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Phase noises in Phase-Locked Loops (PLLs) are a key parameter for communication systems that
contribute the bit-rate-error of communication systems and cause synchronization problems. Accurate
predictions of phase noises through mathematical models are consequently desirable for practical designs
of PLLs. Despite many phase noise models derived from noise sources from electronic devices such as an
oscillator and a multiplier have been proposed, no phase noise models that include noises from loop filters
have specifically been investigated. This paper therefore investigates the roles of loop filters in phase noise
contribution. The major scopes of this paper is a detailed analysis and simulations of phase noise models
resulting from all components. i.e. a voltage-controlled oscillator, a multiplier and a filter. Two particular
second-order passive and active low-pass filters are compared. The results show that simulations of phase
noises without an inclusion of filter noises may not be accurate because the filter noises, particularly the
active filter, significantly contribute the total phase noise. Moreover, the passive filter does not significantly
dominate the phase noise at low offset frequency while the active filters entirely dominate. Therefore, the
passive  filter  is  a  more  efficient  filter  for  PLL  circuit  at  low  offset  frequency.  The  phase  noise  models
presented in this paper are relatively simple and can be used for accurate phase noise prediction for PLL
designs.
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Phase Locked Loops (PLLs) are extensively
used for a variety of radio applications such as in
frequency synthesizers or in carrier recovery and
clock recovery circuits (Lathi, 1998). Such PLLs
are  closed-loop  systems  that  utilize  a  negative
feedback to sustain a constant ratio of an output
frequency to an input frequency (Rohde, 1997).
Generally, desirable performances of PLLs are not
only  high  frequency  but  also  low  phase  noise
(Rohde et al., 2005). The high frequency opera-
tions  can  be  achieved  through  the  use  of  high
transition  frequency  (f

T
)  technologies  such  as

Bipolar or BiCMOS devices. However, the phase
noises have significantly degraded the perform-
ances  of  PLLs  by  reducing  the  signal-to-noise
ratio (SNR), increasing adjacent channel power
and reducing adjacent channel rejection (Kroupa,
2003). As a result, the degraded performances of
the PLLs contribute the bit-rate-error of commu-
nication  systems  and  cause  synchronization
problems  in  clocked  and  sampled  data  digital
systems (Misra, 2001).

Consequently,  predicting  phase  noise
through mathematical models and simulations are

important  before  practical  implementations.
Despite  Leeson's  Equation  (1966)  being  first
recognized as a classical phase noise prediction in
PLLs,  such  equation  predicts  only  the  single-
sideband phase noise measured from the power
spectral density of the carrier and an amplitude
variation  may  also  be  included.  Moreover,
calculating phase noise using Leeson's equation
requires not only operation of all linear device but
also  an  oscillator  that  contains  only  a  single
resonator (Razavi, 2001). Recently, Ducker (2000)
has  proposed  mathematical  models  of  double-
sideband phase noise through two major noise
sources,  i.e.  voltage-controlled  oscillator  and
multiplier. Although Eric Ducker's equations are
relatively simple for phase noise prediction, noise
models of loop filter have not yet been studied.

As loop filters can be of various types and
orders, they may significantly generate noises
leading to the total phase noise of PLLs and this
paper therefore investigates the roles of loop filters
in phase noise contribution through mathematical
models and simulations. The major scope of this
paper  is  a  detailed  analysis  and  simulations  of
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phase noise models resulting from all components.
i.e.  a  voltage-controlled  oscillator,  a  multiplier
and using MATHEMATICA and MATLAB. Two
particular second-order passive and active low
pass filters are compared. The paper is organized
as  follows;  Section  1  commences  by  literature
reviews  on  basic  PLLs.  Sections  2  and  3  then
describe practical effects of phase noise in the
frequency domain and mathematical noise models
of all components, respectively. Finally, total phase
noises of PLLs are summarized and simulated in
sections 4 and 5.

are devices that convert a high output frequency
and a reference frequency, respectively, to a low
frequency for a multiplication process at the PD.

