

On bi- Γ -ideals in Γ -semigroups

Ronnason Chinram¹ and Chutiporn Jirojkul²

Abstract

Chinram, R. and Jirojkul, C.

On bi- Γ -ideals in Γ -semigroups

Songklanakarin J. Sci. Technol., 2007, 29(1) : 231-234

In 1952, R. A. Good and D. R. Hughes introduced the notion of bi-ideals of semigroups and in 1981, the concept of Γ -semigroups was introduced by M. K. Sen. We have known that Γ -semigroups are a generalization of semigroups. In this research, the notion of bi- Γ -ideals in Γ -semigroups is introduced. We show that bi- Γ -ideals in Γ -semigroups are a generalization of bi-ideals in semigroups and we give some properties for bi- Γ -ideals in Γ -semigroups. We give the two definitions as follows : A Γ -semigroup M is called a bi-simple Γ -semigroup if M is the unique bi- Γ -ideal of M and a bi- Γ -ideal B of M is called a minimal bi- Γ -ideal of M if B does not properly contain any bi- Γ -ideal of M . We show that a bi- Γ -ideal B of a Γ -semigroup M is a minimal bi- Γ -ideal of M if and only if B is a bi-simple Γ -semigroup.

Key words : bi- Γ -ideals, Γ -semigroups, bi-simple Γ -semigroups, minimal bi- Γ -ideals

¹Ph.D.(Mathematics) ²M.Sc.(Mathematics), Department of Mathematics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112

Corresponding e-mail : ronnason.c@psu.ac.th

Received, 15 August 2005 Accepted, 1 August 2006

บทคัดย่อ

รัณสสรพ์ чинรัมย์ และ ชุดิพร จิโรจน์กุล
บน Γ -อุดมคติใน Γ -กึ่งกลุ่ม
ว. สงขลานครินทร์ วทท. 2550 29(1) : 231-234

ในปี 1952 อาร์. เอ. กูด และ ดี. อาร์. ฮิวส์ ได้นำเสนอแนวคิดเรื่องอุดมคติในของกึ่งกลุ่มและในปี 1981 แนวความคิดเรื่อง Γ -กึ่งกลุ่มถูกนำเสนอโดยเย็น เค เช่น เรายังว่า Γ -กึ่งกลุ่มเป็นนัยทั่วไปของกึ่งกลุ่ม ในการวิจัยนี้ Γ -อุดมคติใน Γ -กึ่งกลุ่มได้รับการแนะนำ เราได้แสดงว่า Γ -อุดมคติใน Γ -กึ่งกลุ่มเป็นนัยทั่วไปของอุดมคติในกึ่งกลุ่มและเราให้สมบัติบางอย่างของ Γ -อุดมคติใน Γ -กึ่งกลุ่ม เราให้บทนิยามสองบทดังต่อไปนี้ เราเรียก Γ -กึ่งกลุ่ม M ว่า Γ -กึ่งกลุ่มเชิงเดียวใน ถ้า M เป็น Γ -อุดมคติในเพียงหนึ่งเดียวท่านั้นของ M และ เราเรียก Γ -อุดมคติใน B ของ M ว่า Γ -อุดมคติในเล็กสุดเฉพาะกลุ่ม ถ้า B ไม่บรรจุ Γ -อุดมคติใน C ของ M ซึ่ง $B \neq C$ เราแสดงว่า Γ -อุดมคติใน Γ -กึ่งกลุ่มเป็น Γ -อุดมคติในเล็กสุดเฉพาะกลุ่ม ก็ต่อเมื่อ B ว่า Γ -กึ่งกลุ่มเชิงเดียวใน

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อ้าเกอหาดใหญ่ จังหวัดสงขลา 90112

Preliminaries

In 1952, R. A. Good and D. R. Hughes have introduced the notion of bi-ideals of semigroups (Good and Hughes, 1952). The first author has studied some properties of bi-ideals in semigroups (Chinram, 2005). Let S be a semigroup. A subsemigroup B of S is called a *bi-ideal* of S if $BSB \subseteq B$.

Example 1.1. Let $S = [0,1]$. Then S is a semigroup under the usual multiplication. Let $B = [0, \frac{1}{2}]$. Then B is a subsemigroup of S . We have that $BSB = [0, \frac{1}{4}] \subseteq B$. Therefore B is a bi-ideal of S .

