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This study proposed a multilevel logistic regression model to evaluate a source of DIF. The model
accounts for the three levels nested structure of the data and combines results of logistic regression analyses
to identify level-3 unit characteristic variables that explain a DIF variation. A simulation study is presented to
assess the adequacy of the proposed models. The parameters of the proposed models were estimated by using
a Bayesian approach implemented by the WinBUGS 1.4.
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Differential item functioning (DIF) is present
for a test item when respondents from two sub-
populations with the same trait level have different
probability of answering the item correctly. A con-
sequence of having a DIF item is that the same true
trait levels for examinees from different subpopu-
lations could indicate different total test scores or
trait level estimates. Currently, many statistical
techniques have been proposed, based upon various
theoretical backgrounds and practical purposes. A
thorough review of DIF detection methods is given
by Millsap and Everson (1993).

Once an item is identified as functioning
differently from one subpopulation to another,
understanding why the item is functioning
differently between groups may be useful for many
audiences. As one attempt, Gierl et al. (2003)
studied gender DIF in mathematics by combining
substantive and statistical analyses, as a two-stage
process. Three difference statistical methods:
SIBTEST, DIMTEST, and multiple linear regress-
ion, were used to test hypotheses about gender
differences and to test whether content and cogni-
tive differences were among items. Bolt (2000), for
another example, found that multiple-choice items
had more DIF characteristic than constructive-
response items between males and females on SAT
math pretest items. These results possibly suggest

that knowing the source of DIF may be informative
to minimize DIF items in future by many different
means, including instruction, policy and test con-
struction. These studies were based on multidimen-
sional IRT based approaches.

Using another statistical approach, Swanson
et al. (2002) proposed a two-level logistic regress-
ion model to evaluate sources of DIF. This approach
explicitly accounts for the nested structure of the
data and combines the results of logistic regression
analyses across individual items to investigate the
variation of DIF. Their level-1 models are a logistic
regression model for DIF detection proposed by
Swanminathan and Rogers (1990). In the level-2
models, the coefficients from level-1 models are
treated as random variables and allow one to
incorporate item characteristic variables to the
models in order to explain the variation of DIF
across items.

There is also a possibility that the magnitude
of the DIF varies across group units, such as
schools, and communities. Kamata and Binici
(2003) first attempted to extend a two-level DIF
model to three-level model using the hierarchical
generalized linear model (HGLM) framework. The
three-level model approach can be used to model
variation of DIF across school as well as applied
to identify the school characteristic variables that
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explain such variation. Their models were imple-
mented by the HLM-5 software, which uses the
penalized or predictive quasi-likelihood (PQL)
method. They found that the variance estimates pro-
duced by the HLM-5 for the level 3 parameters are
substantially negatively biased. This study extends
their work by using a Bayesian approach to obtain
more accurate parameter estimates. More speci-
fically, this study will demonstrate a model in such
a way that DIF of a particular item can be explained
by some level-3 unit characteristic variables.

Methods

Model specification

To set the notation, let i denote the level-3
units (schools), j denote the level-2 units (students),
and k denote the level-1 units (items). Assume that
i=1,2,..,Mj :1,2,...,nl_and k=1,2,..T.Let Vi be
the dichotomous response with code 1 if student j
in school i responds to item k correctly and O
otherwise.Let S, denote the value of some charac-
teristics for school i. For convenience, the values
of § are often centered to have mean zero and may
also be standardized to have unit variance. For all i
,jand k , Yy, are assumed to be independent
Bernoulli random variables with the probability of
correct response P, =P (y, = 1) . The explanatory
DIF model can be written as:

Vi~ Bernoulli (Pijk)

logit(P ) = u3 +u2 +00G -f-0G +80,S+61 SG,
‘ +”4,va,}’ (1)

where

u3, is the random effect for school 7 . It is
assumed to be normally distributed with zero me-
an and constant variance (i.e.,u3i ~ N(O,(0'3)2)

u2 is the ability of student in the school. It
is a random effect and is assumed to be normally
distributed with a non-zero mean and a group
specific variance (i.e.,u2”_ ~ N(,u,O'2 )

o 0 is the fixed effect of belonging to the
focal group compared to the reference group, i.e.,
it is the mean difference between the focal and

reference group.

G, is the group indicator that either indicates
the reference group or the focal group. G, equals 0
if student j in school i belongs to the reference group
and equals 1 if student j in school i belongs to the
focal group.

B, is a fixed effect representing the difficulty
of item k for the reference group.

10, represents the overall mean DIF for item
k across schools.