With reference to Figure 1, the loop gain
L(s) (Thamsirianunt and Kwasniewski, 1997) in
s-domain  can  be  expressed  by  a  multiplication
between a forward loop gain G(s) = K

p
K

v
F(s)/s and

a reverse loop gain H(s) = 1/N as

L(s) = G(s) × H(s) = 1
s

K
p
× K

v
× F(s)

N







(1)

where K
P
 is a phase gain of the PD, K

v
 is a voltage

control  sensitivity  of  the  VCO  and  F(s)  is  the
transfer function of a loop filter. The consequent
closed  loop  transfer  functions  are  generally
described separately for each component as will
be seen later in section 4.

1.2 Operations
The  operations  of  The  PLL  can  be

described in terms of a reference phase Φ
REF

 and an
output phase Φ

OUT
 as follows Zhang et al.(2003).

When Φ
OUT

  Φ
REF

, the PD compares the phases
between the output phase Φ

OUT
/N and the reference

phase Φ
REF

/R and hence generates an error voltage
e(s). In other words,

e(s) =
Φ

REF

R
−

Φ
OUT

N
(2)

The derivative of Equation (2) yields

d[e(s)]
dt

=
F

REF

R
−

F
OUT

N
(3)

Typically,  the  error  voltage  e(s)  in
Equation (2) subsequently enters the VCO as a
control voltage and must remain constant. Such
error voltage e(s), however, consists of both DC
and high-frequency components and the filtering
process is significantly required. Therefore, the
e(s) is then filtered through the lowpass filter with
a transfer function F(s) for suppressing the high-
frequency components of the PD and presenting
only  the  DC  level  for  the  oscillator.  If  the  loop

Figure 1. Block diagrams of the basic phase lock
loop.

1.  PLL Basics
1.1 General Descriptions

Figure 1 shows the block diagrams of a
basic PLL. It can be seen from Figure 1 that the
PLL is a closed-loop system and consists mainly
of five components, i.e. a phase detector (PD), a
loop filter, a voltage-controlled oscillator (VCO)
and dividers (Dai and Harjani, 2002; Shu et al.,
2004 ). Firstly, the PD is typically a two-input and
one-output  device  that  can  be  realized  by  a
specialized mixer. This PD comes in many con-
figurations including those with logic level inputs,
passive and active analog versions, and sampling
versions  specifically  used  for  high  frequency
multiplications. Secondly, the loop filter is a low-
frequency  circuit  that  filters  the  phase  detector
error  voltage  with  which  it  controls  the  VCO
frequency. Although it can be active or passive, it
is usually analog and very simple. In extreme cases,
it might be an entire microprocessor. Thirdly, the
VCO is the control element for a PLL in which
the output frequency changes correspondingly with
the tuning voltage. Finally, the N and R dividers
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gain is large enough, the error e(s) becomes a very
small value in steady state or is almost constant.
Equation (3) is consequently equal to

d[Constant]
dt

= 0 =
F

REF

R
−

F
OUT

N
(4)

Thus,

F
OUT

= N

R




 F

REF (5)

When the PLL is locked, it produces an
output that has a small and constant phase error
with respect to the input phase but the output
frequency is the same  or  linearly  proportional  to
the  reference frequency as shown in Equation (5).

2.  Phase Noise Analysis
Phase noise is widely used to describe the

characteristic randomness of frequency stability.
Generally, two types are single- sideband L(f

m
) or

double sideband S
Φ
(f

m
) phase noises. On the other

hand, the L(f
m
) can directly be measured through

the power spectral density (PSD) of the signal using
the spectral analyzer at RF with a 1-Hz resolution-
bandwidth filter. Figure 2 shows the measured
PSD of the carrier power and the single-sideband
phase noise power. As shown in Figure 2, the L(f

m
)

(Manassewitsch, 1987) can be described  in decibels
relative to the carrier level as dBc/Hz as the ratio
of the noise power at an offset frequency f

m
 from

the carrier (P
SSB

) to the carrier power (P
C
). In other

words,
Single − Sideband Phase Noise =

10log(L( f
m

)) =10log
P

C

P
SSB









 (6)

On  the  other  hand,  the  S
Φ
(f

m
)  can  be

measured through the PSD of the modulation of
signal with the  ideal  phase  modulator  using  the
spectrum analyzer at RF with a 1-Hz resolution-
bandwidth. Note that the S

Φ
(f

m
) is twice (3-dB more

than) the L(f
m
). Figure 3 shows plots of the S

Φ
(f

m
)

versus the log scale of the offset frequency f
m

consequently demonstrating the nonlinear decay
and demon-strates various regions of the phase
noise depend-ing on the regions of slopes. Table 1
summarizes types  and  slopes  of  noises  in  each
region.  The S

Φ
(f

m
)  can  be  described  in  dBc/Hz

as  a  general phase noise equation that includes
the noises in all regions of slopes as summarized in
Table 1. In other words,

Figure 2. Power spectral density of the carrier
power and the single-sideband noise
power.

