
ORIGINAL ARTICLE

The degree and the order of polynomials in the ring

$$R[F_A^1]$$

Ronnason Chinram¹

Abstract

Chinram, R.

The degree and the order of polynomials in the ring $R[F_A^1]$

Songklanakarin J. Sci. Technol., 2007, 29(6) : 1645-1650

In this research, we generalize some properties of the degree and the order of polynomials in the ring $R[x]$.

Key words : polynomials, degree, order

¹Ph.D. (Mathematics), Asst. Prof., Department of Mathematics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand.

Corresponding e-mail : ronnason.c@psu.ac.th

Received, 31 July 2006 Accepted, 27 June 2007

บทคัดย่อ

รัณสราญ ชินรัมย์
ระดับขั้นและอันดับของพหุนามในริง $R[F_A^1]$
ว. สงขลานครินทร์ วทท. 2550 29(6) : 1645-1650

ในงานวิจัยนี้ เรากายสูมบัติทางอย่างของระดับขั้นและอันดับของพหุนามในริง $R[x]$.

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อำเภอหาดใหญ่ จังหวัดสงขลา 90112

Let R be a ring. f is said to be a *polynomial in x with coefficients in R* iff f is the form of sum

$$f = \sum_{n=0}^{\infty} a_n x^n \text{ where } a_n \in R \text{ for all } n \in \mathbb{N} \cup \{0\}$$

such that $a_n = 0$ for all but a finite number of indices n .

Let $R[x]$ be the set of all polynomials in x with coefficients in R .

For any $f = \sum_{n=0}^{\infty} a_n x^n$ and $g = \sum_{n=0}^{\infty} b_n x^n$, define binary operations $+$ and \cdot on $R[x]$ by

$$f + g = \sum_{n=0}^{\infty} (a_n + b_n) x^n$$

and

$$f \cdot g = \sum_{n=0}^{\infty} \sum_{i=0}^n a_i b_{n-i} x^n = \sum_{n=0}^{\infty} \sum_{m=0}^n a_m b_{n-m} x^{n+m}.$$

Then $R[x]$ is a ring under these two binary operations $+$ and \cdot . The ring $R[x]$ is called the *ring of polynomials in x with coefficients in R* or the *polynomial ring* (see Hungerford, 1980).

Let $f \in R[x]$ where $f \neq 0$. The *degree* of f is $\max\{n \mid a_n \neq 0\}$. The degree of f is denoted by $\deg f$. A polynomial $f \in R[x]$ such that $\deg f = n$ will always be written in the form $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ where $a_i \in R$ and $a_n \neq 0$. The next theorem shows some properties of the degree of polynomials in the ring $R[x]$.

Theorem 1.1 (See Hungerford, 1980).

Let R be a ring and $f, g \in R[x] \setminus \{0\}$. The following statements are true.

(i) $fg = 0$ or $\deg(fg) \leq \deg f + \deg g$.

- (ii) If R is an integral domain, then $\deg(fg) = \deg f + \deg g$.
- (iii) $f + g = 0$ or $\deg(f + g) \leq \max\{\deg f, \deg g\}$.
- (iv) If $\deg f \neq \deg g$, then $\deg(f + g) = \max\{\deg f, \deg g\}$.

Let $f \in R[x]$ where $f \neq 0$. The order of f is $\min\{n \mid a_n \neq 0\}$ and the order of 0 is ∞ . The order of f is denoted by $\text{ord } f$ (see Grillet, 1999). The next theorem shows some properties of the order of the polynomials in the ring $R[x]$.

Theorem 1.2 (see Grillet, 1999).

Let R be a ring and $f, g \in R[x] \setminus \{0\}$. The following statements are true.

- (i) $fg = 0$ or $\text{ord}(fg) \geq \text{ord } f + \text{ord } g$.
- (ii) If R is an integral domain, then $\text{ord}(fg) = \text{ord } f + \text{ord } g$.
- (iii) $f + g = 0$ or $\text{ord}(f + g) \geq \min\{\text{ord } f, \text{ord } g\}$.
- (iv) If $\text{ord } f \neq \text{ord } g$, then $\text{ord}(f + g) = \min\{\text{ord } f, \text{ord } g\}$.

In this paper, we generalize Theorem 1.1 and Theorem 1.2.

The semigroup F_A^1 .

Let A be any nonempty set and

$$F_A = \{a_1 a_2 \dots a_m \mid m \in \mathbb{N}, a_i \in A \text{ for all } i \in \{1, \dots, m\}\}.$$

For $a_1 a_2 \dots a_m, b_1 b_2 \dots b_n \in F_A$ define a binary operation on F_A by

$$(a_1 a_2 \dots a_m)(b_1 b_2 \dots b_n) = a_1 a_2 \dots a_m b_1 b_2 \dots b_n. \quad (2.1)$$

It is easy to prove that F_A^1 is a semigroup under this binary operation. F_A^1 is said to be a *free semigroup* generated by the set A and A is called a *generating set* of F_A^1 (see Howie, 1975).