Example 1.2. Let \mathbf{N} be the set of all positive integers. Then \mathbf{N} is a semigroup under the usual multiplication. Let $B = 2\mathbf{N}$. Thus $BNB = 4\mathbf{N} \subseteq 2\mathbf{N} = B$. Hence B is a bi-ideal of \mathbf{N} .

In 1981, the concept of Γ -semigroups was introduced by M. K. Sen. Let M and Γ be any two nonempty sets. If there exists a mapping $M \times \Gamma \times M \rightarrow M$, written the image of (a, γ, b) by $a\gamma b$, M is called a Γ -semigroup if M satisfies the identities $(a\gamma b)\mu c = a\gamma(b\mu c)$ for all $a, b, c \in M$ and $\gamma, \mu \in \Gamma$ (Sen, 1981, Sen and Saha, 1986, Saha, 1987). Let K be a nonempty subset of M . K is called a sub Γ -semigroup of M if $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$.

Example 1.3. Let $M = [0,1]$ and $\Gamma = \{ \frac{1}{n} \mid n \text{ is a positive integer} \}$. Then M is a Γ -semigroup under the usual multiplication. Next, let $K = [0, \frac{1}{2}]$. We have that K is a nonempty subset of M and $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$. Then K is a sub Γ -semigroup of M .

Example 1.4. Let S be a semigroup and $\Gamma = \{1\}$. Define a mapping $S \times \Gamma \times S \rightarrow S$ by $a1b = ab$ for all $a, b \in S$. Then S is a Γ -semigroup.

From Example 1.4, we have seen that every semigroup is a Γ -semigroup where $\Gamma = \{1\}$. Then Γ -semigroups are a generalization of semigroups.

In this research, we generalize bi-ideals of semigroups to bi- Γ -ideals in Γ -semigroups.

Main results

Let M be a Γ -semigroup. A sub Γ -semigroup B of M is called a *bi- Γ -ideal* of M if $B\Gamma M \Gamma B \subseteq B$.

Example 2.1. Let S be a semigroup, and $\Gamma = \{1\}$. Define a mapping $S \times \Gamma \times S \rightarrow S$ by $a1b = ab$ for all $a, b \in S$. From Example 1.4, we have known that S is a Γ -semigroup. Let B be a bi-ideal of a semigroup S . Thus $BSB \subseteq B$. Since $\Gamma = \{1\}$, $B\Gamma S\Gamma B = BSB \subseteq B$. Hence B is a bi- Γ -ideal of S .

Example 2.1 implies that bi- Γ -ideals in Γ -semigroups are a generalization of bi-ideals in semigroups (for a suitable Γ).

Theorem 2.1. Let M be a Γ -semigroup and B_i a bi- Γ -ideal of M for all $i \in I$. If $\bigcap_{i \in I} B_i \neq \emptyset$, then $\bigcap_{i \in I} B_i$ is a bi- Γ -ideal of M .

Proof. Let M be a Γ -semigroup and B_i a bi- Γ -ideal of M for all $i \in I$. Assume that $\bigcap_{i \in I} B_i \neq \emptyset$. Let $a, b \in \bigcap_{i \in I} B_i$, $m \in M$ and $\gamma, \mu \in \Gamma$. Then $a, b \in B_i$ for all $i \in I$. Since B_i is a bi- Γ -ideal of M for all $i \in I$, $a\gamma b \in B_i$ and $a\gamma m\mu b \in B_i$. $\Gamma M \Gamma B_i \subseteq B_i$ for all $i \in I$. Therefore $a\gamma b \in \bigcap_{i \in I} B_i$ and $a\gamma m\mu b \in \bigcap_{i \in I} B_i$. Hence $\bigcap_{i \in I} B_i$ is a bi- Γ -ideal of M .

In Theorem 2.1, $\bigcap_{i \in I} B_i \neq \emptyset$ is a necessary condition. Let $M = (0, 1)$ and $\Gamma = \{1\}$. Then M is a Γ -semigroup under the usual multiplication. Let \mathbb{N} be the set of all positive integers. For $n \in \mathbb{N}$, let $B_n = (0, \frac{1}{n})$. It is easy to prove that B_n is a bi- Γ -ideal of M for all $n \in \mathbb{N}$ but $\bigcap_{n \in \mathbb{N}} B_n = \emptyset$.