Figure 3. Plots of double-sideband phase noises
in dBc/Hz versus offset frequency fm

in Hz.

Table 1. Summary of types and slopes of noises in
each region.

Regions Coefficients Types of Noise Slopes (dB)

1/f0 k
0

White Noise 0
1/f1 k

1
Flicker Noise -10

1/f2 k
2

White FM -20
1/f3 k

3
Flicker FM -30

1/f4 k
4

Random Walk FM -40
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Double - Sideband Phase Noise =

S
Φ

( f
m

) =10log
k

0

f 0
+

k
1

f 1
+

k
2

f 2
+

k
3

f 3
+

k
4

f 4







(7)
where  f  is  a  frequency  in  Hz  (Manassewitsch,
1987).  Consequently,  mathematical  models  of
noise sources in this paper are based on the double
sideband phase noise equation shown in Equation
(7).

3.  Mathematical Noise Source Models
3.1 Typical Noise Models for VCO and

Multiplier
Figure 4 shows the block diagram of a

basic PLL with an inclusion of three noise models,
i.e.  a  noise  model  for  the  VCO  N

VCO
(f),  a  noise

model  for  multiplier  N
MUL

(f)  and  noise  models
N

FIL1
(f)  and  N

FIL2
(f)  for  passive  filter  and  active

filters, respectively. With reference to Figure 4,
noise models for N

VCO
(f) and N

MUL
(f) are common

and  described  as  follows.  The  noise  model  of
N

VCO
(f) is given by

N
VCO

( f ) = k
0_VCO

+
k

2_VCO

f 2
+

k
3_VCO

f 3 (8)

where k
0_VCO

, k
2_VCO

, k
3_VCO

 are coefficients of white,
white FM and flicker FM noises in the VCO,
respectively. On the other hand, the noise model
N

MUL
(f) can be expressed in terms of  the noise

models of the dividers and the reference oscillator
for simplicity as (Ducker, 2000)

N
MUL

( f ) = N 2 k
0_md

+
k

1_md

f







+
k

0_ref
+

k
1_ref

f
+

k
2_ref

f 2
+

k
3_ref

f 3

R2



































(9)
where k

0_md
 and k

1_md
 are coefficients of white and

flicker noises in the main divider, respectively. In
addition, k

0_ref
, k

2_ref
, k

3_ref
 and k

4_ref
 are coefficients

of white, flicker, white FM and flicker FM noises
in the reference oscillator, respectively. However,
the noise model of the loop filter is not typically
specified depending on the types of filters. There-

fore, the noises models of N
FIL1

(f) and N
FIL2

(f) are
particularly analyzed and compared as follows.

3.2 Noise Model N
FIL1

(f) of Passive Filter
F

1

Figure 5 shows the circuit configura-
tions of a second-order passive lowpass filter F

1
.

As  shown  in  Figure  5,  the  circuit  is  relatively
simple and are formed a single resistor R

2
 and two

capacitors C
2
 and C

3
. The transfer function F

1
(s) in

s-domain can be described in terms of an output
voltage V

out
 and an input current I

in
 as follows

F
1
(s) =

V
out1

(s)

I
in

(s)
=

1+ sR
1
C

1

s(C
1
+ C

2
)(1+

sR
1
C

1
C

2

C
1
+ C

2

)
(10)

In other words,

F
1
(s) =

k
F1

1+ sτ
F1_1( )

s 1+ sτ
F1_2( ) (11)

where k
F1

 = 1/(C
1
+C

2
) is a constant. τ

F1_1
 = R

1
C

1

and τ
F1_2

 = (R
1
C

1
C

2
)/(C

1
+C

2
) are time constants.

