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Abstract
Serttikul, C., Ratanadecho, P.
The numerical solution of thawing processin phase change sab
using variable space grid technique
Songklanakarin J. Sci. Technol., 2007, 29(5) : 1393-1405

This paper focuses on the numerical analysis of melting process in phase change material which
considers the moving boundary as the main parameter. In this study, pure ice slab and saturated porous
packed bed are considered as the phase change material. The formulation of partial differential equations
is performed consisting heat conduction equations in each phase and moving boundary equation (Stefan
equation). The variable space grid method isthen applied to these equations. Thetransient heat conduction
equations and the Stefan condition are solved by using the finite difference method. A one-dimensional
melting model isthen validated against the available analytical solution. The effect of constant temperature
heat source on melting rate and location of melting front at varioustimesisstudied in detail.
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It isfound that the nonlinearity of melting rate occurs for a short time. The successful comparison
with numerical solution and analytical solution should give confidence in the proposed mathematical treat-
ment, and encour age the acceptance of this method as useful tool for exploring practical problems such as
forming materials process, ice melting process, food preservation process and tissue preservation process.

Key words : phase change, moving boundary, variable space grid
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Table 1. Propertiesof porous pack bed (ice + porous)

Properties Unfrozen layer Frozen layer
pkg/m? 1942.0 1910.0
a (m?/s) 0.21 x 10°® 0.605 x 10°
A (W/mK) 0.855 1.480
L (J/kg) - 167.5x 10°

Table 2. The value of melting front from simulation method and exact solution method

at several temperature load

Time(s) 40°C 40°C (exact) 70°C 70°C (exact) 100°C  100°C (exact)
180 0.0034900 0.0034231 0.0047200 0.0046231 0.0056100 0.0055323
360 0.0049300 0.0048723 0.0066600 0.0065723 0.0079300 0.0078606
540 0.0060300 0.0059945 0.0081600 0.0080715 0.0097100 0.0096411
720 0.0069600 0.0069237 0.0094200 0.0093409 0.0112100 0.0111615
900 0.0077800 0.0077785 0.0105300 0.0104822 0.0125300 0.0125114
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Figure5. Compare between the melting front of presented method and exact solution method
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Figure7. The simulations of temperature dis-
tribution of constant load at 40°C (ice+
porous)
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Figure8. The simulations of temperature dis-
tribution of constant load at 70°C (pure

ice)
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Figure9. The simulations of temperature dis-
tribution of constant load at 70°C (ice+
porous)
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Figure 10. The simulations of temperature dis-
tribution of constant load at 100°C
(pureice)
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Figure11. The simulations of temperature dis-
tribution of constant load at 100°C
(icetporous)
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p  density, (kg/m’)

a thermal diffusivity (m’/s)

A effective thermal conductivity, (W/mK)
t time, (s)

T temperature, (°C)

X cartesian coordinates

€ distance of moving front (m)

X position in coordinate x

o density of solid / density of liquid

Oo O
o=>0
0o 0O
X OpO
n It is term of ?"’EEE_]-

n It is term of —
&

€ It is term of A-1

Sb  subcooling number

k T-TO
— SGO CD
ok T,-T,0

erf  error function
erfc complementary Error function
(erfc =1 - erf)

Ste  stefan number

p, ¢(T -T)
Qe="LFth 0
pS hS - hl
L latent heat [J/kg]
the total of node that consider

the number of node that consider

—

specific heat

c
h enthalpy

AT

i initial

1 unfrozen

s frozen

AN

n number of iterations

tan 1591984

Cardaw, H.S. and Jaeger J.C. 1959. Conduction of Heat
in Solid. 29 Ed ., p. 283,353. Oxford University.
Press, London and New York.

Crank, J. 1974. Numerical Methods in Heat Transfer,
Chap. 9, John Wiley & SonsL td, 1981.Boundary
Problems in Heat Flow and Diffusion. Proc.
Univ. Oxford, March p.25-27.

Goodman, T.R. 1961. J. Heat Transfer. Trans. ASME
(C), 83-86.

Mastanaiah, K. 1976. On the Numerical Solution of
Phase Change Problems Transient non-linear
Heat Conduction, International Journal for
Numerical Method in Engineering, vol. 10., 833-
844.

Muehlbauer, J.C. and Sunderland, JE. 1965. Heat
Conduction with a Freezing or Melting. Appl.
Mech. Rev. p.18 ,951.



a 4 v = ad a o A adad 4 a
3. AUATUAITUNT INN. ﬂ1§1°]i§ZL1JZIU’JﬁL‘1Nﬂ3Lﬂ‘lliﬂiltﬂﬂuﬂ)ﬁ)ﬁﬂ1iltﬂ§ﬂuﬁzﬂgﬂiﬂ
3

U0 29 atiud 5 n.v. - A.A. 2550 1405 FOLUR L 33500 uaz wadnd  Saulaly

q

Murray, W., Landis, F. 1959. Numerical and Machine  Rubinstein, L.I. 1971. The Stefan Problem. Am. Math.

Solution of Transient Heat-Conduction Problems Soc. Trangl. Math. Monogr. 27.

Involving Melting or Freezing. Trans. ASME, Taylor, A.B. 1974. The Mathematical Formulation of

106-112. Stefan Problems. Moving Boundary Problems
Rattanadecho, P. and Wongwises, S. 2007. Simulation in Heat Flow and Diffusion. Proc. Univ. Oxford,

of Freezing of Water-Saturated Porous Media March p. 25-27

in a Rectangular Cavity under Multiple Heat
Sources with Different Temperature Using a
Combined Transfinite Interpolation and PDE
Methods. Computers & Chemical Engineering.
Voal. 31, 2007, pp. 318-333.



