0 0.00123 0.18112

0.15 0 0.00658 0.24268 0 0.00818 0.24515 0 0.00847 0.24179

0.05 0 5.00E-05 0.1132 0 0.00037 0.14409 0 0.00061 0.14632
0.15 0.10 0 0.00127 0.17571 0 0.00291 0.19186 0 0.00325 0.18894

0.15 1.00E-05 0.0086 0.23767 1.00E-05 0.01281 0.24358 1.00E-05 0.01322 0.23765

0.05 0 0.00247 0.18366 0 0.00264 0.18574 0 0.00266 0.18529
0.05 0.10 1.00E-05 0.00747 0.22876 2.00E-05 0.0077 0.22966 3.00E-05 0.00765 0.22912

0.15 3.00E-05 0.01945 0.27519 3.00E-05 0.02008 0.27503 3.00E-05 0.02011 0.27369

0.05 0 0.0029 0.18584 0 0.00372 0.1942 0 0.00387 0.19351
0.10 0.10 0.10 5.00E-05 0.00821 0.22745 5.00E-05 0.00976 0.2306 5.00E-05 0.01015 0.22808

0.15 6.00E-05 0.0211 0.27197 8.00E-05 0.02343 0.27318 6.00E-05 0.02347 0.26926

0.05 0 0.00397 0.19228 0 0.00633 0.20639 0 0.00661 0.2035
0.15 0.10 0 0.01074 0.22625 2.00E-05 0.0143 0.23534 2.00E-05 0.01479 0.23055

0.15 4.00E-05 0.02403 0.26381 0.00011 0.02854 0.2663 0.00014 0.0287 0.25951

0.05 0.00054 0.02559 0.26074 0.00051 0.02631 0.26116 0.00054 0.02622 0.26034
0.05 0.10 0.00075 0.0352 0.28292 0.00074 0.03568 0.2833 0.00075 0.03593 0.28227

0.15 0.00134 0.05148 0.30814 0.00132 0.05171 0.30818 0.00136 0.05164 0.30713

0.05 0.00049 0.02715 0.26021 0.00057 0.02892 0.26213 0.00055 0.02886 0.25985
0.15 0.10 0.10 0.00078 0.03664 0.27793 0.00084 0.03868 0.27939 0.00084 0.03844 0.27598

0.15 0.00151 0.05078 0.30758 0.00166 0.05289 0.30792 0.00152 0.05253 0.30383

0.05 0.00062 0.02849 0.25609 0.0007 0.03234 0.26049 0.00071 0.03219 0.2553
0.15 0.10 0.00097 0.03677 0.27445 0.00113 0.04053 0.27728 0.00107 0.04015 0.272

0.15 0.00169 0.05318 0.29979 0.00194 0.05727 0.29972 0.00196 0.05671 0.2925

ing the stress intensity factor and the reliability
of the cruciform welded joint containing lack of
penetration (LOP) defect and T-butt geometry
containing surface crack at weld toe, respectively,
in  both  LEFM  and  fatigue  problems.  The  reli-
ability methods used in LEFM problem and fatigue
problem is Monte-Carlo Simulation method. The
results of the computation of the program are stress
intensity factor, reliability index and probability
of failure. The results can be used for monitoring
the performance of the cracked structures at the
different levels of stress and crack length. Its
performance  is  then  used  in  the  maintenance

purpose, i.e., it's time to repair the connection or
how much the stress level should be reduced at
the given crack length in order to keep the level of
satisfied performance of the cracked structures.
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Table 9. Probability of failure of T-butt geometry containing surface crack at weld toe under tension

where and a/c = 0.75

2a/W = 0.2 2a/W = 0.4 2a/W = 0.6
Cov

K
I
 / K

Ic
K

I
 / K

Ic
K

I
 / K

Ic

K
Ic

a σσσσσ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9
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