Analytical  treatments  for  F
1
(s)  are  shown  in

Figure 4. Block diagrams of the basic phase lock
loop with an inclusion of noise sources.

Figure 5. Circuit configurations of the second-
order passive lowpass filter F1.
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Appendix A.1. In addition to the transfer function,
the noises in the filter F

1
 may come from both

capacitor and resistor. As the capacitor does not
significantly contribute noises, the noise of the loop
filters are therefore mainly from the resistor R

1
.

Typically, noise in resistor results from a random
motion of electrons in the resistor. The noise model
for a resistor P

r
(R) is assumed to be white noise

and is equal to 4kTBR where k is the Boltzmann's
constant, T is an absolute temperature in [K], B is
a bandwidth of the filter in [Hz] and R is an actual
value of the resistor in [Ω]. Such P

r
(r) is also a

power dissipated by the resistor and commonly
known as a thermal noise. As a result, the noise
model of the resistor dominates the passive filter
F

1
 and the can be described as N

FIL1
(f) = P

r
(R) =

4kTBR (Kroupa, 2003). In other words,

N
FIL1

( f ) = k
0_R (12)

where  k
0_R

  is  a  coefficient  of  the  white  noise
contributed by the resistor in the passive filter F

1
.

3.3 Noise  Model N
FIL2

(f) of Active Filter
F

2

Figure 6 shows the circuit configura-
tions of a second-order active lowpass filter F

2
. As

shown in Figure 6, the circuit mainly consists of
the operational amplifier (Op-Amp), two resistors
R

1
  and  R

2
,  and  two  capacitors  C

1
  and  C

2
.  The

transfer function F
2
(s) in s-domain can be described

in  terms  of  an  output  voltage  V
out

  and  an  input
voltage V

in
 as follows

F
2
(s) =

V
out2

(s)

V
in

(s)
=

1+ sR
1
C

1

sR
2
(C

1
+ C

2
)(1+

sR
1
C

1
C

2

C
1
+ C

2

)
(13)

In other words,

F
2
(s) =

1+ sτ
F2_1( )

sτ
F2_3

1+ sτ
F2_2( ) (14)

where τ
F2_1

= R
1
C

1
, τ

F2_2
 = (R

1
C

1
C

2
)/(C

1
+C

2
) and τ

F2_3

= R
2
(C

1
+C

2
) are time constants in addition the DC

gain of the active filter can be determined by the
integrator term, i.e k

F2
 = 1/R

2
(C

1
+C

2
). Analytical

treatments for F
2
(s) are shown in Appendix A.2. In

terms of noise contributions, it can be seen from
Figure  5  that  the  noise  sources  result  from  not
only resistors as previously described in Equation
(12) but also the Op-Amp. Generally, the noise
from the Op-amp includes the flicker and the
thermal noises and is derived by experiments or
given by the manufacturer.  Consequently, the noise
model for the active filter F

2
 is given by

NFIL1(f ) = k0_R + k0_OA +
k1_OA

f
(15)

where k
0_OA

 and k
1_OA

 are coefficients of the white
and flicker noises contributed by the operational
amplifier in the active filter F

2
.

4.  Mathematical Phase Noise Models
4.1 Typical Phase Noise Models for VCO

and Multiplier
Typically, output phase noise (S

Φ
(f)) of

each noise source can be modeled by a multi-
plication between an input power spectral density
and a squared magnitude of a closed loop transfer
function  (θ(s))  in  which  the  input  is  varied
depending on the investigated noise sources. In
other words,

S
Φ

( f ) = N( f ) × θ(s) 2 (16)

Referring  to  Figure  4,  the  closed  loop  transfer
function of the VCO noise is given byFigure 6. Circuit configurations of the second-

order active lowpass filter F2.
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θ
VCO

(s) = 1
1+ L(s) (17)

Substituting  Equations  (16)  with  Equations  (8)
and (17) yields the phase noise model of the VCO
S

Φ_VCO
(f) as

S
Φ_VCO

( f ) = N
VCO

( f ) × θ
VCO

(s)
 2

(18)

In addition, the closed loop transfer function for
the multiplier is given by

θ
MUL

(s) = L(s)
1+ L(s) (19)

Similarly, substituting Equations (16) with Equa-
tions (9) and (19) yields the phase noise model of
the multiplier S

