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Let X € {E(p)V , F (p)}, in this research, necessary and sufficient conditions are given for super-
position operator to act from X into the space /,. Moreover, necessary and sufficient conditions are obtained
for superposition operator acting from X into /, to be locally bounded, bounded, and continuous.

Suppose that P, is a superposition operator which acts from X into 7, it is found that

1. P_is locally bounded if and only if f satisfies the condition AR,

2.if P, is bounded then f satisfies the condition AR,

3. P, is continuous if and only if f satisfies the condition A(2) .
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The superposition operator plays an
important role in studying the theory of repre-
sentation of orthogonality in additive functionals
on sequence spaces. There are many mathema-
ticains trying to characterize the superposition
operator acting from a sequence space into ¢,. For
example, Chew (1990) gave necessary and suffi-
cient conditions for superposition operator acting
from w into /,, and Pluciennik (1990, 1991) char-
acterized local boundedness, boundedness of
superposition operator acting from w_into /7,
and continuity of superposition operator acting
from w and W into /,.

X A
Let @ denote the space of finite sequences,
S be the space of real sequences and
>x,| < oo} with the norm Il Il defined by

= {(xk) 3

lxll = 3%,
k=1

a 4 =
angIngm asuaznalulad

UHINAY WaIuATUNS  B1LnaLiieq

In this research, we shall give necessary and
sufficient conditions for superposition operator
acting from E (p) and F (p) into ¢,. Moreover, we
shall characterize local boundedness, bounded-
ness, and continuity of superposition operator
acting from E (p) and F (p) into /,.

Let N and R stand for the set of natural
numbers and the set of real numbers respectively.
Let x be a sequence. For k e N, the k" term of the
sequence x is denoted by x_and we write x =
(x)=(x,X,, ..., X, ...) . For a non-empty subset
A of the set of natural numbers N, x, = {x
X

A)?

X is a sequence with

o K )

O:k#n

= kA A sequence e is one with e =
AT 0 kea & = :k=n"

Throughout this research, we let p = (p,) be

a bounded sequence of positive numbers and M =

max {1, sup pk} .

For any r > 0 the space E (p) and space F (p)

are defined as follows:
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E(p)={(x):JA>0Vke N, Ix <Ak},

E(p) = {(Xk)gk"hkl” < w} :
Let Il'll : E(p) — R be defined by IIxIl =
Pk

sup% . II'll, can not be a norm; however, by its

properties we can define a metric d on E(p) by
letting d(x, y) = lIx-yll for each x, y < E (p) .

Let Il'll,: F(p) — R be defined by lIxll,=

Suppose that d : F(p) x F(p) — R is defined by

P \M . .
x| k) ; we find that Il I, is not a norm.

d(x, y) = lIx-yll, for each x, y ¢ F(p) . By using

properties of IIll, and the inequality,

1 1 1
(§|ak+bk|Pk)M < (kz:}|ak|pk)M + (Z}|bk|pk)M

shown by Maddox(1970), it is not difficult to
verify that d is a metric on F (p).

Let f:NxR —Rand X, Y be two sequence
spaces. A superposition operator P on X is a
mapping from X into S defined by P (x) = (f(k,
X )i, - P, acts from X into Y, denoted by P, :
X —=>Y,if P(x) e Y for all x e X . We say that the
function f satisfies the following conditions:

A(2) if f(k,.) is continuous for every

positive k ¢ N and

A(2) if f(k,.)is bounded on every bounded
subset of real numbers for all k e N .

It is obvious that f satisfies the condition
A(2) if it satisfies the condition A(2).

Let X =(X,d)and Y = (Y, d*) be two
metric sequence spaces. An operator F: X —» Y
is bounded if F(A) is bounded for every bounded
subset A of X. An operator F is said to be locally
bounded at x e X if there exist o, B > 0 such that

F(x) ¢ B,.(F(x)), B) whenever x < B,(x,, ) and

(U

an operator F is locally bounded if F is locally

bounded at each x < X.

Throughout this research, we defined Il Il :

Zk

z|®

E(p) = Rand Il : F(p) — R by IIxll = sup leil

r
1

and Iixll, = (gk x| )ﬁ respectively. Suppose
that P.: X — ¢, , where X< {E (p), F(p)}, by uti-
lizing the metric induced by previous associated
function Il Il i = 1, 2, we obtain that for each i,
P_is bounded if and only if for each o0 > O there
exists >0 suchthat IIP(x)ll < whenever [IxIl
< o and P is locally bounded at x < X if there
exist o, B > 0 such that IIP (x)-P (x)Il < B when-
ever lIx-x Il <o.