&0, is a fixed effect representing the main
effect of the school characteristic for item .

ol is a fixed effect representing an inter-
action between school characteristic and group for
item k . In other words, 61 . indicates how much the
DIF is different depending on the value of the school
characteristics.

u4, is a random increment to the DIF for
item k in school i. It is assumed to be normally dis-
tributed with mean zero and item-specific variance
(i.e.,u4ifk ~ N(O,(O'4k)2) It is further assumed that the
random effects u3,, u2€f , and are assumed to be
mutually independent.

The values o4, provide a set of indices that
describe how the DIF varies across schools. A large
value of o4 indicates that, after controlling for
school and student abilities, the DIF varies a great
deal from school to school. On the other hand, a
small or zero value of o4 indicates that the DIF
varies little from school to school.

The model (1) is not identified because a
constant can be added to all u3 and all 3, but the
logit of the model does not change. In addition, the
parameter 00, also causes an identifiability problem
for the model since we can subtract a constant ¢
from all the 00 and add ¢S, to 3. for all i without
changing the logit. To identify the model (1), we
adopt the approach of Bafumi et al. (2005) which
suggested replacing the model parameters with new
(adjusted) quantities that are well-identified but
preserve the logit of the model. By following
Bafumi's approach, adjust 60, by subtracting its

mean (30), and adding SOSi to all u3. to preserve
the logit. Note that if S, is centered to mean zero,

then adding SOS,. does not alter the mean of the u3 ..
The other terms are adjusted as follows:
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u3' = u3, —u3+ 808,
u2s’ =u2, - B+u3

aoﬂdi

=a0-70
YOZdj =70, - 7_/0

50 = 50, - 0.

2)

The original parameters are replaced by the corres-
ponding adjusted parameters. The explanatory DIF
model now can be defined as:

logit(P,) = u3" + 12" + 00" G, - B - y0”. G,
50:djSi + 51kSiGij + u4ik Gl:f'
3)

Estimation with WinBUGS

The explanatory DIF model can be easily
implemented in WinBUGS, an available software
for Bayesian analysis, using Gibbs sampling. The
primary interest parameters are in the magnitude

of 80,80, and 81 . If the values of 81, are
substantial, the term of 61 S, explains a sizable part
of the variability of DIF from school to school so
that including this term in the model should cause
a corresponding reduction in the value of o4,.

The Bayesian approach treats all unknown
parameters as random quantities with appropriate
prior distributions. Estimation is based on the joint
posterior distribution P(60 ly) where 6 is the vector
of unknown model parameters (i.e.,0 ({0},
(B).190,} .180,1,{81,},41,(02,},03,{04,))) and y
is the sample data. The posterior distribution of 8
is obtained by Bayes' theorem as:

P(y/6)P(6)
PO = 5 6)p(y/ 6)d8
P(y10)P(6).

where P(0ly) is the likelihood and P(6) is the prior
distribution.

The posterior distribution is proportional to
the likelihood multiplied by the prior distribution.

Since the item responses given the school and
student ability are assumed to be independent, the
likelihood for the explanatory DIF model is given
as:

P(y10) = g(u4;0,04,)] g(u3;0,03)
Jg(uz,,u, 0-2(; )H(I(Y,jk|u21/’u3iu4ik)
du2,du3,du4,,

where

1 i [ o7k Vi
fu2, ,u3. ud, )= i "
e ‘ l+e ™ I+e™ ’

and g(u4,0,04), g(u3;0,03), and g(u2;0,02 ) are
multivariate normal density of u4 ={u4 }, u3={u3 }
,and u2 ={u2 }respectively, andn = logit(P )
from equation (1).

The most difficult part of Bayesian inference
is the complexity of the numerical evaluation of
the posterior distribution because it involves inte-
gration and does not always produce a posterior
and predictive distributions also involves high
dimensional integrations. In recent years, these pro-
blems have been solved using Markov Chain Monte
Carlo (MCMC) simulation methods, especially the
Gibbs sampling algorithm implemented through the
WinBUGS software, to simulate realizations from
the joint posterior density. These samples are sum-
marized to provide point and interval estimates for
parameters in the model.

Choice of prior distributions and specification
of initial values

Bayesian estimation of the model parameters
requires the specification of a prior distribution for
all the unknown parameters. In this study, a
noninformative, but proper prior distribution is
used. We assume the fixed effect (aO,{ﬁk L0, 1,
{60,},{d1,}), and i of u2 are independent and
normally distributed with mean zero and a huge
variancel 04(N 0,1 04)). For the variance parameters,
we follow the recommendation of Gelman (2004)
that suggests the use of a noninformative uniform
prior density on standard deviation parameters
unless a weakly informative prior is desired, in
which case a half-t family such as a half-Cauchy
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prior distribution is recommended instead of a
uniform prior. The half-t distribution can be defined
as the ratio of the absolute value of a normal random
variable centered at 0 and the square root of a
gamma random variable. Further details on this
distribution can be seen in Gelman (2004). For 02,
and 03, a noninformative proper uniform prior
density with a wide range (i.e., unif(0,1000)) are
used. For the between-school standard deviation of
DIF parameter for each item (04)), half-Cauchy
prior distributions with scale parameter (§) of 25
as recommended by Gelman (2004) are used.

