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Let X ∈ ∈ ∈ ∈ ∈ {E
r
(p)V , F

r
(p)}, in this research, necessary and sufficient conditions are given for super-

position operator to act from X into the space   l1
. Moreover, necessary and sufficient conditions are obtained

for superposition operator acting from X into   l1
 to be locally bounded, bounded, and continuous.

Suppose that P
f
 is a superposition operator which acts from X into   l1

, it is found that

1. P
f
  is locally bounded if and only if  f satisfies the condition A(2 

/ 

) ,

2. if  P
f
  is bounded then  f  satisfies the condition A(2 

/ 

) ,

3. P
f
  is continuous if and only if  f  satisfies the condition A(2) .
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The  superposition  operator  plays  an
important  role  in  studying  the  theory  of  repre-
sentation of orthogonality in additive functionals
on sequence spaces.  There are many mathema-
ticains  trying  to  characterize  the  superposition
operator acting from a sequence space into   l1 .  For
example, Chew (1990) gave necessary and suffi-
cient conditions for superposition operator acting
from w

0
 into   l1 , and Pluciennik (1990, 1991) char-

acterized  local  boundedness,  boundedness  of
superposition  operator  acting  from  w

0
  into    l1 ,

and  continuity  of  superposition  operator  acting
from w

0  
and W

0
 into   l1 .

In this research, we shall give necessary and
sufficient  conditions  for  superposition  operator
acting from E

r
(p) and F

r
(p) into   l1 . Moreover, we

shall  characterize  local  boundedness,  bounded-
ness,  and  continuity  of  superposition  operator
acting from E

r
(p) and F

r
(p) into   l1 .

Let N and R stand for the set of natural
numbers and the set of real numbers respectively.
Let  x  be a sequence. For k ∈ N, the kth term of the
sequence  x  is denoted by x

k
 and we write x =

(x
k
) = (x

1 
, x

2 
, ... , x

n 
, ...) . For a non-empty subset

A  of the set of natural numbers  N,  x
A 

 =  {x
λ1(A) 

,
x

λ2(A) 
,  ... ,  x

λn(A) 
,  ...}  is  a  sequence  with

x λ 
k A = 

xk  :  k ∈ A

0   :  k ∉ A





. A sequence e
(n)

 is one with ek

(n)  = 
0 :  k ≠ n 

1 :  k = n





.

Let Φ denote the space of finite sequences,

S be the space of real sequences and

  l1 = (xk ) xk < ∞
k=1

∞

∑







 with the norm || || defined by

||x|| = xk
k=1

∞

∑ .

Throughout this research, we let p = (p
k
) be

a bounded sequence of positive numbers and M =

max 1,sup
k

pk{ }  
.

For any r > 0 the space E
r
(p) and space F

r
(p)

are defined as follows:
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E
r
(p) = {(x

k
) : ∃A > 0 ∀k ∈ N , | x

k 
|
pk 

< Ak
r 
} ,

F
r
(p) = (xk ) k r xk

pk < ∞
k=1

∞

∑







 .

Let || ||
1
 : E

r
(p) → R be defined by ||x||

1 
=

sup xk

pk
M

k r
 . || ||

1  
can not be a norm; however, by its

properties we can define a metric  d  on  E
r
(p)  by

letting d(x, y) = ||x-y||
1
 for each x, y ∈ E

r
(p) .

Let  || ||
2
 : F

r
(p) → R  be defined  by ||x||

2 
=

k r xk

pk

k=1

∞

∑





1

M

;  we find that || ||
2
 is not a norm.

Suppose that d : F
r
(p) × F

r
(p) → R is defined by

d(x, y) = ||x-y||
2
 for each x, y ∈ F

r
(p) .  By using

properties of  || ||
2
  and the  inequality,

a k + bk

pk

k=1

∞

∑





1

M

 ≤  a k

pk

k=1

∞

∑





1

M

 +  bk

pk

k=1

∞

∑





1

M

shown by Maddox(1970), it is not difficult to

verify that  d  is a metric on F
r
(p).

Let  f : N × R → R and X, Y be two sequence

spaces.  A superposition operator P
f
  on  X  is a

mapping from X into S defined by P
f
(x) = (f(k,

x
k ))k=1

∞  .  P
f
  acts from X into Y, denoted by P

f
 :

X → Y , if P
f
(x) ∈ Y for all x ∈ X . We say that the

function f satisfies the following conditions:

A(2)  if  f(k , . )  is  continuous  for  every

positive k ∈ N and

A(2/ )  if  f(k , . ) is bounded on every bounded

subset of real numbers for all k ∈ N .

It is obvious that f satisfies the condition

A(2/ )  if  it  satisfies  the  condition  A(2).

Let X = (X , d) and Y = (Y , d*) be two

metric sequence spaces. An operator F : X → Y

is bounded if F(A) is bounded for every bounded

subset A of X.  An operator  F  is said to be locally

bounded at x
0
 ∈ X if there exist  α, β > 0 such that

F(x) ∈ Bd*
(F(x

0
), β)  whenever  x  ∈ Bd

(x
0
 , α)  and

an operator F is locally bounded if F is locally

bounded at each x ∈ X.

Throughout this research, we defined || ||
1
 :

E
r
(p) → R and || ||

2
 : F

r
(p) → R by ||x||

1
 = sup

|xk |
Pk
M

k r

and  ||x||
2
 = k r xk

pk

k=1

∞

∑





1

M

 respectively.  Suppose

that P
f
 : X →   l1  , where X ∈ {E

r
(p), F

r
(p)}, by uti-

lizing the metric induced by previous associated

function || ||
i
 i = 1, 2, we obtain that for each i,

P
f  

is bounded if and only if for each α > 0 there

exists  β > 0  such that  ||P
f
(x)|| < β   whenever  ||x||

i

< α and P
f
 is locally bounded  at x

0
 ∈ X if there

exist α, β > 0 such that ||P
f
(x)-P

f
(x

0
)|| < β when-

ever  ||x-x
0
||

i
 < α .

It is easy to verify that if P
f
 is bounded

then it is locally bounded. Finally, we note that
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if  f : R → R  is locally bounded then f satisfies

the  condition  A(2
/
 ).   This  was  justified  by

Tainchai (1996).