Let A be a nonempty subset of a Γ -semigroup M . Let $\mathfrak{I} = \{B / B \text{ is a bi-}\Gamma\text{-ideal of } M \text{ containing } A\}$. Then $\mathfrak{I} \neq \emptyset$ because $M \in \mathfrak{I}$. Let $(A)_b = \bigcap_{B \in \mathfrak{I}} B$. It is clearly seen that $A \subseteq (A)_b$. By Theorem 2.1, $(A)_b$ is a bi- Γ -ideal of M . Moreover, $(A)_b$ is the smallest bi- Γ -ideal of M containing A . $(A)_b$ is called the bi- Γ -ideal of M generated by A .

Theorem 2.2. Let A be a nonempty subset of a Γ -semigroup M . Then

$$(A)_b = A \cup A\Gamma A \cup A\Gamma M\Gamma A.$$

Proof. Let A be a nonempty subset of a Γ -semigroup M . Let $B = A \cup A\Gamma A \cup A\Gamma M\Gamma A$. Clearly, $A \subseteq B$. We have that $B\Gamma B = (A \cup A\Gamma A \cup A\Gamma M\Gamma A)\Gamma(A \cup A\Gamma A \cup A\Gamma M\Gamma A) \subseteq A\Gamma A \cup A\Gamma M\Gamma A \subseteq B$. Hence B is a sub Γ -semigroup of M .

Since M is a Γ -semigroup, all elements in $B\Gamma M\Gamma B = (A \cup A\Gamma A \cup A\Gamma M\Gamma A)\Gamma M\Gamma(A \cup A\Gamma A \cup A\Gamma M\Gamma A)$ are in the form of $a_1\gamma m\mu a_2$ for some $a_1, a_2 \in A$, $\gamma, \mu \in \Gamma$ and $m \in M$. Thus $B\Gamma M\Gamma B \subseteq$

$A\Gamma M\Gamma A \subseteq B$. Therefore B is a bi- Γ -ideal of M .

Let C be any bi- Γ -ideal of M containing A . Since C is a sub- Γ -semigroup of M and $A \subseteq C$, $A\Gamma A \subseteq C$. Since C is a bi- Γ -ideal of M and $A \subseteq C$, $A\Gamma M\Gamma A \subseteq C$. Therefore $B = A \cup A\Gamma A \cup A\Gamma M\Gamma A \subseteq C$.

Hence B is the smallest bi- Γ -ideal of M containing A . Therefore $(A)_b = B = A \cup A\Gamma A \cup A\Gamma M\Gamma A$, as required.

Example 2.2. Let \mathbb{N} be the set of all positive integers and $\Gamma = \{5\}$. Then \mathbb{N} is a Γ -semigroup under usual addition.

- (i) Let $A = \{2\}$. We have that $(A)_b = \{2\} \cup \{9\} \cup \{15, 16, 17, \dots\}$.
- (ii) Let $A = \{3, 4\}$. We have that $(A)_b = \{3, 4\} \cup \{11, 12, 13\} \cup \{17, 18, 19, \dots\}$.

Theorem 2.3. Let M be a Γ -semigroup. Let B be a bi- Γ -ideal of M and A a nonempty subset of M . Then the following statements are true.

- (i) $B\Gamma A$ is a bi- Γ -ideal of M .
- (ii) $A\Gamma B$ is a bi- Γ -ideal of M .

Proof. (i) We have that $(B\Gamma A)\Gamma(B\Gamma A) = (B\Gamma A\Gamma B)\Gamma A$ and $(B\Gamma A)\Gamma M\Gamma(B\Gamma A) = (B\Gamma A\Gamma M\Gamma B)\Gamma A$. Since B is a bi- Γ -ideal of M , $(B\Gamma A)\Gamma(B\Gamma A) = (B\Gamma A\Gamma B)\Gamma A \subseteq B\Gamma A$ and $(B\Gamma A)\Gamma M\Gamma(B\Gamma A) = (B\Gamma A\Gamma M\Gamma B)\Gamma A \subseteq (B\Gamma M\Gamma B)\Gamma A \subseteq B\Gamma A$. Therefore $B\Gamma A$ is a bi- Γ -ideal of M .

The proof of (ii) is similar to the proof of (i).

Corollary 2.4. Let M be a Γ -semigroup. For a positive integer n , let B_1, B_2, \dots, B_n be bi- Γ -ideals of M . Then $B_1\Gamma B_2\Gamma \dots \Gamma B_n$ is a bi- Γ -ideal of M .

