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We derive solutions of the steady state magnetic field due to a DC current source in four types of

heterogeneous earth models. Four two-layered continuously earthed models are considered : an exponential

earth with a homogeneous overburden, a homogeneous earth with an exponential overburden, a homogeneous

earth with a linear varying overburden, and a linearly varying conductivity earth with a homogeneous

overburden. These solutions are critical to interpret the magnetometric resistivity (MMR) data. Our solutions

are achieved by solving a boundary value problem in the wave number domain and then transforming back

to the spatial domain. The propagator matrix techniques are used. The curves of magnetic field are plotted

to show the behavior of the field while some parameters are given approximately. To determine the conduct-

ivity parameter, the inverse problem is introduced via the use of optimization technique.
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The magnetometric resistivity method has
recently become an additional electrical prospecting
technique used for finding mineral resources. This
technique is based on the measurement of low-level,
low-frequency magnetic fields associated with
non-inductive current flow in the ground. Edwards
et al. (1985) discussed a specific case where the
upper half-space is conductive seawater, as en-
countered in the magnetometric offshore electrical
sounding system. Edwards (1988) and Edwards
and Nabighian (1991) concentrated the ratio of the
magnetic fields below and above a known conduct-
ive layer to infer the basement resistivity. Sezginer
and Habashy (1988) computed the static magnetic
field due to an arbitrary current injected into a
conducting uniform half-space. Inayat-Hussein
(1989) gave a new proof that the magnetic field
outside the one dimension medium. Veitch et al.
(1990) pointed out that the general solution for the
magnetic  field  within  a  layered  earth  due  to  a
point source has not been fully explored. They,
indirectly, derived the magnetic field by applying
stoke's theorem and Ampare's law to the electric
potential. Unfortunately, these works do not supply
the  amount  of  information  about  the  magnetic
field that is required for many current applications.

Chen and Oldenburg (in press) derived the mag-
netic field directly from solving a boundary value
problems which was similar to the approach used
by Edwards (1988) and then discussed a homo-
geneous and a 2-layered earth model. The moti-
vation of this study is to determine if the magne-
tometric resist-ivity method may have applications
for salinity mapping  in  different  parts  of  Thailand.
The continuous varying conductivity ground
profiles used in this paper are constant, linearly and
exponentially with depth.

Magnetic field due to a semi-infinite

source in a 1-dimension earth

A semi-infinite vertical wire carries an
exciting current  I and terminates at the electrode
Q. The electrode Q is deliberately placed at the
interface z=z

s
 of layer s and layer  s+1. Each layer

has conductivity as a function of depth, σ j (z) with
thickness h

j
. The Maxwell's equations can be used

to determine the magnetic field intensity H as

∇ × E = 0 , (1)

and ∇ × H = σ E, (2)
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where E  is the electric field intensity, H  is the
magnetic field intensity and σ is the conductivity
of the medium. Using (1) and (2), we have

∇ × 1
σ

∇ × H = 0 . (3)

Since the problem is axi-symmetric, H  has only
an azimuthal component in cylindrical coordinate
(r,φ,z). For simplicity, we use H to represent the
azimuthal component in the following derivations.
Expanding equation (3) yields

1

σ
∂2H
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∂
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Since σ is a function of depth z only, the above
equation becomes

∂ 2H
∂z2 + σ ∂

∂z
(

1
σ

)
∂H
∂z

+

∂ 2H
∂r2 + 1

r






∂H
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
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r2 H = 0.        (4)

Taking the Hankel transform defined by

H
~

λ ,z( ) = ∫
0

∞
rH(r,z)J1(λr)dr    ,        (5)

where J
1
 is the Bessel function of the first kind of

order one, to the equation (4),  we have

∂ 2H̃
∂z2 + σ ∂

∂z
(

1
σ

)
∂H̃
∂z

− λ2H̃ = 0.        (6)

1. The magnetic field response from the ex-

ponential conductivity ground profile

Soil  salinity  profiles  frequently  display
monotonically increasing or decreasing salt
concentrations with depth, z. This salt concentration
is strongly correlated with the conductivity of the
ground and frequently can be represented by an
equation

 σ(z)=ae
nbz

, (7)

where  a  and  b  are  greater  than  zero  and

n ∈{−1,0,1}, and  hence the equation (6) becomes

∂ 2H̃
∂z

− nb
∂H̃
∂z

− λ2H̃ = 0. (8)

The solution of (8) is

H̃(λ ,z) = Aeα -z + Beα + z , (9)

where A and B are arbitrary constants which can be
determined from the boundary conditions and

α − = nb − (nb)2 + 4λ2

2
,

and

α + = nb + (nb)2 + 4λ2

2
.