Superposition operator on E
r
(p)

Firstly, we now give necessary and suffi-

cient conditions for superposition operator acting

from E
r
(p) into   l1 .

Theorem 1

Let  f : N × R → R  satisfy the condition

A(2
/
 ).  The superposition operator P

f
 acts from

E
r
(p) to   l1  if and only if for all α > 0 there exists

a  sequence  (c
k
) ∈   l1   such  that  for  each  k ∈ N,

|f(k, t)| < c
k
 whenever | t|

pk
M < k

rα .

Proof.

(⇐) Let x = (x
k
) ∈ E

r
(p) . We now prove that

P
f
 acts from E

r
(p) to   l1 . Since (x

k
) ∈ E

r
(p) , there

exists  A > 0  such that xk

pk < Ak
r
 for all k ∈ N,  and

thus  we  get  xk

pk
M = xk

pk( )
1

M ≤ (Ak r )
1

M = A
1

M k
r

M ≤

A
1

M k r . It follows from the assumption that there

exists a sequence (c
k
) ∈   l1  such that |f(k, x

k
)| < c

k

for all k ∈ N and consequently we have f(k,  xk )
k=1

∞

∑

≤ ck
k=1

∞

∑ < ∞ . This implies P
f
(x) =  ∈   l1  and thereby

shows that P
f
 acts from E

r
(p) to   l1 .

( ⇒) Suppose that  P
f
  acts from E

r
(p) to   l1 .

For each α > 0 and for each k ∈ N , we define

     A(k, α) = {t ∈ R : | t|Pk < (k
rα)M}

      and    B(k, α) = sup{|f(k, t)| : t ∈ A(k, α)} .

We note that |f(k, t)| < B(k, α) whenever | t|
pk
M <

k
rα . Next, we are going to show that B(k, α ))k=1

∞
 ∈

  l1  for each α > 0.  Suppose that there exists

α
1
 > 0 such that B

k=1

∞

∑ (k,  α1 ) = ∞ .  Then there is a

sequence of positive integers n
0
 = 0 < n

1
 < n

2
 < ... <

n
i
 < ...     and the least positive integer n

i
 such that

B
k =  ni-1+1

ni

∑ (k,  α1 ) > 1 .   For each i ∈ N, there is an ε
i
 > 0

such that

B
k =  ni-1+1

ni

∑ (k,  α1 ) - ε
i
(n

i
 - n

i-1
) > 1 .          (1)

Let i ∈ N be fixed. As f satisfies the condition

A(2/) , 0 < B(k, α
1
) < ∞ for all k ∈ N with n

i-1
 + 1 <

k < n
i 
. It follows from the definition of B(k, α

1
)

that for each  k ∈ N  with n
i-1

 + 1 < k < n
i 
 there is

x
k
 ∈ A(k, α

1
) such that

|f(k, x
k
)| > B(k, α

1
) - ε

i
 .          (2)

From (1) and (2), for each i ∈ N ,

k =  ni-1+1

ni

∑ |f(k, x
k
)| > 

k =  ni-1+1

ni

∑ B(k, α
1
) -

k =  ni-1+1

ni

∑ ε
i

        =
k =  ni-1+1

ni

∑ B(k, α
1
) - ε

i
(n

i
 - n

i-1
) > 1 .

Thus  

k=1

∞

∑
k =  ni-1+1

ni

∑ |f(k, x
k
)| =  

k=1

∞

∑ |f(k, x
k
)| = ∞ , and hence

(f(k, x
k
))

k=1

∞
∉   l1 . Since x

k
 ∈ A(k, α

1
) for all k ∈ N

with n
i-1 

+ 1 < k < n
i
  and for every i ∈ N,  we  obtain

that the sequence (x
k
) is in E

r
(p) and therefore

P
f
(x) = (f(k, x

k
))

k=1

∞ ∈   l1 , which is a contradiction.

Accordingly, B(k, α))
k=1

∞ ∈   l1  for every α > 0. Put

c
k
 = B(k, α)) for all k ∈ N.  Then for each α > 0

there exists a sequence (c
k
) ∈   l1  such that for each

k ∈ N , |f(k, t)| < c
k
 whenever | t|

pk
M < k

rα .
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Theorem 2

Let f : N × R → R Suppose that P
f
 is a

superposition operator which acts from E
r
(p) to

  l1 . Then P
f
 is locally bounded if and only if  f

satisfies the condition A(2
/
 ) .

Proof.

(⇐) Suppose that f satisfies the condition

(A2
/
 ) and P

f
 is superposition operator from E

r
(p)

into   l1 . Let x = (x
k
) ∈ E

r
(p) be given.  We now

show that P
f
 is locally bounded at x. Let  α > 0

and y ∈ E
r
(p) with ||y - x|| < α . Then ||y|| < α + ||x||

and this implies | yk |
pk
M < k

r
 (α + ||x||)

  
for all k ∈ N

and by applying Theorem 1, there is a sequence

(c
k
) ∈   l1  such that for each k ∈ N , |f(k, y

k
)| < c

k

and hence ||P
f
(y)|| =  

k=1

∞

∑ |f(k, y
k
)| <  

k=1

∞

∑ c
k 
= ||(c

k
)|| .

Therefore the operator P
f
 is locally bounded at  x,

as ||P
f
(y) - P

f
(x)|| < ||P

f
(y)|| + ||P

f
(x)|| < ||P

f
(x)|| +

||(c
k
)|| .

( ⇒) Suppose that  P
f
 : E

r
(p) →  l1  is locally

bounded. We shall prove that  f  satisfies the con-

dition A(2
/
 ) ;  it suffices to show that f(k,.) is

locally bounded for all k ∈ N.    Let k ∈ N and

b ∈ R. We define a sequence y = (y
k
) with y

n
 =

b ,  n = k

0 ,  n ≠ k





, and observe that y ∈ E
r
(p) . By the as-

sumption, there exist  α , β > 0 such that

      ||P
f
(x) - P

f
(y)|| < β whenever ||x - y|| < α .   (3)

Let a ∈ R with |a - b| < (k
rα)

M

pk  and let x = (x
n
) be

a sequence with x
n
 = 

a ,  n = k

0 ,  n ≠ k





. We see that x

∈ E
r
(p) and ||x - y|| = sup |xn - yn |

pn
M

nr
 = |a - b|

pk
M

k r
 < α .