Proof. We will prove the corollary by mathematical induction. By Theorem 2.3, $B_1\Gamma B_2$ is a bi- Γ -ideal of M . Next, let n be any positive integer such that $k < n$ and assume $B_1\Gamma B_2\Gamma \dots \Gamma B_k$ is a bi- Γ -ideal of M . We have that $B_1\Gamma B_2\Gamma \dots \Gamma B_k\Gamma B_{k+1} = (B_1\Gamma B_2\Gamma \dots \Gamma B_k)\Gamma B_{k+1}$ is a bi- Γ -ideal of M by Theorem 2.3.

Let M be a Γ -semigroup. M is called a *bi-simple Γ -semigroup* if M is the unique bi- Γ -ideal

of M . A bi- Γ -ideal B of M is called a *minimal bi- Γ -ideal* of M if B does not properly contain any bi- Γ -ideal of M .

Example 2.3. Let G be a group and $\Gamma = G$. Then $G^n = G$ and $gG = G = Gg$ for all $g \in G$. Then G is a Γ -semigroup under the usual binary operation. It is easy to see that G is the unique bi- Γ -ideal of G . Then G is a bi-simple Γ -semigroup.

Theorem 2.5. Let M be a Γ -semigroup. Then M is a bi-simple Γ -semigroup if and only if $M = m\Gamma M\Gamma m$ for all $m \in M$, where $m\Gamma M\Gamma m$ means $\{m\}\Gamma M\Gamma\{m\}$.

Proof. Let M be a Γ -semigroup.

Assume that M is a bi-simple Γ -semigroup. Let $m \in M$. By Theorem 2.3, $m\Gamma M\Gamma m$ is a bi- Γ -ideal of M . Then $M = m\Gamma M\Gamma m$.

Assume that $M = m\Gamma M\Gamma m$ for all $m \in M$. Let B be a bi- Γ -ideal of M . Let $b \in B$. By assumption, $M = b\Gamma M\Gamma b \subseteq B\Gamma M\Gamma B \subseteq B$. Hence $M = B$. Therefore M is a bi-simple Γ -semigroup.

Theorem 2.6. Let M be a Γ -semigroup and B a bi- Γ -ideal of M . Then B is a minimal bi- Γ -ideal of M if and only if B is a bi-simple Γ -semigroup.

Proof. Let M be a Γ -semigroup and B a bi- Γ -ideal of M .

Assume that B is a minimal bi- Γ -ideal of M . Let C be a bi- Γ -ideal of B . Then $C\Gamma B\Gamma C \subseteq C$. Since B is a bi- Γ -ideal of M , by Theorem 2.3,

$C\Gamma B\Gamma C$ is a bi- Γ -ideal of M . Since B is a minimal bi- Γ -ideal of M and $C\Gamma B\Gamma C \subseteq B$, $C\Gamma B\Gamma C = B$. Hence $B = C\Gamma B\Gamma C \subseteq C$, this implies $B = C$. Then B is a bi-simple Γ -semigroup.

Assume that B is a bi-simple Γ -semigroup. Let C be a bi- Γ -ideal of M such that $C \subseteq B$. Then $C\Gamma B\Gamma C \subseteq C\Gamma M\Gamma C \subseteq C$. Therefore C is a bi- Γ -ideal of B . Since B is a bi-simple Γ -semigroup, $C = B$. Hence B is a minimal bi- Γ -ideal of M , as required.

Acknowledgments.

The authors would like to thank the referees for the useful and helpful suggestions.

References

- Chinram, R. 2005. Generalized Transformation Semigroups Whose Sets of Quasi-ideals and Bi-ideals Coincide, Kyungpook Math.J.,45 :161-166.
- Good, R. A. and Hughes, D. R. 1952. Associated for a semigroup, Bull. Amer. Math. Soc.58 :624- 625.
- Saha, N. K. 1987. On Γ -semigroup II, Bull.Cal. Math. Soc., 79 : 331-335.
- Sen, M. K. 1981. On Γ -semigroups. Proc.of International Conference on Algebra and it's Applications. Decker Publication, New York 301.
- Sen, M. K. and Saha, N. K. 1986. On Γ -semigroup I. Bull. Cal. Math. Soc.,78 : 180-186.