Φ_MUL
(f) as

S
Φ_MUL

( f ) = N
MUL

( f ) × θ
MUL

(s)
 2

(20)

4.2 Phase Noise Model S
Φ_FIL1

(f) of Passive
Filter F

1

As shown in Figure 5, the closed loop
transfer function for the passive lowpass filter F

1

can be expressed as

θ
FIL1

(s) = 1
s

K
v

1+ L(s)





 (21)

By  substituting  Equations  (16)  with  Equations
(12) and (21), the phase noise model of the passive
lowpass filter F

1
(S

Φ_FIL1
(f)) is given by

S
Φ_FIL1

( f ) = N
FIL1

( f ) × θ
FIL1

(s)
 2

(22)

4.3 Phase Noise Model S
Φ_FIL2

(f) of Passive
Filter F

2

As  the  active  low  pass  filter  F
2
  is

formed by resistors, capacitors and Op-Amp, the
two major noise sources are therefore contributed
by the resistors and the Op-Amp. Therefore, the
transfer function of the Op-Amp and the resistor
are  different.  As  shown  in  Figure  4,  the  closed
loop transfer function for the resistor is given by

θ
R
(s) = 1

s

K
v

1+ L(s)







× F
2
(s) (23)

Meanwhile the closed loop transfer function for
the Op-Amp is expressed as

θ
OA

(s) = 1
s

K
v

1+ L(s)





 (24)

By substituting Equations (16) with Equations (15)
and  (23),  the  phase  noise  model  of  the  resistor
(S

Φ_R
(f)) is given by

S
Φ_R

( f ) = N
R
( f ) × θ

R
(s)

 2

(25)

Similarly, substituting Equations (16) with Equa-
tions (15) and (24) yields the phase noise model
of the Op-Amp (S

Φ_OA
(f)) as

S
Φ_OA

( f ) = N
OA

( f ) × θ
OA

(s)
 2

(26)

As a result, the summation of Equations (25) and
(26) yields phase noise model of the active low-
pass filter F2 (S

Φ_FIL2
(f)) as follows

S
Φ_FIL2

( f ) = N
R
( f ) × θ

R
(s)

 2

+ N
OA

( f ) × θ
OA

(s)
 2

(27)

4.4 Total Phase Noise Models
The total phase noise models can be

generally determined by the summation of phase
noise  generated  by  all  components  in  a  PLL.
Therefore, the total phase noise model using the
second-order passive lowpass filter can be modeled
through  the  summation  of  phase  noise  models
described in Equations (18), (20) and (22), i.e.
S

Φ1
(f) = S

Φ_VCO
(f) + S

Φ_MUL
(f) + S

Φ_FIL1
(f). In other

words, such S
Φ1

(f) is described in dBc/Hz as

S
Φ1

( f
m

) =10log(S
Φ_VCO

( f ) + S
Φ_MUL

( f ) + S
Φ_FIL1

( f ))

                              (28)

In the similar manner, the total phase noise model
using the second-order active lowpass filter can be



Songklanakarin J. Sci. Technol.

Vol. 29  No. 4  Jul. - Aug. 2007 1024

Simulations of phase noise in phase-locked loops

Limkumnerd, S. and Eungdamrong, D.

modeled through the summation of phase noise
models described in Equations (18), (20) and (27),
i.e. S

Φ2
(f) = S

Φ_VCO
(f) + S

Φ_MUL
(f) + S

Φ_FIL2
(f), and is

described in dBc/Hz as

S
Φ2

( f
m

) =10log(S
Φ_VCO

( f ) + S
Φ_MUL

( f ) + S
Φ_FIL2

( f ))

                         (29)

5.  Simulation Results
Phase noises of the PLL have been simulated

using MATHEMATICA and MATLAB. Based on
Drucker (2000), Table 2 summarizes values of
components of the passive filter F

1
 and the active

Table 2. Summary of values of components of the
passive filter F1 and the active filter F2.

     Components Values Units

Resistors R
1

5.62 kΩ
R

2
2.94 kΩ

Capacitors C
1

47 nF
C

2
6.8 nF

Table 3. Summary of noise coefficients used in
simulations.