It follows from (3) that ||P
f
(x) - P

f
(y)|| < β and

thus |f(k, a) - f(k, b)| <  

k=1

∞

∑ |f(n, x
n
) - f(n, y

n
)| =

||P
f
(x) - P

f
(y)|| < β .  Therefore f(k , .) is locally

bounded at b ∈ R.

Corollary 3

Let f : N × R → R . Suppose that P
f
 is a

superposition operator which acts from E
r
(p) to

  l1 . Then P
f
  is bounded if and only if for each

α > 0 there exist a sequence (c
k
) ∈   l1  such that for

each k ∈ N , |f(k, t)| < c
k
 whenever |t|

pk
M  < k

rα .

Proof .

( ⇒)  The  result  follows  directly  from

Theorem 1 and 2.

(⇐) Suppose the sufficient condition holds.

Let α > 0 and x ∈ E
r
(p) with ||x|| < α .  Thus

sup |xk |
pk
M

k r
 < α , that is |x

k
|

pk
M < k

rα for every k ∈ N.

By the assumption there exists a sequence (c
k
) ∈

  l1   such that  for each  k ∈ N, |f(k, x
k
)| < c

k 
. This

implies ||P
f
(x)|| =  

k=1

∞

∑ |f(k, x
k
)| <  

k=1

∞

∑ c
k 
 = ||(c

k
)|| < ∞ .

Accordingly  P
f
  is bounded.

The  following  two  corollaries  are  easily

verified by utilizing Theorems 1 and 2 and Co-

rollary 3.

Corollary 4

Let f : N × R → R . Suppose that P
f
 is a

superposition operator which acts from E
r
(p) to

  l1 . Then P
f
 is bounded if and only if f satisfies
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the condition A(2
/

) .

Corollary 5

Let f : N × R → R . Suppose that P
f
 is a

superposition operator which acts from E
r
(p) to

  l1 . Then P
f
 is locally bounded if and only if for

each α > 0 there exists a sequence (c
k
) ∈   l1  such

that for each k ∈ N , |f(k, t)| < c
k
 whenever |t|

pk
M  <

k
rα .

Theorem 6

Let f : N × R → R . The superposition opera-

tor P
f
 : E

r
(p) →   l1  is continuous if and only if f

satisfies the condition A(2) .

Proof .

( ⇒) Suppose that P
f
 is continuous on E

r
(p).

Let k ∈ N , t
0
 ∈ R and ε > 0 be given. As P

f
 is

continuous at t
0 
e

(n)
 ∈ E

r
(p) , there is a δ > 0 such

that for each z = (z
k
) ∈ E

r
(p) ,

 ||P
f
(z) - P

f
(t

0
e

(n)
)|| < ε  whenever  ||z - t

0
e

(n)
|| < δ . (4)

Let  t ∈ R  be such that  |t - t
0
| < (δk

r
)

M

pk  and  y
n
 =

0 ,  n ≠ k

t ,   n = k





 .  Observe that y = (y
n
) ∈ E

r
(p) and ||y -

t
0
e

(n)
|| = | t -  t 0 |

Pk
M

k r
 < δ .  Employing (4), we have

|P
f
(y) - P

f
(t

0
e

(n)
)|| < ε and hence |f(k, t) - f(k, t

0
)| <

||P
f
(y) - P

f
(t

0
e

(n)
)|| < ε .  Therefore f satisfies the

condition A(2).

(⇐) Suppose that f satisfies the condition

A(2). We are going to justify that P
f
 is continuous

on  E
r
(p) . Let x = (x

k
) ∈ E

r
(p) and ε > 0. It follows

from Theorem 1 that for each α > 0 there exists

a sequence (c
k
) ∈   l1  such that for every k ∈ N ,

|f(k, t)| < c
k
  whenever |t|

pk
M  < k

rα  .         (5)

As (x
k
) is in E

r
(p) , there is β > 0 such that |x

k
|
Pk <

k r β
2







M

 for all k ∈ N .  By (5), there is a sequence

(c
k
) ∈   l1  such that for all k ∈ N ,

|f(k, x
k
)| < c

k                  
(6)

and a sequence ( ck

* ) ∈   l1  such that for each k ∈ N ,

|f(k, t)| < ck

*  whenever  |t|
pk
M  < k

r β .     (7)

Because (c
k
) and ( ck

* ) are in   l1 , there is N
1
 ∈ N -

{1} such that

     ck <
k=N1

∞

∑ ε
3

 and ck

* <
k=N1

∞

∑ ε
3

 .         (8)

As a result f(k,.) is continuous at x
k
 for all k ∈

{1, 2,..., N
1
-1} .  This implies that there exists

δ
k
 > 0 with δ

k
 < min 1,

β
2









such that for each k ∈

{1, 2,..., N
1
-1} and for every t ∈ R ,

  |f(k, t) - f(k, x
k
)| < ε

3(N1 -1)
 whenever

     |t - x
k
| < δ

k
 .         (9)

Let y = (y
k
) ∈ E

r
(p) be such that ||y - x|| < δ with δ <

min δ k

k r | k = 1,2,..., N1 − 1







 .  Since ||y - x|| < δ ,

sup |yk  -  xk |
Pk
M

k r
 < δ and hence |y

k
 - x

k
|

Pk
M  < k

rδ

for all k ∈ N.  Thus for all k is in {1,2,...,N
1
-1} ,

|y
k
 - x

k
| < (k

rδ)
M

Pk  < (δ
k
)

M

Pk < δ
k 
. By (9), we have
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|f(k, y
k
) - f(k, x

k
)| < ε

3(N1 -1)
 for every k ∈ {1, 2,..., N

1
-1}, and consequently

| f (k,  yk ) - f (k,  xk )|<
ε
3k=1

N1-1

∑  . (10)

As |y
k
| < |y

k
 - x

k
| + |x

k
| < 

β
2







M

Pk

 + k r β
2







M

Pk

< 
1
2

k r
 β( )

M

Pk  + 
1
2

k r
 β( )

M

Pk  = k r
 β( )

M

Pk , it follows from (7) that for

all k ∈ N ,

|f(k, y
k
)| < ck

* . (11)

Utilizing (6), (8), and (11) we get

| f (k,  xk )|
k=Ν1

∞

∑ < ck
k=Ν1

∞

∑ < ε
3

 and | f (k,  yk )|
k=Ν1

∞

∑ <  ck

*

k=Ν1

∞

∑ < ε
3

 . (12)

Finally, by using (10) and (12) we obtain that

||P
f
(y) - P

f
(x)||  = | f (k,  yk ) - f (k,  xk )|

k=1

∞

∑

        =  | f (k,  yk ) - f (k,  xk )|
k=1

Ν1−1

∑ +  | f (k,  yk ) - f (k,  xk )|
k=Ν1

∞

∑

        <    | f (k,  yk ) - f (k,  xk )|
k=1

Ν1−1

∑ +  | f (k,  yk ) +
k=Ν1

∞

∑ | f (k,  xk )|
k=Ν1

∞

∑ < ε
3

+ ε
3

+ ε
3

= ε .