It is easy to verify that if P, is bounded

then it is locally bounded. Finally, we note that



Songklanakarin J. Sci. Technol.
Vol. 24 No. 3 Jul.-Sep. 2002

454

Superposition operator on E (p) and F (p)
Sama-ae, A.

if f: R — R is locally bounded then f satisfies
the condition A(2/).
Tainchai (1996).

This was justified by

Superposition operator on E (p)

Firstly, we now give necessary and suffi-
cient conditions for superposition operator acting
from E (p) into /,.

Theorem 1

Let f: N xR — R satisfy the condition
A(2l). The superposition operator P, acts from
E(p) to ¢, if and only if for all o > 0 there exists

a sequence (c)e /¢, such that for each ke N,

Pk

If(k, Ol < ¢ whenever < ko .

Proof.

(&) Letx =(x,) « E(p) . We now prove that
P, acts from E (p) to ,. Since (x) « E(p) , there

exists A>0 such that |x, |*< Ak forallke N, and
1 IR
thus we gt [x,[¥ = jx,[* )" <(AK)Y = AVKY <

1

AVK'. It follows from the assumption that there
exists a sequence (c) ¢, such that If(k, x )l < ¢,
for all k e N and consequently we have §f|f (k, x,)|
< g;ck <o, This implies P(x) = < ¢, and thereby

shows that P acts from E (p) to /,.
(=) Suppose that P acts from E (p) to ¢,.
For each o, > 0 and for each ke N , we define
Ak, 0)={teR: 10" < (Ka)"}
and B(k, o) = sup{lf(k, )l : te Ak, o)} .
We note that If(k, t)l < B(k, ot) whenever Itl%g

k' . Next, we are going to show that B(k, o)), e

¢, for each o > 0. Suppose that there exists

o, > 0 such that S B(k, ot,)=co. Then there is a
k=1

sequence of positive integersn =0<n <n,<..<

n <.. and the least positive integer n, such that

iB(k, a,)>1. Foreachie N, thereisang >0

k=nj_+1

such that

Bk, o)-€m-n )> 1. (1)

k =nj_ 1+l

Let i « N be fixed. As f satisfies the condition
A(2),0<B(k,a) <eoforallke Nwithn_ +1<
k < n.. It follows from the definition of B(k, o)
that for each ke N withn_+ 1 <k<n there is

X, € A(k, o) such that
If(k, x )l > B(k, o) - € . 2)

From (1) and (2), foreachie N,

> e

k=nj+ !

kznZi_mIf(k, x)l > k}i_,IHB(k, a,) -

= 2 Bk o)-gn-n)>1.

k=njj+1

Thus 3, 2 (k. x)1 =3, Ifck, x,)l =e> , and hence
(fk, x)) o, e £,. Since x,_< A(k, o) for all k e N
withn_+1<k<n andforeveryie N, we obtain
that the sequence (x) is in E (p) and therefore
P(x) = (f(k, x)) e ¢,, which is a contradiction.
Accordingly, B(k, o) < ¢, for every o > 0. Put
¢, = B(k, o) for all k ¢« N. Then for each o0 > 0

there exists a sequence (c,) e ¢, such that for each

ke N, If(k, t)l < c_whenever v < kKo .
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Theorem 2 | lpﬁn .
<E(p) and IIx - yll = sup X, -y, " _ la-bl <o,
n' k'

Let f : N x R — R Suppose that P_is a
superposition operator which acts from E (p) to
¢,. Then P_is locally bounded if and only if f
satisfies the condition A(2/) .

Proof.

(&) Suppose that f satisfies the condition
(A2l) and P, is superposition operator from E (p)
into /. Let x = (x) « E(p) be given. We now
show that P, is locally bounded at x. Let o >0

and y € E (p) with lly - xll <o . Then llyll < o + lIxl

and this implies kal%s k' (o + lIxll) for all k e N
and by applying Theorem 1, there is a sequence
(c) e £, such that for each k ¢ N, If(k, y)I < ¢,

and hence IP()ll = 2 If(k, y)l < ¢, = i)l .
Therefore the operator P_is locally bounded at x,
as lIP(y) - Pl < IIP(y)ll + 1IP)ll < [IP )l +
eI .