   Components Constants Values

VCO k
0_VCO

10-15.5

k
2_VCO

10-3

k
3_VCO

100.7

Kv 107

Main Divider k
0_md

10-15.5

k
1_md

10-12.5

N 1000

Reference Divider R 10

Reference Oscillator k
0_ref

10-15.8

k
1_ref

10-12.7

k
2_ref

10-9.86

k
3_ref

10-7.82

Resistor k
0_R1

10-12.64

k
0_R2

10-12.92

Op-Amp k
0_OA

10-17.045

k
1_OA

10-16.02

Phase Detector K
p

0.5

filter F
2
 shown in Figures 5 and 6, respectively. In

addition, Table 3 also summarizes values of noise
coefficients used in simulations by Ducker (2000).
For purposes of comparison, both filters F

1
 and F

2

have been designed to operate at the same corner
frequencies. Figure 7 shows the simulated bode
plots of such two filters. Comparisons of calculated
and  simulated  values  DC  gains  and  corner
frequencies are summarized in Table 4. It can be
considered from Table 4 that the corner frequencies
of both filters F

1
 and F

2
 are equal, i.e. f 

F1_1 
= f

F2_1
 and

f
 F1_2

 = f
 F2_2

. However, the DC gain of the filter F
1
 is

has been constantly fixed while the DC gain of the
filter F

2
 can be tuned through the corner frequency

f
F2_3

 that behaves as an integrator and yields a -20
dB/decade for the DC gain.

Figure 8 shows the simulated total phase
noise S

Φ1
(f) in [dBc/Hz] versus offset frequency

in [Hz], running from 1 Hz to 1 GHz. Such total
phase noise S

Φ1
(f) is the sum of S

Φ_VCO
(f), S

Φ_MUL
(f)

and  S
Φ_FIL1

(f) as described in Equation (28). As
shown in Figure 8, the total phase noises can be
considered in three regions of offset frequency.
First, at the offset frequency lower than approxi-
mately  700  kHz,  only  the  multiplier  noise
dominates the total phase noise while both VCO
and filter noises are relatively low at low offset
frequency and do not significantly contribute to the
total noise. Secondly, between 700-kHz to 100-
MHz offset frequency, the filter noise dominates

Figure7.  Simulated magnitude of filters F
1
 and F

2
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the  total  noise.  Finally,  at  the  offset  frequency
higher than approximately 100 MHz, only the
VCO noise dominates.

Figure 9 shows the simulated total phase
noise S

Φ2
(f) in [dBc/Hz] versus offset frequency

in [Hz], running from 1 Hz to 1 GHz. Such total
phase noise S

Φ2
(f) is the sum of S

Φ_VCO
(f), S

Φ_MUL
(f)

and  S
Φ_FIL2

(f) as described in Equation (29). As
shown in Figure 9, the total phase noises can be
considered in three regions of offset frequency.
First, at the offset frequency lower than approxi-
mately 10 Hz, only the multiplier noise dominates
the total phase noise while both VCO and filter
noises are relatively low at low offset frequency
and  do  not  significantly  contribute  to  the  total

noise. Secondly, between 10-Hz to 800-kHz offset
frequency, both the filter noises dominate the total
noise. Finally, at the offset frequency higher than
approximately  800  kHz,  only  the  VCO  noise
dominates.

Figure 10 shows the simulated total phase
noises  of  the  PLL  in  dBc/Hz  versus  offset  fre-
quency in [Hz]. As shown in Figure 10, the total
phase noise S

Φ1
(f) decreases by -30 dBc/dec in the

range of 1 to 35 Hz and gradually decreases until
300 kHz offset frequency before decreasing with
the slope to -20 dBc/dec before it reaches the noise
floor of -155 dBc at approximately 400 MHz. On
the other hand, the total phase noise S

Φ2
(f) starts

at -20 dBc/dec at the low offset frequency range

Table 4. Summary of calculated and simulated values DC gains and corner
frequencies of the filters F

1
 and F

2
.