The proof of Theorem 6  is  then complete.

Theorem 7

Let  f : N × R → R .  The superposition

operator  P
f
 : E

r
(p) →   l1  is uniformly continuous

on every bounded subset of E
r
(p) if and only if  f

satisfies the condition A(2).

Proof.

( ⇒) The  result  is  an  immediate  conse-

quence  of  Theorem 6.

(⇐) Assume that f satisfies A(2).  To show

that P
f
 is uniformly continuous on every bounded

subset of E
r
(p) , it is enough to prove that P

f
  is

uniformly continuous on Bd
(0, r)  for all  r > 0.

Let σ > 0 and ε > 0 be given.  Since f satisfies

the condition A(2), f satisfies the condition A(2
/

)

and hence it follows from Theorem 1 that there

exists a sequence (c
k
) ∈   l1  such that for each k ∈ N,

 |f(k, t)| < c
k
  whenever  |t|

pk
M  < k

rσ .       (13)

Because (c
k
) ∈   l1 , there is N

1
 ∈  N - {1} such that

ck <
k=N1

∞

∑ ε
3

 .  As f(k,.) is uniformly continuous on

- (k rσ)
M

Pk ,  (k rσ)
M

Pk








  for every k ∈ {1, 2,..., N

1
-1},
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there is 0 < δ
k
 < 1 such that for each k ∈ {1, 2,..., N

1
-1} and for all a, b ∈ - (k rσ)

M

Pk ,  (k rσ)
M

Pk








 ,

 |f(k, a) - f(k, b)| < ε
3(N1 -1)

 whenever |a - b| < δ
k
 . (14)

Let x and y ∈ Bd
(0, σ) be such that ||y -x|| < δ , where δ < min

δ k

k r | k = 1,2,..., N1 − 1







 .  Hence |x
k
| < (k rσ)

M

Pk

and |y
k
| < (k rσ)

M

Pk  for all  k ∈ N and |y
k
 - x

k
| < (k

rδ)
M

Pk  < (δ
k
)

M

Pk  < δ
k
 for all k ∈ {1, 2,..., N

1
-1}.  Employing

(14), we obtain that for all k ∈ {1, 2 , ..., N
1
-1}, |f(k, y

k
) - f(k, x

k
)| < ε

3(N1 -1)
 and therefore

| f (k,  yk ) - f (k,  xk )|<
ε
3k=1

N1-1

∑  . (15)

Because |x
k
| < (k

rσ)
M

Pk  and |y
k
| < (k

rσ)
M

Pk  for all k ∈ N, we apply (13) to get |f(k, x
k
)| < c

k
 and

|f(k, y
k
)| < c

k
 for all k ∈ N. So we have

      | f (k,  xk )|
k=Ν1

∞

∑ < ck
k=Ν1

∞

∑ < ε
3

and | f(k,  yk )|
k=Ν1

∞

∑ < ck
k=Ν1

∞

∑ < ε
3

 . (16)

Therefore, utilizing (15) and (16), we obtain

||P
f
(y) - P

f
(x)|| = | f (k,  yk ) - f (k,  xk )|

k=1

∞

∑

=  | f (k,  yk ) - f (k,  xk )|
k=1

Ν1−1

∑ +  | f (k,  yk ) - f (k,  xk )|
k=Ν1

∞

∑

<  | f (k,  yk ) - f (k,  xk )|
k=1

Ν1−1

∑ +  | f (k,  yk ) +
k=Ν1

∞

∑ | f (k,  xk )|
k=Ν1

∞

∑ < ε
3

+ ε
3

+ ε
3

= ε .

Hence the operator  P
f 
 is uniformly continuous

on every bounded subset of  E
r
(p).

Superposition operator on F
r
(p)

Theorem 8

Let  f : N × R → R  satisfy the condition

A(2
/

). The superposition operator P
f
 acts from

F
r
(p) to   l1  if and only if the following condition is

satisfied (*)  there  exist  α, β > 0 and a sequence

(c
k
) ∈   l1  such that for each k ∈ N,

       |f(k, t)| < c
k
 + αk

r 
|t|

pk whenever k
r 
|t|

pk < βM
 .

Proof.

(⇐) Suppose that the condition (*) holds.

Let x = (x
k
) ∈ F

r
(p) .  By the assumption, there

exist α, β > 0 and (c
k
) ∈   l1  such that for each k ∈ N,
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|f(k, t)| < c
k
 + αk

r 
|t|

pk whenever k
r 
|t|

pk < βM
 .

Since (x
k
) ∈ F

r
(p) , k r | xk |Pk < ∞

k=1

∞

∑  , so we get that

lim
k→∞

k r | xk |Pk = 0 and then there is an integer i ∈ N

such that k r | xk |Pk < βM for all k > i. It follows from

the assumption that for each k > i, |f(k, x
k
)| < c

k
 +

αk
r
|x

k
|
pk .  Therefore         | f (k,  xk )|

k=i

∞

∑ ≤ ck
k=i

∞

∑ +

α k r | xk |Pk ≤  (c
k
) + α k r | xk |Pk

k=i

∞

∑ < ∞
k=i

∞

∑  and then we

have P
f
(x) = (f(k, x

k
))

k=1

∞ ∈   l1 . Hence P
f
 acts from

F
r
(p) to   l1 .

( ⇒) Suppose that P
f
 acts from F

r
(p) to   l1 .

For each α, β > 0 and for each positive integer k ,

we define

A(k, α, β) = t ∈ R | t|
P k ≤ min

βM

k r ,
| f (k, t)|

αk r





















and B(k, α, β) = sup{|f(k, t)| ; t ∈ A(k, α, β)} .