(= Suppose that P : E(p) — ¢, is locally
bounded. We shall prove that f satisfies the con-
dition A(2/) ; 1t suffices to show that f(k,.) is

locally bounded for all k ¢ N.  Let k e N and

b < R. We define a sequence y = (y,) with y =
b,n=k
0 nzk’ and observe that y « E (p) . By the as-
sumption, there exist o, 3 > 0 such that
IIP(x) - P(y)ll < B whenever lIx - yll <o (3)
Letae R with la - bl < (Ko) ™ and let x = (x) be
a,n=k

. We see that x

a sequence with x =
n O0,n#k

It follows from (3) that IIP(x) - P(y)ll < and
thus If(k, a) - f(k, b)l < g If(n, x ) - f(n, y)I =
IP(x) - P(y)ll < B . Therefore f(k , .) is locally
bounded atb ¢ R.

Corollary 3

Let f : N x R — R . Suppose that P, is a
superposition operator which acts from E (p) to
¢,. Then P, is bounded if and only if for each

o > 0 there exist a sequence (c,) « ¢, such that for

eachk e N, If(k, O)l < ¢_whenever It| w <ko.

Proof .

(=) The result follows directly from
Theorem 1 and 2.

(<) Suppose the sufficient condition holds.

Let o0 > 0 and x « E(p) with lIxll < oo . Thus

Pk

M
X
sup X!

LI
<o, thatis Ix | " <koa for every k e N.

r

By the assumption there exists a sequence (c) e
¢, such that for each k e N, If(k, x)I < ¢ . This

implies IP (0ll = 3 If(k, x)l < X ¢, = li(e)ll <o
Accordingly P, is bounded.

The following two corollaries are easily
verified by utilizing Theorems 1 and 2 and Co-
rollary 3.

Corollary 4

Let f : N x R — R . Suppose that P, is a
superposition operator which acts from E (p) to

¢,. Then P_is bounded if and only if f satisfies
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the condition A(2l) .

Corollary 5

Let f : N x R — R . Suppose that P, is a
superposition operator which acts from E (p) to
¢,. Then P_is locally bounded if and only if for
each o > 0 there exists a sequence (c,) e ¢, such
that for each k e N, If(k, t)l < ¢_whenever ltl W <
Ko .

Theorem 6

Letf: N xR — R . The superposition opera-
tor P.: E(p) — ¢, is continuous if and only if f
satisfies the condition A(2) .

Proof .

(= Suppose that P_is continuous on E (p).
Letke N, t R and € > 0 be given. As P, is
continuous at t, e” e E(p) , there is a 6 > 0 such

that for each z = (z)<E([),

(n) (n)
IIP(z) - P(te Hll <& whenever llz-te Il < 5.4

Let t< R be such that It-t|<(3k)™ and y =

0,nzk
{t = Observe thaty = (y ) E(p) and lly -
, =
Px
m It - t,I™ .
te Il = — < & . Employing (4), we have

(n)

IP(y) - P(te )l < € and hence If(k, t) - f(k, t)I <

(n).

IIP(y) - P(te Il <& . Therefore f satisfies the
condition A(2).

(<) Suppose that f satisfies the condition
A(2). We are going to justify that P_is continuous

on E(p).Letx=(x)e E(p) and € > 0. It follows

from Theorem 1 that for each o > O there exists

a sequence (¢ ) /¢, such that forevery ke N,
If(k, ) < c, whenever 1™ <Ko . (5)

As (x) is in E (p) , there is B > 0 such that kalpk <
(kr %)M for allk e N . By (5), there is a sequence
(c)e ¢, such that forallke N,
If(k, x )l < c, (6)
and a sequence (c, ) « ¢, such that foreachk e N,
If(k, )l < ¢ whenever 1™ <kK'B. (7)

Because (c,) and (c,) are in /,, there is N, ¢ N -

{1} such that

ick <§ and ick <§ : ®)

) )
As a result f(k,.) is continuous at x_for all k «
{1, 2,..., N-1} . This implies that there exists
8 > 0 with 6, < min {1,%}such that for each k «

{1,2,..,N-1} and forevery te R,

whenever

Ik, ©) - fk, x )l < —&
3(N

1

It-x )<, . 9)

Lety=(y,) < E(p) be such that Ily - xIl < 6 with § <

min {%Ikzl,Z,...,N] _1} . Since lly - xll < &,

Pk

- x M L3 r
e "% < dand hence ly, - xIv <k

ly
sup L&
k'
for all k ¢ N. Thus for all k is in {1,2,...,N1—1} s

ly, - xJ < K8) " < (8)" < & . By (9), we have
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ik, y,) - £k, %1 <