     Values
Filters                  Parameters

Calculated Simulated

F
1

DC Gain k
F1

dB 145.38 145.62

Corner Frequency f
 F1_1

 = ω
 F1_1

/2π = 1/τ F1_1
Hz 7.24 × 103 7.21 × 103

f
 F1_2

 = ω
 F1_2

/2π = 1/τ F1_2
Hz 5.73 × 104 5.74 × 104

F
2

DC Gain k
F2

dB 76.02 76.11

Corner Frequency f
 F2_1

 = ω
 F2_1

/2π = 1/τ F2_1
Hz 3.31 × 103 3.35 × 103

f
 F2_2

 = ω
 F2_2

/2π = 1/τ F2_2
Hz 7.24 × 103 7.21 × 103

f
 F2_3

 = ω
 F2_3

/2π = 1/τ F2_3
Hz 5.73 × 104 5.74 × 104

Figure 8. The simulated total phase noise SΦΦΦΦΦ1(f)
in [dBc/Hz] versus offset frequency in
[Hz].

Figure 9. The simulated total phase noise SΦΦΦΦΦ2(f)
in [dBc/Hz] versus offset frequency in
[Hz].
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about 1 to 10 Hz. Then the slope remains plateau
until  it  reaches  to  1  kHz  offset  frequency  and
changes to -40 dBc/dec before it reaches the noise
floor of -155 dBc at approximately 10 MHz. In
addition, plots of both S

Φ1
(f) and S

Φ2
(f) start at same

magnitude of -39 dBc/Hz at 1 Hz offset frequency.
With reference to Figure 10, comparisons

between the simulated total phase noise with no
filter noises by Ducker (2000) and the simulated
total  phase  noise  with  passive  and  active  filter
noises in this paper have been made.  Although the
total phase noise without filter noises by Ducker
(2000) has shown an excellent performance, this
may not be accurate as there was no inclusion of
the filter noises. This paper, on the other hand, has
shown the effects of filter noises in which accurate
expectation of total phase noise in PLL systems
can be achieved. It can be seen from Figure 10 that
the total noise from the passive lowpass filter is
better than the active lowpass filter at low offset
frequency region, 1 Hz to 33 kHz, while the active
lowpass filter produces less total noise than the
passive  lowpass  filter  at  the  offset  frequency
higher than 33 kHz. In addition, those three total
phase noises in this paper and the paper by Ducker

(2000) reach the noise floor at the same magnitude
of -155 dBc/Hz.

Conclusions

Detailed  analysis  and  simulations  of
mathematical phase noise models of phase-locked
loops have been presented. Unlike other existing
phase noise models in which the filter noises are
not included, this work has not only included the
filter noises for the phase noise model but also
compared the noise contribution between passive
and  active  loop  filters.  The  results  show  that
simulations of phase noises without an inclusion
of filter noises may not be accurate because the
filter noises, particularly the active filter, signific-
antly contribute to the total phase noise rather than
other components. Moreover, the passive filter
does not significantly dominate the phase noise
at  low  offset  frequency  while  the  active  filters
entirely dominate. Therefore, the passive filter is
a more efficient filter for PLL circuit at low offset
frequency. The phase noise models presented in
this paper are relatively simple and can be used for
accurate phase noise prediction for PLL designs.
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Appendix

Appendix A.1: Analytical treatments for Equa-
tions (10) and (11)

F
1
(s) =

V
out1

(s)

I
in

(s)
=

1
sC2

R1 +
1

sC1







=
1

sC2

1+ sR1C1

sC1

=

1+ sR
1
C

1

s2C
1
C

2

1
sC

2

+
1+ sR

1
C

1

sC
1

=
1+ sR

1
C

1

sC
1
+ sC

2
+ s2R

1
C

1
C

2

= 1
s

1+ sR
1
C

1

C
1
+ C

2
+ sR
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C
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C

2











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1+ sR

1
C
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s(C
1
+ C

2
)(1+

sR
1
C

1
C

2

C
1
+ C

2

)

=
k

F1
(1+ sτ

F1_1
)

s(1+ sτ
F1_2

)

where k
F1

 = 1/(C
1
+C

2
) is a constant. τ

F1_1 
= R

1
C

1
 and

τ
F1_2

 = (R
1
C

1
C

2
)/(C

1
+C

2
) are time constants

Appendix A.2: Analytical treatments for Equa-
tions (13) and (14)

F
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V
out2

(s)

I
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1
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) and
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2
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) are time constants in addition the

DC gain of the active filter