If k
r
|t|

pk < βM and t ∈ A(k, α, β) then |f(k, t)| <

B(k, α, β) .   And if k
r
|t|

pk < βM  and t ∉ A(k, α, β)

then |f(k, t)| < αk
r
|t|

pk.  Thus we have that

 |f(k, t)| < B(k, α, β) + αk
r
|t|

pk whenever k
r
|t|

pk < βM .

Next we shall show that (B(k, α
1
, β

1
))

k=1

∞ ∈   l1  for

some α
1 
, β

1
 > 0. Suppose that for each α , β > 0,

B(k,  α,
k=1

∞

∑  β) = ∞. We get that for each integer i ∈ N,

B(k,2i
 ,

1
2i

k=1

∞

∑ ) = ∞ .  Then there is a sequence of

positive integers n
0
 = 0 < n

1
 < n

2
 < ... < n

i
 < ...

and  the  least  positive  integer  n
i 
 such  that

B(k,2i
 ,

1
2i

k=ni-1+1

ni

∑ ) > 1.    Therefore for each i ∈ N,

there is  ε
i
 > 0  such that

 B(k,2i
 ,

1
2i

k=ni-1+1

ni

∑ ) - ε
i
(n

i 
- n

i-1 
) > 1 .       (17)

Let i ∈ N be fixed. Since f satisfies the condition

A(2
/

), 0 < B(k,2i
 ,

1
2i

) < ∞  for  all k ∈ N with n
i-1 

 +

1 < k < n
i
 .  It follows from the definition of

B(k,2i
 ,

1
2i

) that for each k ∈ N with n
i-1 

+ 1 <  k <

n
i 
, there exists x

k
 ∈ B(k,2i

 ,
1
2i

) such that

| f (k,  xk )|> B(k,2i
 ,

1
2i ) − ε i  .       (18)

From (17) and (18), for each i ∈ N,

    | f (k,  xk )|> B(k,2i
 ,

1
2i

k=ni-1+1

ni

∑ ) −   ε i
k=ni-1+1

ni

∑
k=ni-1+1

ni

∑ =

    B(k,2i
 ,

1
2i

k=ni-1+1

ni

∑ )  - e
i
(n

i 
- n

i-1 
) > 1 .

Thus 
i=1

∞

∑ | f (k,  xk )|=
k=ni-1+1

ni

∑ | f (k,  xk )|=  
k=1

∞

∑ ∞ , and hence

we have (f(k, x
k
))

k=1

∞ ∉   l1  . As x
k
 ∈ B(k,2i

 ,
1
2i

) for

all k ∈ N with n
i-1 

+ 1 <  k < n
i 
, we obtain that for

each k ∈ N with n
i-1 

+ 1 <  k < n
i 
,

 |x
k
|
pk < 1

k r

1
2i







Μ

 < 1
k r 2i

 and |x
k
|
pk < | f (k,  xk )|

k r 2i
.  (19)

Since n
i
 is the least positive integer such that

B(k,2i
 ,

1
2i

k=ni-1+1

ni

∑ )  > 1 , we obtain B(k,2i
 ,

1
2i

k=ni-1+1

ni -1

∑ )  <

1.  It follows from (19),
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k=ni-1+1

ni

∑ k r | xk |pk =
k=ni-1+1

ni -1

∑ k r | xk |pk +  ni

r | xni
|
pni

           < 
k=ni-1+1

ni -1

∑ k r | f (k,  xk )|

2i k r





 + ni

r 1
2i ni

r







≤
k=ni-1+1

ni -1

∑ | f (k,  xk )|

2i + 1
2i

           < 
k=ni-1+1

ni -1

∑
B(k,2i

 ,
1
2i )

2i + 1
2i ≤ 1

2i + 1
2i = 2

2i
 .

Thus k r | xk |pk =
k=1

∞

∑
i=1

∞

∑  k r | xk |pk

k=ni-1+1

ni

∑ ≤ 2
2i

i=1

∞

∑ = 2  and

consequently (x
k 
) is in F

r
(p) .  By the assumption

we have that P
f
(x) = (f(k, x

k 
))

k=1

∞ ∈   l1 , which is a

contradiction.   Accordingly (B(k, α , β))
k=1

∞ ∈   l1 .

For all k ∈ N, we put c
k
 = B(k, α , β) then we have

(*).

Before we prove Theorem 9, we need the

result that, if f : R → R is locally bounded then f

satisfies the condition A(2
/

), which was proved

by Tainchai (1990).

Theorem 9

Let f : N × R → R . Suppose that P
f
 is a

superposition operator which acts from F
r
(p) to

  l1 . Then P
f
  is locally bounded if and only if  f

satisfies the condition A(2
/

).

Proof.

(⇐) Suppose that f satisfies the condition

A(2
/

). Let z = (z
k
) ∈ F

r
(p) . We now prove that P

f

is locally bounded at z . Since f satisfies the con-

dition  A(2
/

)  and  P
f
  acts  from to F

r
(p)  to   l1 ,  it

follows from Theorem 8,  there are α, β > 0 and

a sequence (c
k
) ∈   l1  such that for each k ∈ N,

  |f(k, t)| < c
k
 + αk

r
|t|

pk whenever k
r
|t|

pk < βM .   (20)

Let η = β
2

and (x
k
) ∈ F

r
(p) with ||x - z|| < η .