1

Nj-1 €
Ik, y,)- £k, x)l<
k=1

M

) forevery k e {1, 2,..., N -1}, and consequently

(10)

B e Py 1 o RYoL LM
Aslyl<ly -xI+Ix|< (E + |k 5 —(k [3) + 2(1( B) = (k B)Pk , it follows from (7) that for

2
allkeN,

Ifk, y)I < e

Utilizing (6), (8), and (11) we get

SIfk, x)I< e, < % and SIf(k, y)l< D < % .

K=N| K=N|

Finally, by using (10) and (12) we obtain that

IP(y) - P(x)ll gw(k, y)-fk, x)l

(11

(12)

k=N k=N

= 2 If(k, y)-f(k, x )+ 3 1f(k, y,)-f(k, x)I

k=N

IA

The proof of Theorem 6 is then complete.

Theorem 7

Let f: N xR — R . The superposition
operator P : E(p) — /, is uniformly continuous
on every bounded subset of E (p) if and only if f
satisfies the condition A(2).

Proof.

(=) The result is an immediate conse-
quence of Theorem 6.

(<) Assume that f satisfies A(2). To show
that P_is uniformly continuous on every bounded

subset of E(p), it is enough to prove that P, is

€ & €

2 If(k, y,)-f(k, x )|+2 If(k, y)+ SIf(k, x<=+=+—=¢

=N 3 3 3

uniformly continuous on B, (0, r) for all r > 0.
Let 6 > 0 and € > 0 be given. Since f satisfies
the condition A(2), f satisfies the condition A(2/)
and hence it follows from Theorem 1 that there

exists a sequence (c,) e ¢, such that for eachk N,

If(k, t) <c,_ whenever lt| 0 <ko. (13)

Because (c) € 7, there is N « N - {1} such that

As f(k,.) is uniformly continuous on

Zc <—-

k=N

[_ (krG)Pk , (krG)Pk:| for every k e {1, 2,,.., N1‘1}7
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there is 0 < _< 1 such that for eachk ¢ {1, 2,..., N -1} and forall a, b < |:- (k'o)q, (krG)P“:|,

If(k, a) - f(k, b)l £
(k, a) - f( )<3(N

1

Letx andy e B, (0, 6) be such that Ily -xll < 8, where 6 < min {%Ik =1,2,...,N, - 1} . Hencelx | < (k'c)™

whenever la - bl < g .

(14)

M

and ly | < (k'c)™ forall k <N and ly, -x 1< (kd)™ <(8)™ <8 forallke({1,2,.,N-1}. Employing

(14), we obtain that for all k e {1, 2, ..., N -1}, If(k, y,) - f(k, x )l < 3(N8

Nj-1 €
Yif(k, y,)-f(k, xk)l<§ .
k=1

and therefore

1

5)

Because Ix | < (k'c) ™ and ly | < (k'o) ™ for all k « N, we apply (13) to get If(k, x)I < ¢ _and

If(k, y )l < ¢, forall k e N. So we have

SIf(k, x)I< e, < %and Ik, yl< De, < % .

k=N k=N

Therefore, utilizing (15) and (16), we obtain

IP(y)- Pl = glf(k, y)-f(k, x)l

Ni-1
= Y If(k, y,)-f(k, x,)l+
k=1

Nj-1
< Y If(k, y,)-f(k, x )+
k=1

Hence the operator P_ is uniformly continuous

on every bounded subset of E (p).

Superposition operator on F (p)

Theorem 8

Let f: N xR — R satisfy the condition
A(2/). The superposition operator P_acts from

F(p) to ¢, if and only if the following condition is

(16)

k=N

>k, y,)- (K, x,)l

€ € €

i If(k, y )+ ilf(k, X)N<=+=+==¢,

=N 3 3 3

satisfied (*) there exist o, B >0 and a sequence

(c) e £, such that for each k e N,
Ifk, )l < ¢+ ok It whenever k'l < B .

Proof.

(<) Suppose that the condition (*) holds.
Let x = (x) « F(p) . By the assumption, there
exist o, 3 >0and (c) « ¢, such that foreachk < N,
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Ifk, Ol < c_+ ok It whenever k'ItI" < B .