After setting the prior density for all un-
known parameters, the model is completely
specified in WinBUGS. Then WinBUGS loads the
data and compiles the model. When the model
compiles successfully, WinBUGS will load the
initial values in the next step. For our model, we
specify O as initial value for the fixed effects (a0,
{B.}1.{70,},{0 },{61, },and u of u2, and 1 as the
initial value for the standard deviation parameters
of (02,,03,04). Using Gelman's (2004) approach
to implementing the half-cauchy prior, the values
of o4 are actually represented as

El
NS

o4, =

where £ ~N(0,25) and & ~ x;. We assign & and 7,
initial values of 1, so that o4, is also initially equal
to 1. The initial values for the random effects
(u2,u3,u4) are generated by WinBUGS itself.

When the initial values have been loaded or
generated by WinBUGS successfully, WinBUGS
now is ready to run the Gibbs sampling to obtain
statistical inferences for the unknown parameters.
In each situation we study, only one chain is run
and the chain is run for 11,000 iterations with a
burn-in of 1,000.

Simulation Study and Results

Simulation Design
To establish a realistic scenario, we generate

100 data sets from the model (1). There are 30
schools with a total of 1500 students. The number
of students per school, n , varies and is chosen to
be proportional to the number of students in each
school. The n range from 9 to 103 students with an
average of 50 students per school. We divide the
students into reference and focal group equally with
750 students in each group. The test comprises 7
items with the difficulties ﬁk: 0.2,-0.2, 0.5, 0.8,-
0.5, 0, -0.8, and DIF values 0, = -0.5, 0.0, -0.7,
0.0, 0.5, 0.0, 0.0. The mean difference between
reference and focal group is a0 = 0.0, i.e., there is
no mean difference between the two groups. We
assume that only the first item is associated with
the school characteristic S, with main effect 60 =0.5
and the interaction with group 61 =0.5. For the other
items, the values of 60 and 61, are assumed to be 0.
The ability of students (u2,,j) is sampled from N(0,1).
The ability of schools (u3) is sampled from
N(0,.25). These parameter values are similar to what
we observed in the data set of 2003 administration
of a mathematics assessment for 4thgrade in a
statewide testing program in the United States. The
between-school DIF random effects u4, are sampled
from independent normal distributions with mean
zero and standard deviations o4, = 0.5, 0.2, 0.5,
0.2, 0.2, 0.2, 0.2. The random effects u2,j, u3, and
ud, are generated independently in each data set. It
is assumed that 2 , u3 and w4, are mutually
independent. Splus is used to create the simulated
data, and WinBUGS is used for the subsequent
analysis.

Simulation Results

For each data set and analysis, our posterior
inference is based on the output of a Gibbs sampler.
We illustrate some typical Gibbs sample outputs.
Sample history plot (trace plot), autocorrelation plot
and posterior density plot are given for selected
interest parameters for 10,000 iterations after
eliminating the first 1,000 iterations. These plots
are shown in Figures 1 to 3, respectively.

The trace plot is shown in Figure 1. Each
parameter of interest becomes stationary by 1,000
iterations, indicating that convergence has been
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Figure 1. Gibbs sampling trace plots for some interesting parameters.
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Figure 2. Autocorrelation plots for some interesting parameters
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Figure 3. Posterior density plots for some interesting parameters
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reached by 1,000 iterations. The autocorrelation
plots (Figure 2) show that for all parameters, except
the level-2 standard deviations (sigma2[1]), the
autocorrelations decrease to near zero in fewer than
10 lags. The autocorrelations of the level-2 standard
deviations approach to near zero by about lag 20.
This indicates that the correlation between any two
values separated by 10 or more iterations is close
to zero, and these values can be treated as being
roughly independent. These autocorrelation plots
suggest that the chains are mixing well and quickly.
In other words, the chains rapidly explore the entire
posterior distribution.

The density plots for parameters (Figure 3)
show unimodal distributions which are nearly
symmetric, and look close to normal.