Since ||z|| < ∞ , there is an i ∈ N such that

          z{i., i+1, i+2, ...}  =  k r | zk |pk

k=i

∞

∑





1

Μ
 < η .         (21)

Because ||x - z|| < η ,  we have

                     k r | xk - zk |pk

k=i

∞

∑





1

Μ
< η .       (22)

It  follows  from  (21)  and  (22) ,

 k r | xk |pk

k=i

∞

∑





1

Μ
=  k r | xk - zk + zk |pk

k=i

∞

∑





1

Μ
<

     k r | zk |pk

k=i

∞

∑





1

Μ
 +  k r | xk - zk |pk

k=i

∞

∑





1

Μ
 < η + η = β

and then k r | xk |pk < βΜ for all k > i. By (20) , we get

that for each k > i , |f(k, x
k
)| < c

k
 + αk

r
|x

k
|
pk . Con-

sequently,

 | f (k,  xk )|
k=i

∞

∑ ≤ ck + α  k r | xk |pk

k=i

∞

∑
k=i

∞

∑ ≤ (ck ) + αβΜ
.(23)

For each k ∈ N, let m
k
 = sup

t-zk ≤ ηM

kr











1

pk

 |f(k, t)| .  As f
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satisfies the condition A(2/), we have that m
k
 < ∞

for every k ∈ N. And since ||x - z|| < η , |x
k
 - z

k
| <

ηM

k r







1
pk

 for every k ∈ N  and then

|f(k, x
k
)| < m

k
 for every k ∈ N .        (24)

It follows from (23) and (24) ,

||P
f
(x)|| =  | f (k,  xk )|

k=1

∞

∑  =  | f (k,  xk )|
k=1

i-1

∑  +  | f (k,  xk )|
k=i

∞

∑

<  mk
k=1

i-1

∑  + ||(c
k
)|| + αβM  , and hence ||P

f
(x) - P

f
(z)|| <

||P
f
(x)|| + ||P

f
(z)|| < ||P

f
(x)|| +  mk

k=1

i-1

∑ + ||(c
k
)|| + αβM .

We choose  γ = ||P
f
(x)|| +  mk

k=1

i-1

∑ + ||(c
k
)|| + αβM  , so

we obtain ||P
f
(x) - P

f
(z)|| < γ .  The operator P

f
 is

then locally bounded at z.

( ⇒) Suppose that P
f
 acting from F

r
(p) to   l1

is locally bounded. We are going to show that f

satisfies the condition A(2/) by proving that f( k , .)

is locally bounded for all k ∈ N.  Now let k ∈ N

and b ∈ R.  We define a sequence y = (y
k 
) with

y
n
 = 

b ,  n = k

0,   n ≠ k





.  Observe that y ∈ P
f
(x) and by

assumption, there exist α, β > 0 such that

  ||P
f
(x) - P

f
(y)|| < β whenever  ||x - y|| < α .    (25)

Let a ∈ R with |a - b| < 
αM

k r







1
pk

and let x = (x
k
 ) be

a sequence with x
n
 = 

a ,  n = k

0,   n ≠ k





.   We suddenly

have x ∈ F
r
(x) and ||x - y|| =  n r | xn - yn |pn

n=1

∞

∑





1

Μ
 . It

follows from (25) that ||P
f
(x) - P

f
(y)|| < β and thus

      |f(k, a) - f(k, b)| <  | f (n,  xn )
n=1

∞

∑ − f (n,  yn )|  =

                    ||P
f
(x) - P

f
(y)|| < β .

Hence f( k ,. ) is locally bounded at b ∈ R.

The following corollary is readily verified

by employing Theorem 9.

Corollary  10

Let f : N × R → R satisfy the condition A(2).

If the superposition operator P
f
 acts from F

r
(p) to

  l1  then the operator  P
f
  is locally bounded.

The next corollary is a sequence of above

corollary.

Corollary 11

Let f : N × R → R .  If the superposition

operator  P
f
  acting from F

r
(p) to   l1  is bounded then

f  satisfies the condition A(2
/

).

Lemma 12

Let f : N × R → R  satisfy the condition

A(2
/

). If for each β > 0 there is an α(β) > 0 such

that for any finite sequence (x
k 
) ,

     | f (k,  xk )|
k=1

∞

∑  < α(β)  provided k r | xk |pk

k=1

∞

∑ < βM  .

Then there exists a sequence c(β) = (c
k
(β)) ∈   l1

with c
k
(β) > 0 for all k ∈ N and ||c(β)|| < α(β) such

that for each k ∈ N ,
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|f(k, t)| < c
k
(β) + 2 α(β)

βM
k

r
|t|

pk  whenever  k
r
|t|

pk < βM   .

Proof.

Let β > 0. By the assumption, there is α(β)

> 0 such that for any finite sequence (x
k 
) ,

 | f (k,  xk )|
k=1

∞

∑ ≤α(β) provided k r | xk |pk

k=1

∞

∑ < βM .  (26)

For each k ∈ N, we define

    h
β
(k, t) = max 0,  | f (k,  t)| -2

α(β)
βM k r | t|pk









 and

        c
k
(β) = sup {h

β
(k, t) ; k

r
|t|

pk < βM } .

Let k ∈ N and t ∈ R be such that  k
r
|t

k
|
pk < βM  .   If

h
β
(k, t) = 0, |f(k, t)| < c

k
 (β) + 2

α(β)
βM k r | t|pk ; other-

wise, h
β
(k, t) = | f (k,  t)| -2

α(β)
βM k r | t|pk  . Therefore

for each β > 0 and k ∈ N,  |f(k, t)| < c
k

 (β) +

2
α(β)
βM k r | t|pk whenever  k

r
|t

k
|
pk < βM . Next we shall

show that  c(β) = (c
k
(β))  ∈   l1  and ||c(β)|| < α(β) .

Since  f  satisfies the condition A(2/), h
β
(k, t) is

bounded on every bounded subset of real numbers

for all k ∈ N, so we have that 0 < c
k
(β) < ∞  for all

k ∈ N. By the definition of c
k
(β) , for each ε > 0

there exists the sequence y = (y
k 
) with k

r
|y

k
|
pk < βM

for all k ∈ N and

c
k
(β) < h

β
(k, y

k 
) + 

ε
2k

 .     (27)

Let the sequence y 
/ be defined as follow :

y 
/

k
 = 

yk  ,  hβ (k,  t) > 0

0  ,   hβ (k,  t) = 0






.

For any m ∈ N, a finite sequence (m
i
) with m

1
 = 1 <

m
2 
< ... < m

s
 = m can be found such that k r | yk

/ |Pk

k=1

m

∑ =

k r | yk

/ |Pk

k=1

m2 -1

∑ + k r | yk

/ |Pk +  
k=m2

m3-1

∑ ...  +  k r | yk

/ |Pk

k=ms -1

m

∑  with

βΜ

2
≤   k r | yk

/ |Pk

k=mi

mi+1-1

∑ ≤ βM  for all i  ∈ {1, 2, ... , s - 2}

and 0 < k r | yk

/ |Pk

k=ms-1

m

∑ < βM. We let z
(i)
 = y/

{mi , mi + 1 , ..., mi + 1 - 1}

for all i  ∈ {1, 2, ... , s - 2} and z
(s-1)

 = y/

{ms-1 , ms-1 + 1, ..., ms }
 .