Since (x) < F(p) , S KIx, ¥ <o, s0 we get that
k=1

limk'Ix, " = 0 and then there is an integer i « N

such that k'Ix, 1™ < B" for all k > i. It follows from

the assumption that for each k > i, If(k, x )l < c_+

ok'lx I* . Therefore i_ﬂf(k’ xls 2‘% +

agkkar’k < ||(ck)||+(x§k'lxklp“ <o and then we
have P(x) = (f(k, x)) e ¢,. Hence P_acts from
E(p)to ¢,.

(= Suppose that P, acts from F(p) to ¢,.
For each o, B > 0 and for each positive integer k ,

we define

Ak, o, B) = {teR

" m{ﬁ_m}}
k' ok’

and Bk, o, B) = sup{lf(k, )l ; te Ak, o, B)} .
If KIt" < B” and t « A(k, a, B) then If(k, t)l <
B(k, o,, B) . Andif kIt < B" and te A(k, o, B)

then If(k, t)l < okIt™. Thus we have that
If(k, )l < B(k, o, B) + ak'ItI* whenever Kt/ < B".

Next we shall show that (B(k, o, B)) e ¢, for
some 0. , B, > 0. Suppose that for each ., B > 0,
ki:B(k, o,p) = . We get that for each integerie N,
Then there is a sequence of

S B(k,2 )= e.
k=1 2

positive integers n, =0 <n <n <..<n <..

and the least positive integer n such that

3 B(k,2i,%)>1.

k=nj_+1

Therefore for each i « N,

there is € >0 such that

n;

1 i 1
Y B(k,2 5)-gm-n )>1.

k=nj_+1

(17)

Let 1 « N be fixed. Since f satisfies the condition
AQ), 0 < B(k,2' ,%)< o for all k <N withn +

I <k <n . It follows from the definition of

B(k,2' zi) that for each k e N withn_+ 1< k<

n, there exists X, e B(k,2' 2i) such that

1

If(k, x,)I>B(k,2' S8 (18)

From (17) and (18), for eachie N,

3 e =

k=nj i+l

> Ik, x> Y B(k,2‘,%)—

k=nj_+1 k=nj_;+1
n;

i ; 1
> B(k,2 2—) -e(m-n_)>1.

k=nj_+1

Thus Y, ilf(k, x )= SIf(k, x,)l= e, and hence

=l k=nj +l

we have (f(k, x )7 ¢ ¢, . As x_e B(k,2' 2L) for
allk e N withn_+ 1< k<n, we obtain that for
eachkerithnH+ I<k<n,

Ix " < L(L) <L andix "< 0 XD (9
k'2' k"2

Since n_is the least positive integer such that

2 B(k,?2' Zi) > 1, we obtain

k=nj_+1

nj-1 ; 1
Y B(k,2', ) <
k=nj_+1 2

1. It follows from (19),
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nj nj-1
Y kiIx M= Y KIx ™ +nlx, ™
k=nj_+1 k=nj_;+1
If(k, x )l
kK| — et
S kzl ( 2k
i 1
nj-1 B(k’z aii)
< 2
k=nj_+1 2‘

Thus 3 k'Ix,I* =3 ikkar’ksi%:z and
k=1

i=l  k=nj;+1 i=1

consequently (x, ) is in F(p) . By the assumption
we have that P(x) = (f(k, x_ ) e ¢,, which is a

contradiction. Accordingly (B(k,o,B)) " < ¢,.
For all k ¢« N, we put c_= B(k, o, 3) then we have
().

Before we prove Theorem 9, we need the
result that, if f : R — R is locally bounded then f
satisfies the condition A(2/), which was proved
by Tainchai (1990).

Theorem 9

Let f : N x R — R . Suppose that P, is a
superposition operator which acts from F (p) to
£,. Then P, is locally bounded if and only if f
satisfies the condition A(2/).

Proof.

(&) Suppose that f satisfies the condition
A(Z/). Let z = (z) e F(p) . We now prove that P,
is locally bounded at z . Since f satisfies the con-
dition A(2/) and P, acts fromto F(p) to /,, it
follows from Theorem 8, there are o, B > 0 and

a sequence (c,) £, such that for each k e N,

Jorl
LT ey
2'n;

o7

wl If(k, x )1

If(k, Ol < ¢,_+ ak'Itl" whenever k't < . (20)

Letn = %and (x) < F(p) with lx - Zll <7 .
Since l1zll < o, there is an i< N such that

1
v [ = (S 0120 ) <n.en
Because IIx - zll <1, we have

(2 K'lx, -z, ™ )Mg n. (22)