2. The magnetic field response from conduct-

ive homogeneous ground profile

For  the  constant  conductivity  profile,  the
equation (6) becomes

∂ 2H̃
∂z2 − λ2H̃ = 0, (10)

and the solution is
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H̃(λ,z) = Ce−λz + Deλz , (11)

where C and D are arbitrary constants which can
be determined from the boundary conditions.

3. The magnetic field response from the linearly

conductivity ground profile

For the linearly varying conductivity ground
profile, the equation represented the variation is
denoted by

σ(z) = a(1 + nbz)m ,

where a,b>0, n ∈{−1,1}, and m ∈{0,1}. Putting
   (z) to the equation (6), we now have

∂2H̃

∂z2 −
nmb

1+ nbz
∂H̃
∂z

− λ2H̃ = 0,        (12)

and the solution is

H̃(λ ,z) = α p (z)

EI- p (λα(z) / b) + FK− p (λα(z) / b)[ ], (13)

where  E and F are arbitrary constants which can
be determined from the boundary conditions. I

p
 and

K
p
  are the Modified Bessel functions of the first

and  second  kind  of  order  p. α(z)=1+nbz  and
p=(1+m)/2

Two layered earth models

Although stratified models are often relevant
and can usually be applied to real geoelectric
structures, few treatments of continuous geoelectric
structures have been presented. Although stratified
models with a large number of layers can represent
identically a continuum's response to surface
measurements, numerical computation usually
takes quite a long time. A better way to handle
certain continuous structures might be to solve the
equations directly for the desired structure. In our
work, we design the model as a two layered earth
structure.

1. An exponential earth with a homogeneous

overburden

In the case of an exponential earth with a
homogeneous overburden, we denote the conducti-
vity of the ground as

           σ
1
(z) = a , 0 ≤ z ≤ h ,

σ
2
(z) = ae

nb(z-h)
, z > h,

where a, b > 0 and n ∈{−1,1}. The magnetic fields
in  the  first  and  second  layers  after  using  the
boundary conditions at the interfaces are obtained
from (10) and (8) as

where δ− = α−/ λ.

H1(r,z) = λ
I

2πλ 1−
sinh(λz)

sinh(λh) − cosh(λh) / δ−


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°

∞

∫
Ieα− (z−h)

2πλ (1− tanh(λh)δ− )








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


J1(λr)dλ, z > h,

σ
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2. A homogeneous earth with an exponential overburden

In the case of a homogeneous earth with an exponential overburden, we denote the conductivity of
the ground as

 σ
1
(z) = ae

nbz
 , 0 ≤ z ≤ h ,

 σ
2
(z) = σ

1
(h),   z > h,

where a,b>0 and n ∈ {-1,1}. The magnetic fields in the first and second layers after applying the boundary
conditions at the interfaces can be obtained from (8) and (10), respectively, as

H1(r,z) = ∫
0

∞
λ

I
2πλ 1−

eα−z − eα+z

(1+ δ − )eα−h − (1+ δ + )eα+h


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where δ −  = α− / λ  and δ + = α+ / λ .

3. A homogeneous earth with a linear varying overburden

In the case of a homogeneous earth with a linear varying overburden, we denote the conductivity
of the ground as

       σ
1
(z) = a(1+nbz) ,  0 ≤ z ≤ h ,

       σ
2
(z) = σ

1
(h), z > h,

where a,b>0 and n ∈{−1,1}. The magnetic fields in the first and second layers after applying the boundary
conditions at the interfaces can be obtained from (12) and (10), respectively, as

H1(r,z) = λ
I

2πλ 1−
α(z)[I1(λα(z) / b) − δK1(λα(z) / b)]

α(h)(I* + δK*)
















°

∞

∫ J1(λr)dλ, 0 ≤ z ≤ h,

where I
v
 and K

v
 are Modified Bessel function of the first and second kind of order ν  . δ = I

1
(λ/b)/K

1
(λ/

b),α(z) =1+nbz, I* =nI
0
(λα (h)/b)+I

1
(λα (h)/b), and K* = nK

0 
(λα (h)/b)-K

1
(λα (h)/b).

H2 (r,z) = λ
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H2 (r,z) = λ
I

2πλ
α(z - h)K1(λα( z - h) / b)

(K1(λ / b)+tanh(λh)K0 (λ / b))










0

∞

∫ J1(λr)dλ , z > h.