Consequently for each i  ∈ {1, 2, ... , s - 1} , z
(i)
 ∈ Φ

and k r | zk

(i) |pk

k=1

∞

∑ < βM.  From (26), we obtain that

| f (k, zk

(i) )|
k=1

∞

∑  <  α(β)  for  all  i   ∈  {1, 2, ... , s - 2}.

Accordingly for each i  ∈ {1, 2, ... , s - 2},

        | f (k, zk

(i) )
k=mi

mi+1-1

∑ |< α(β)  and

                 | f (k, zk

(s-1) )
k=ms-1

m

∑ |< α(β) .       (28)

We define f
1
(k, t) = 

f(k,  t),  hβ (k,  t) > 0

0,          hβ (k,  t) = 0






 . It follows

from (28),

         | f 1 (k, zk

(i) )
k=mi

mi+1-1

∑ | < α(β) for

                 every i ∈ {1, 2, ... , s - 2}.   (29)

and

      | f 1 (k, zk

(s-1) )
k=ms-1

m

∑ |  < α(β) .       (30)

By definitions of y/ , f
1
(k, t) and h

β
(k, t) we obtain
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 h
β
(k, y

k
) = |f

1
(k, y/

k
 )| - 2

α(β)
βM k r | yk

/ |pk
(31)

and hence it follows from (27), (29), (30)  and (31),

ck (β) <
k=1

m

∑  hβ (k,  yk ) +
k=1

m

∑  
ε

2k
k=1

m

∑

= hβ (k,  yk )
k=1

m2 -1

∑ + hβ (k,  yk ) +  ...  +  hβ (k,  yk )
k=ms -1

m

∑
k=m2

m3-1

∑ + ε
2k

k=1

m

∑

=  | f 1 (k,  yk

/ )| -2
α(β)
βM k r | yk

/ |pk




k=1

m2 -1

∑ +  | f 1 (k,  yk

/ )| -2
α(β)
βM k r | yk

/ |pk




k=m2

m3-1

∑ + ... +

    | f 1 (k,  yk

/ )| -2
α(β)
βM k r | yk

/ |pk






+ ε
2k

k=1

m

∑
k=ms -1

m

∑

=  | f 1 (k,  zk

(1) )| -2
α(β)
βM k r | zk

(1) |pk




k=1

m2 -1

∑ +  | f 1 (k,  zk

(2) )| -2
α(β)
βM k r | zk

(2) |pk




k=m2

m3-1

∑ + ... +

    | f 1 (k,  zk

(s-1) )| -2
α(β)
βM k r | zk

(s-1) |pk






+ ε
2k

k=1

m

∑
k=ms-1

m

∑

<  (s-1)α(β) - 2
α(β)
βM

 
k=1

m2 -1

∑ k r |zk

(1) |pk +  k r |zk

(2) |pk +  ...  + k r |zk

(s-1) |pk

k=ms-1

m

∑
k=m2

m3-1

∑



 +  

ε
2k

k=1

m

∑

<  (s-1)α(β) - 2
α(β)
βM

(s-2)
βΜ

2
 +  

ε
2k

k=1

m

∑

=  α(β) +  
ε

2k
k=1

m

∑

and  thus  ck (β) = lim
m→∞

 ck (β) ≤ α(β) + ε
k=1

m

∑
k=1

∞

∑ .  Since

ε > 0 is arbitrary, ck (β) ≤ α(β)
k=1

∞

∑ and thus we get

that ||c(β)|| < α(β) . Hence  the lemma is  proved.

Theorem 13

Let  f : N × R → R .  The superposition op-

erator P
f
 acting from F

r
(p) to   l1  is bounded if and

only if for every ρ > 0 there exist α(ρ) > 0 and

a sequence c(ρ) = (c
k
(ρ)) ∈   l1  such that  for each

k ∈  N,  |f(k, t)| < c
k
(ρ) + 2

α(ρ)
ρM k r | t|pk  whenever

k r | t|pk < ρM .

Proof .

(⇐) Suppose that the condition holds. Let

ρ > 0 and x ∈ F
r
(p) with ||x|| < ρ .  Then  k r | xk |pk

k=1

∞

∑





1

Μ

< ρ and consequently k r | xk |pk < ρM for every k ∈ N.

By the assumption,  there is an α(ρ) > 0 and a

sequence  c(ρ) = (c
k
(ρ)) ∈   l1  such that for each
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k ∈  N , |f(k, x
k
)| < c

k
(ρ) + 2

α(ρ)
ρM k r | xk |pk .  As  P

f
(x)  =

(f(k, x
k
))k=1

∞  , ||P
f
(x)|| = | f (k,  xk )|

k=1

∞

∑  < ck (ρ)
k=1

∞

∑  +

2
α(ρ)
ρM ρM  < |ck (ρ)|

k=1

∞

∑ + 2α(ρ) = ||c(ρ)|| + 2α(ρ) .

Hence P
f
 is bounded.

( ⇒) Suppose that the superposition opera-

tor P
f
 acting from F

r
(p) to   l1  is bounded. Now let

ρ > 0.  For each x ∈ Φ with ||x|| < ρ ,  we have

 k r | xk |pk

k=1

∞

∑





1

Μ
< ρ .  Since P

f
 is bounded,  there

exists an α(ρ) > 0 such that ||P
f
(x)|| = | f (k,  xk )|

k=1

∞

∑  <

α(ρ) < ∞ . By employing Corollary 11, we obtain

that f satisfies the condition A(2
/

). Finally, apply

Lemma 12 then there is c(ρ) = (c
k
(ρ)) ∈   l1  with

||c
k
(ρ)|| < α(ρ) such that for each k ∈ N ,

|f(k, t)| < c
k
(ρ) + 2

α(ρ)
ρM

k r | t|pk  whenever k r | t|pk < ρM.

This completes the proof of the theorem.

Theorem 14

Let f : N × R → R.   The  superposition

operator P
f
  acting from F

r
(p) to   l1  is continuous  if

and only if  f satisfies the condition A(2).

Proof .

( ⇒) Suppose that  P
f
  is continuous on F

r
(p).