It follows from (21) and (22),

L
M

1
(i krlxklp“)M: (i K'Ix, -z, +zk|pk) <
k=i k=i
1 1
(2 k'lzkl"k)M + (2 k'lx, -zkl"k)M <n+n=R
k=i k=i

and then k'Ix, "< B" for all k >i. By (20) , we get
that for each k > i, If(k, x )l <c_+ Ockrlxklpk . Con-

sequently,
> Ik, x 1< e, +aY KIx ™ <|(c,)|+oB" (23)
k=i k=i k=i

For each k « N, let m,_= If(k, t)l . Asf

sup
1

M
“'Zk‘S(LJPk
kl’
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satisfies the condition A(2), we have that m < oo

for every k e N. And since lIx - zll<n , X _-z|<

(Tl](—) for every k ¢ N and then

If(k, xk)l <m, forevery ke N . 24)

It follows from (23) and (24) ,
IP ()l = z I1£(k, x,)I :2 I£(k, x,) +z I1f(k, x,)I
< g, m, +Il(c)Il + of" , and hence P (x)-P(2)ll <
P COIl + 1P (2)IF < 1IP (x)Il + kX_lf m, + lI(c)ll + ap” .
We choose = IIP (x)ll + z m, + ()l + 0" , so
we obtain [IP(x) - P(z)ll <y . The operator P is
then locally bounded at z.

(= Suppose that P_acting from F (p) to ¢,
is locally bounded. We are going to show that f
satisfies the condition A(2) by proving that f(k , .)

is locally bounded for all k ¢ N. Now let k ¢ N

and b « R. We define a sequence y = (y, ) with

b,n=k
y, = .

0. nxk Observe that y « P(x) and by

assumption, there exist o, 3 > 0 such that

P (x) - P(y)ll < B whenever lIx -yll<o. (25)

M

LetacR withla-bl< (?{—) and let x = (x, ) be

. a,n=k
a sequence with x = { 0. nzk’ We suddenly

1

have x < F(x) and lix - yll = (z n'Ix, -ynlp")M Tt
follows from (25) that IIP (x) - P(y)ll < [ and thus
If(k, 2) - f(k, b)l < 3 1f(n, x,)~f(n, y,)l =
IP(x)-P(yII<P.

Hence f( k ,. ) is locally bounded at b ¢ R.

The following corollary is readily verified
by employing Theorem 9.

Corollary 10

Let f: N xR — R satisfy the condition A(2).
If the superposition operator P acts from F (p) to
¢, then the operator P, is locally bounded.

The next corollary is a sequence of above
corollary.

Corollary 11

Let f: N x R — R . If the superposition
operator P_acting from F(p) to /, is bounded then
f satisfies the condition A(2/).

Lemma 12

Let f : N x R = R satisfy the condition
A(2/). If for each B > O there is an o) > O such
that for any finite sequence (x, ) ,

2 If(k, x, )l <o) provided kaxkr’k <p".

Then there exists a sequence c(B) = (¢ (B)) <
with ¢ (B) > 0 for all k « N and llc(B)Il < ou(B) such

that foreach ke N,



Songklanakarin J. Sci. Technol.
Vol. 24 No. 3 Jul.-Sep. 2002

462

Superposition operator on E (p) and F (p)
Sama-ae, A.

M

Ik, Ol < c (B) +2 O‘B(B) K1t™ whenever K1t <p" .

Proof.
Let B > 0. By the assumption, there is ou3)

> 0 such that for any finite sequence (X, ) ,
3 1£(k, x,)I<ouPB) provided 2k'Ix, 1" < B". (26)

For each k « N, we define

h,(k, t) = max {0’ If(k, t)|-2%5))krltl"k} and

¢,(B) =sup {h,(k, ) ; Kt < B"} .