Numerical experiments

In our forward model examples, we compute
the magnetic field due to direct current source on
the ground surface of the 4 models in the previous
section. The models are applied a current of 1-
Ampere, injected by the probe length of 1 meter
perpendicular to the ground surface. The depth of
overburden for the entire example models is 1
meter under the ground surface. The conductivity
used for the first example model is σ

1
(z) = e

-0.1960475832

for overburden and σ
2
(z) = e

-0.1960475832(z-h)
  for the

second layer.  The  conductivity  used  for  the
second  example model is σ

1
(z) = e

-0.1960475832z
 for

overburden and  σ
2
(z) = σ

1
(1) for the second layer.

The conductivity used for the third  example  model
is  σ

1
(z) = 1-0.1960475832z for overburden and

σ
2
(z)=σ

1
(1)   for the second layer.  The conductivity

used for the last example model is σ
1
(z) = e

-0.1960475832z

for overburden and σ
2
(z)=(1-0.1960475832(z-h))σ1

for the second layer. The results are performed as
the graphs in Figures 1, 2, 3 and 4, respectively.
The graphs show the behavior of the  magnetic field
against source-receiver spacing (r) at different
depth. The curves of each model at the same depth
are not too much different, but they are quite

4. A linearly varying conductivity earth with a homogeneous overburden

In this case, we denote the conductivity of the ground as

     σ
1
(z) = a,  0 ≤ z ≤ h ,

     σ
2
(z) = a(1+nb(z-h)),  z > h,

where a >0, n = 1 and b > 0. The magnetic fields in the  first  and  second  layers  after  applying  the
boundary conditions at the interface can be obtained from (10) and (12), respectively, as

different with varying depth. The magnetic field
intensity drops very fast as we increase the source-
receiver spacing to 10 meters.

In our inverse model example, we simulate
reflection of radiation data from our forward model
by injecting the 1-Ampere of current to the ground.
The conductivity distribution below the ground
surface is assumed to be continuous and depends
only on depth. In our example, the model is given
by

σ
1
(z) = e

-0.1960475832z
, 0 ≤ z ≤ 1,

σ
2
(z)=σ

1
(1) , z > 1.

The forward model to simulate the set of real
data generates the magnetic field. Superimposing
a Gaussian relative error to the 3 per cent level
perturbs the theoretical values. The associated errors
can be regarded as realizations of normal random
variables with zero means and variances S

i

2
 ; i = 1,

2,..., m. Table 1 shows the result from our pro-
cedure. We start the model with initial guess b=1
and n = -1. The result from our procedure con-
verges to b = 0.1960475832 which is the true
value after using 7 iterations only.

H1(r,z) = λ
I

2πλ 1−
sinh(λz)

sinh(λh) + cosh(λh)K1(λ / b) / K0 (λ / b)


















0

∞

∫ J1(λr)dλ,0 ≤ z ≤ h,
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Figure 1. The behavior of magnetic fields (from model in section 3.1) against

r at different depth z = 0, 0.2, 0.4,...,3.2,3.4

Figure 2. The behavior of magnetic fields (from model in section 3.2)

against r at different depth z = 0, 0.2,  0.4,...,3.2,3.4
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Table 1. Successive iterates using initial estimates for n = -1, b = 1.0 in an exponentially

decreasing  ground profile with true values being n = -1 and b = 0.1960475832

i 0 1 2 3 4 5 6 7

b 1.00000 0.49665 0.19601 0.19664 0.19664 0.19664 0.19604 0.19604
0000 6754 4757 7589 7583 7584 7583 7583

∆H
i

0.3713x 1.6661x 5.0911x 4.6283x 7.7139x 3.0855x 3.8569x 5.5523x
10

-3
10

-8   
10

-11
10

-12
10

-13
10

-12
10

-13
10

-17

Figure 3. The behavior of magnetic fields (from model in section 3.3)

against r at different depth z = 0, 0.2,

Figure 4. The behavior of magnetic fields (from model in section 3.4)

against r at different depth z = 0, 0.2, 0.4, ...,3.2,3.4
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Conclusions

In this paper, we conducted a method to
explore the parameter of the conductivity of ground.
The method used the integral transform technique
to produce the magnetic field which can be
computed easily. The magnetic field is plotted
against source-receiver spacing (r) at different
depths and these can be used for comparing with
the observed magnetic data to identify the earth
structure. The inversion process is used to find out
the parameter of the conductivity of ground. The
Quasi-Newton method is used to construct the
iterative procedure. The method produces a good
result and shows the robustness of the procedure.
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