Table 1. Statistics of Gibbs sampling of interest
fixed effect parameters in explanatory

model.
Para-meter Adj-True Mean SD MCerror
Value
80" 043 04356  0.0852  0.0014
80, -0.07 -0.0702  0.0829  0.0015
80, 0.07 -0.0800  0.0839  0.0015
8, -0.07 -0.0788  0.0860  0.0015
8. 0.07 -0.0654  0.0840  0.0015
8, -0.07 -0.0661  0.0827  0.0015
8. 0.07 -0.0751  0.0862  0.0015
80 007 00750  0.1146  0.0016
sl 0.50 0.5222  0.1932  0.0048
a1, 0.00 -0.0085  0.1518  0.0034
Sl 0.00 0.0000  0.1784  0.0046
sl 0.00 0.0085  0.1573  0.0035
31, 0.00  0.0069  0.1534  0.0035
S, 000 00336  0.1524  0.0035
S, 0.00 0.0103  0.1587  0.0036

Each Gibbs sampler run produces 10,000
values for each parameter in the model. The sample
mean and standard deviation (SD) of these 10,000
values estimate the posterior mean and standard
deviation for that parameter, respectively. WinBugs
also indicates the Monte Carlo error of our estimate
of the posterior mean by estimating its standard
deviation (referred to as the MC error below). The
estimates of the posterior mean, standard deviation,
and the MC error were computed for all 100
simulated data sets. These results are summarized
in Tables 1 to 2. From these tables, we see that the
mean over the 100 data sets is generally quite close
to the true parameter value used in the simulations,
except for the standard deviation parameters. Thus
the point estimates given by the estimated posterior
means are essentially unbiased. For the parameters
04, the mean of the point estimates is far from the
true parameter value used in the simulations.
Substantial bias exists when o4, is small (0.2 in
our simulations). When the true value of theo4 is
large enough (0.5 in our simulations), the bias is
small (shown in Table 2).

When the model does not take into account
the school variable, the summary statistics,
including the mean, standard deviation (SD), and
MC error of the posterior distribution are illustrated
in Table 3. The mean point estimates of o4, from

Table 2. Statistics of Gibbs sampling of interest
random effect parameters in

explanatory model.
Para-meter True Mean SD MC
Value error

021 1.0 1.0117 0.0557 0.0016
022 1.0 1.0245 0.0565 0.0016
o3 0.5 0.5265 0.0887 0.0020
(74] 0.5 0.5352 0.1683 0.0020
642 0.2 0.2397 0.1382 0.0030
0'43 0.2 0.4975 0.1586 0.0034
0'44 0.5 0.2465 0.1419 0.0030
0'45 0.2 0.2554 0.1391 0.0030
o4 0.2 0.2512 0.1375 0.0030

6
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Table 3. Statistics of Gibbs sampling of the
standard deviation of DIF when the
model does not take into account the
school variable.

Para-meter Mean SD MC
error
0'4[ 1.1509 0.2182 0.0047
0'42 0.2448 0.1385 0.0030
0'45 0.4943 0.1552 0.0032
0'44 0.2447 0.1395 0.0029
o4, 0.2566 0.1380 0.0030
o4 : 0.2444 0.1344 0.0028
0'47 0.2560 0.1422 0.0030

this model are compared to the corresponding
estimates from the explanatory model in Table 2.
The results show that all of the o4, estimates of
Table 3, except for o4 are close to the corres-
ponding estimated by the 04 explanatory model.

Conclusion and suggestion

From the simulation results, the intuitive
diagnostic tools, trace plots, autocorrelation plots,
and posterior density plots, drawn from 10,000
updates after eliminating the first 1,000 suggest that
convergence is achieved and the chains rapidly
explore the entire posterior distribution. The point
estimates given by the posterior means for fixed
effect parameters, except the standard deviations,
are essentially unbiased. The estimates of the
standard deviation parameters are positively biased.
This positive biased can be explained from the
Bayesian point of view. Bayesian estimation com-
bines the prior distribution with the likelihood to
obtain the posterior distribution. When the data
provide less information, the posterior distribution
takes more heavily weights than the prior distri-
bution resulting in shrinkage of the standard
deviations toward the mean of the prior, which is a
large positive value for a uniform distribution with
a wide range from 0 to 1000 or a half-Cauchy
distribution.

The skewness of the posterior density, when
the true value of the standard deviation is small,
suggests that the use of the posterior median or
mode as a point estimate of standard deviation
parameters may also reduce the relative bias for
these parameters.

The mean of o4 is larger under the model
that does not include the school variable than under
the explanatory model. This makes sense since the
explanatory model accounts for some of the school-
to-school variability in the DIF by using the school
characteristic S, whereas the model without school
variable must include this variability in the random
effects u4, which inflates the value of o4, .

This study is useful when the DIF exists at
the individual level, and it interacts with the level-
3 units. This is the case where the DIF is not
consistent across level-3 units. If this is the case,
knowledge that the DIF varies across level-3 units
may be useful in revising the item since it alerts us
to look for the differences between the level-3 units
which may be cause the DIF.
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