Let k ∈ N, t
0
 ∈ R and ε > 0 be given.  Since P

f
 is

continuous at t
0
e

(n)
 ∈ F

r
(p) , there is a δ > 0 such

that for each z = (z
k
) ∈ F

r
(p) ,

    ||P
f 
(z) - P

f 
(t

0
e

(n)
)|| < ε whenever

      ||z - t
0
e

(n)
|| < δ  .        (32)

Let t ∈ R be such that |t - t
0
| < δΜ

k r







1

pk
and y

n
 =

0 ,  n ≠ k

t ,   n = k





 .  Then y = (y
n
) ∈ F

r
(p) and ||y - t

0
e

(n)
|| =

k r | t - t 0 |pk( )
1

Μ  < δ . By (32), we have ||P
f 
(y) - P

f 
(t

0
e

(n)
)||

< ε  and thus |f(k, t) - f(k, t
0
)| < ||P

f 
(z) - P

f 
(t

0
e

(n)
)|| < ε.

Hence the function f(k,.) is continuous on R for

all k ∈ N .  That is f satisfies the condition A(2).

(⇐) Suppose that f(k,.) is continuous on R

for all k ∈ N . We shall show that  P
f
  is continuous

on F
r
(p) .  Let x = (x

k 
) ∈ F

r
(p) and ε > 0 .  Since f

satisfies the condition A(2),  so we get that f

satisfies the condition A(2
/

). As P
f
 acts from F

r
(p)

to   l1 , so we apply  Theorem 8,  then there exist

α,β > 0 and a sequence (c
k
) ∈   l1  such that for each

k ∈ N ,

   f(k, t)| < c
k
 + αk

r
|t|

pk  whenever  k
r
|t|

pk < βM.   (33)

As (x
k
) ∈ F

r
(p) , we get k r | xk |Pk < ∞

k=1

∞

∑  and therefore

lim
k→∞

k r | xk |Pk = 0.  And since (c
k
) ∈   l1  , we obtain

 |ck |< ∞ 
n=1

∞

∑ . Accordingly there is N
i
 ∈ N - {1} such

that

    ||(x
k
) k=Νi

∞ || =  k r | xk |pk

k=Ni

∞

∑





1

Μ

 < 1
2

ε
α







1

Μ
 ,     (34)
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        |x
k
|
pk < 1

k r

β
2







Μ

 for all k > N
i
 and ck <

ε
6k=Νi

∞

∑  . (35)

Using (33), we have that |f(k, x
k
)| < c

k
 + αk

r
|x

k
|
pk   for all k > N

i  
and hence

 | f (k,  xk )|
k=Νi

∞

∑ ≤ ck + α  k r | xk |pk

k=Νi

∞

∑
k=Νi

∞

∑ < ε
6

+α 1
12M

ε
α





 < ε

3
. (36)

Since f(k,.) is continuous at x
k
 for all k ∈ {1, 2 ,... , , N

i
 - 1} ,   there exist δ > 0 with δ < min

1,  
β
2







Μ

 ,  
1

12
ε
α







1

Μ










such that for each k ∈ {1, 2 , ... , , N

i
 - 1} and t ∈ R

     |f(k, t) - f(k, x
k 
)| < ε

3(Ni -1)
 whenever |t - x

k
| < δ . (37)

Let z = (z
k 
) ∈ F

r
(p) be such that ||x - z|| < δ hence

    |z
k
 - x

k
| < δΜ

k r







1

pk
< δ   for all  k ∈ N . (38)

By (37), we get that |f(k, z
k
) - f(k, x

k
)| < ε

3(Ni -1)
 for every k ∈ {1, 2 , ... , , N

i
 - 1} and thus

  
k=1

Ni -1

∑ | f (k, zk ) - f (k, xk )|<
ε
3

 . (39)

By  choosing  δ  <  min 1,  
β
2







Μ

 ,  
1

12
ε
α







1

Μ










  and  ||x - z|| < δ , we obtain  ||(z

k
) k=Νi

∞ - (x
k
) k=Νi

∞ || < ||z - x|| <

δ < 1
12

ε
α







1

Μ
. Employing (34) ,

 k r | zk |pk

k=Νi

∞

∑





1

Μ

 = ||(z
k
) k=Νi

∞ || <  ||(x
k 
) k=Νi

∞ || + ||(z
k 
) k=Νi

∞ - (x
k 
) k=Νi

∞ || < 1
12

ε
α







1

Μ
+ 1

12
ε
α







1

Μ
= 1

6
ε
α







1

Μ
 ,

this implies  k r | zk |pk

k=Νi

∞

∑ < 1
6M







ε
α

 < ε
6α

.   For each  k > N 
i
 ,  by utilizing (35) and (38) ,

         |z
k
| < |x

k
| + |z

k
 - x

k
|  < βΜ

2M k r







1

pk

 + δΜ

k r







1

pk
 <  1

2
βΜ

k r







1

pk

 + 1
2

βΜ

k r







1

pk

 = βΜ

k r







1

pk

  ,

and hence k
r 
|z

k 
|
pk < βM .  It follows from  (33), |f(k, z

k
)| < c

k
 + αk

r 
|z

k
|
pk for all k > N

i
 and then
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 | f (k,  zk )
k=Ni

∞

∑ |  <  ck
k=Ni

∞

∑  + α  k r | zk |
pk

Μ

k=Ni

∞

∑ < ε
6

 + α ε
6α

 = ε
3

  . (40)

By using (36), (39) and (40), we have

    ||P
f
(z) - P

f
(x)|| =  

k=1

∞

∑ | f (k, zk ) - f (k, xk )|

           =  
k=1

Ni -1

∑ | f (k, zk ) - f (k, xk )| +  
k=Ni

∞

∑ | f (k, zk ) - f (k, xk )| <   
k=1

Ni -1

∑ | f (k, zk ) - f (k, xk )| +

               
k=Ni

∞

∑ | f (k, zk )|  +  
k=Ni

∞

∑ | f (k, xk )|  < ε
3

+ ε
3

 + ε
3

 = ε .

The proof of this theorem is then completed.

The last of our results is Corollary 15 which

follows from Theorem 9 and 14.

Corollary 15

Let f : N × R → R .   If the superposition

operator  P
f
  acting from F

r
(p) to   l1  is continuous

then  P
f
  is locally bounded.
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