Letk e Nand te R be such that klt|* <B" . If

M

hyk, 0 = 0, If(k, Ol < ¢, (B) + 2 O‘B(B) k't ; other-
wise, hﬁ(k, t) = If(k, t)I-Z%E)k'ItI“k . Therefore
for each f > 0 and k « N, If(k, )l <c (B) +
Z%E)krltlpk whenever krltklpk <B". Next we shall

show that c(B) = (¢ (B)) « ¢, and llc(B)Il < au(P) .
Since f satisfies the condition A(2), hk, v is
bounded on every bounded subset of real numbers
for all ke N, so we have that 0 < ck(B) < oo for all

k e N. By the definition of c (B) , for each € > 0
there exists the sequence y = (y, ) with krlyklpk <p"
for all ke N and

c(B) <h(k,y)+ zi . 27)

Let the sequence y' be defined as follow :

o [ve s hy(k, >0
o, hk, =0

For any me N, a finite sequence (m) withm =1<

m <...<m =m can be found such that 2 kly 1™ =

k=1

8

o-1 m
+ YKy ™ with

k=mg-1

mj-1
Ky ™ + YKy ™+ ...
k=m,

~
o

BT iy <p¥ foralli e {1,2,...,s-2)

k=mj

N M 0
and0< Y k'ly, " <B" Weletz =y )
k=mg_| Wy, My g My -

foralli e {1,2,..,8-2}andz
Consequently for eachi ¢ {1,2,...,s-1} AT
and Zk‘lzfl"“ < B". From (26), we obtain that
gw(k,z:’)/ < aB) for all i « {1,2,...,s-2}.

Accordingly for eachi ¢ {1,2,...,s-2},

18k, 2%))< o) and

k=mj
Stz y<aB) . (28)
] f(k,t), hB(k, t)>0
We define f (k, t) = 0. hy (k. =0 . It follows

from (28),

S (k2 < o) for

k=mj

everyie {1,2,...,s-2}. (29)
and

S (k28" < ouB) - (30)

k=mg

By definitions of y', f (k, t) and hB(k, t) we obtain
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hy(k, y) =If (k, y, )l - 2 OB ety (31)
and hence it follows from (27), (29), (30) and (31),
Yo <Ehyky)+ Tk
= [ghﬁ(k, yk)+§LhB(k, YO+ .+ kEPB(k’ yk)+k2:2£k
- mz (Ifl(k, y/k)l-2%5)k'ly'kl"k)+ (If,(k, yOl-2 “B(E) k‘Iy’kI"")+ ot
by (Ifl(k, y 2 4B k'|y’k|"kJ+k'"]ik
- m (Ifl(k, z(k”)l-2%5)k'lzf)lpkj+ (Ifl(k, zf))|-2%[f’)kf|zf’|"k]+ L
2z (If](k, 25" )I-2%E)k'lzf'”lp“)+2§
< (s-DHoP) - 2%5)("12 K1z + 2‘, K 1z2 1 + . +k§“r"n‘j|1<‘|zf"’|"k)+g 23
< e - 250 B g &
= a) +3 o

and thus gck(ﬁ)=§£2 gck(B)Sa(BHs. Since
€ > 0 is arbitrary, gck(ﬁ)s o(B)and thus we get
that lic(B)Il < ol B) . Hence the lemma is proved.
Theorem 13
Let f: N xR — R . The superposition op-
erator P_acting from F (p) to ¢, is bounded if and
only if for every p > O there exist a(p) > 0 and

a sequence c(p) = (¢, (p)) « ¢, such that for each

ke N, Ik 0l <c(p)+ z%kfm“ whenever
Krar<p”

Proof .

(&) Suppose that the condition holds. Let
p>0andxeF (p) withlixll<p. Then(g k'x, 1™ );A
< p and consequently k'Ix, I < p" for every k < N.

By the assumption, there is an o(p) > 0 and a

sequence c(p) = (¢ (p)) « ¢, such that for each
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ke NItk x)l<c(p)+ 22P e m As P(x) = IIP.(2) - P (te"™)ll < € whenever
p
(f(k, x iy 5 PO = Sk, x )l < Se,(p) + lz-te"ll<d . (32)
k=1 k=1

2%& < Sle, (p)l+ 20(p) = ()l + 20(p)
Hence P, is bounded.

(=) Suppose that the superposition opera-
tor P_acting from F (p) to ¢, is bounded. Now let
p > 0. For each x ¢ ® with lIxll < p, we have
(g k'lx, I™ );Ag p . Since P, is bounded, there
exists an o/(p) > 0 such that lIP (x)Il = Zlf(k, x ) <
a(p) < «. By employing Corollary 11, we obtain
that f satisfies the condition A(2). Finally, apply
Lemma 12 then there is c(p) = (¢ (p)) « ¢, with
llc,(p)Il < op) such that for eachk e N,

If(k, Ol <c (p) + 2% k't whenever k'[t*<p".
This completes the proof of the theorem.

Theorem 14

Let f : Nx R — R. The superposition
operator P_acting from F (p) to /, is continuous if
and only if f satisfies the condition A(2).

Proof .

(=) Suppose that P_ is continuous on F (p).
Letk e N, t « R and € > 0 be given. Since P, is
continuous at toe(") e F(p) , there is a 6 > 0 such

that for each z = (z)<F(p),

Let t e R be such that It - t| < (i—r)pk and y =
{0 M*E Theny = (y) < F(p) and lly - 1"l =
t, n=

(KTt-t,I" ¥ <8. By (32), we have P, (y) - P, (t,¢")l

<¢ and thus If(k, t) - f(k, t )| <IIP (z) - P (t.e")ll < &.

Hence the function f(k,.) is continuous on R for
all k e N . That is f satisfies the condition A(2).

(&) Suppose that f(k,.) is continuous on R
for all k e N'. We shall show that P, is continuous
onF(p). Letx=(x,) «F(p) and € >0 . Since f
satisfies the condition A(2), so we get that f
satisfies the condition A(Z/). As P acts from F (p)
to ¢,, so we apply Theorem 8, then there exist
0,3 > 0 and a sequence (c,)  /, such that for each
ke N,

f(k, )l <c_+ aklt™ whenever kKltI" <B". (33)
As(x) e F(p), we get gk'lxklpk < oo and therefore
limk'lx, "= 0. And since (c) < /, , we obtain
2 lc,I< e . Accordingly there is N. e N - {1} such

that

o _ SR Pk M 1(¢ #
II(Xk)kNiII_(Zklxkl J <E(E) . (34

k=N
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Ix I* < i(E)M forallk>N and Sc < £ (35)
k kl 2 i S k 6
Using (33), we have that If(k, x )l <c_+ Ockrlxklpk for all k > N and hence
& & R - 1 (¢ €
EN: If(k, Xk)lggﬁck-‘-ak;ﬁk Ix,| <g+a12—M(a)<§, (36)

Since f(k,.) is continuous at x_for all k e {I, 2 ,..,, N -1}, there exist 6 > 0 with § < min

) se)
1, o s T | T € ) 9 see 9o LT €
{ (2 aly such that foreach ke {1, 2 N -1}andteR

If(k, t) - f(k, x) £ h lt-x1<3§. 37
(k, t) - f( Xk)<3(N_1)Wenever X, 37

i

Let z = (z, ) « F(p) be such that IIx - zIl <  hence

Iz -x|< (i_l\j]pk <0 forall keN. (38)
By (37), we get that If(k, z) - f(k, x )l < 3(N€ D forevery ke {1,2,...,,N -1} and thus
3 If(k,zk)—f(k,xk)l<§ : (39)

. . B)M 1 (e)hld
1’ - ’ — -
By choosing 6 < mln{ (2 ol

o< i(i)ﬁ. Employing (34) ,
12\

} and IIx - zll < & , we obtain l(z) y, - (X)) oy Nl < Iz - Il <

1

— 1 1
= Mo . - - - (e, 1 (e
(kzl\‘:i k |Zklpk) = ”(Zk) k=N I < ”(Xk) k=N; I+ ”(Zk) k=N; ~ (Xk) k=N; Il < E(a) +E(a)

2]
6\ o ’

this implies i k'lz 1™ < (6%)3 < 6i For each k>N, by utilizing (35) and (38) ,
k=N; o o

VRN A VA v AL
Izklglxkl+lzk—xkl< E‘pk+ S—YPkSLB—rpk+lB—rpk: B_ka,
2Yk k 2\ k 21 k k

and hence krlzk " < BM . It follows from (33), If(k, z)l<c + Ockrlzklpk for all k > N. and then
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k=Nj k=Nj

Sk z) < Y e +ad kiz V< % + o

k=N;

By using (36), (39) and (40), we have

1P (2) - P(oll = X 10k, 2,)-f(dx, )i

i-1
i

Z

M: M

k=

z

i k=Nj

The proof of this theorem is then completed.

The last of our results is Corollary 15 which
follows from Theorem 9 and 14.

Corollary 15

Let f: N xR — R . If the superposition

operator P, acting from F(p) to /, is continuous

then P, is locally bounded.

e _ ¢
L =t 40
<73 (40)

1f(k,z,)-f,x ) + 3 1f(k,z,)-f(k,x )l < Z If(k,z,)-f(k,x )l +

k=N;

Ifkz )l + 3 1k x )l < §+ % +

k=1

E:g,
3
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