Next, let 1 be a new element and

$$F_A^1 = F_A \cup \{1\}.$$

Define a binary operation on F_A^1 by

$$x1 = x = 1x \text{ for all } x \in F_A^1 \text{ and } 1 \cdot 1 = 1$$

and if $x, y \in F_A^1$ then xy satisfies (2.1).

We can easily see that F_A^1 is a semigroup under the above binary operation.

Example 2.1. Let $A = \{x\}$. Then

1. By the definition of free semigroups F_A^1 , we have

$$F_A^1 = \{x, x^2, x^3, \dots\} = \{x^n \mid n \in \mathbb{N}\}$$

and $x^i x^j$ for all $i, j \in \mathbb{N}$.

2. By the definition of the semigroups F_A^1 , we have

$$F_A^1 = \{1, x, x^2, x^3, \dots\} = \{x^n \mid n \in \mathbb{N} \cup \{0\}\}$$

where $1 = x^0$ and $1x^i = x^i = x^i 1$ for all $i \in \mathbb{N}$, $1 \cdot 1 = 1$ and $x^i x^j = x^{i+j}$ for all $i, j \in \mathbb{N}$.

Theorem 2.1.

If $|A| > 1$, then F_A^1 is not a commutative semigroup.

Proof. Assume that $|A| > 1$. Then there exist $x, y \in A$ such that $x \neq y$. Then $xy, yx \in F_A^1$ and $xy \neq yx$. Thus F_A^1 is not a commutative semigroup.

Let A be a nonempty set. For $s = a_1 a_2 \dots a_n \in F_A^1$ where $a_i \in A$ for all $i \in \{1, 2, \dots, n\}$, the *length* of s is n and the *length* of 1 is 0. For $s \in F_A^1$, the length of s is denoted by $L(s)$.

Example 2.2.

Let $A = \{a, b\}$, Then 1, $aba, a^2bab^3 \in F_A^1$.

By definition of the length of element in F_A^1 , we have that

$$L(1) = 0, L(aba) = 3 \text{ and } L(a^2bab^3) = 7.$$

The next theorem shows some properties of the length of elements in F_A^1 .

Theorem 2.2.

Let A be any nonempty set. For $x, y \in F_A^1$, we have

$$L(xy) = L(x) + L(y).$$

Proof. Let A be a nonempty set and $x, y \in F_A^1$. Then $x = 1$ or $x \in F_A$ and $y = 1$ or $y \in F_A$.

Case 1 : $x = 1$. Then $L(x) = 0$. Thus $L(xy) = L(y) = 0 + L(y) = L(x) + L(y)$.

Case 2 : $x \in F_A$. Then $x = a_1 a_2 \dots a_n$ for some $a_1, a_2, \dots, a_n \in A$.

Case 2.1: $y = 1$. Then $L(y) = 0$. Thus $L(xy) = L(x) = L(x) + 0 = L(x) + L(y)$.

Case 2.2: $y \in F_A$. Then there exist $b_1, b_2, \dots, b_m \in A$ such that $y = b_1 b_2 \dots b_m$. We have that

$$xy = a_1 a_2 \dots a_n b_1 b_2 \dots b_m,$$

so

$$L(xy) = m + n = L(x) + L(y).$$

Therefore, $L(xy) = L(x) + L(y)$ for all $x, y \in F_A^1$.

The ring $R[S]$.

Let R be a ring and S a semigroup. f is said to be a *polynomial on S with coefficients in R* if f is the form of finite sums $f = \sum_{s \in S} a_s s$ where $s \in S$ and $a_s \in R$.

Let $R[S]$ be the set of all polynomials on S with coefficients in R . For any $f = \sum_{s \in S} a_s s$ and $g = \sum_{s \in S} b_s s$, define binary operations $+$ and \cdot on $R[S]$ by

$$f + g = \sum_{s \in S} a_s s + \sum_{s \in S} b_s s = \sum_{s \in S} (a_s + b_s) s$$

and

$$f \cdot g = \left(\sum_{s \in S} a_s s \right) \left(\sum_{s' \in S} b_{s'} s' \right) = \sum_{s \in S} \sum_{s' \in S} (a_s b_{s'}) (s s').$$

Then $R[S]$ is a ring under these binary operations $+$ and \cdot (see Zhang, Chen and Li, 1996).

If $A = \{x\}$, by Example 2.1, we have known that $F_A^1 = \{1, x, x^2, \dots\}$. By the definition of the rings $R[S]$, it is easy to see that $R[F_A^1] = R[x]$. Therefore, the ring $R[S]$ is a generalization of the ring $R[x]$.

The degree of polynomials in the ring $R[F_A^1]$.

Let A be a nonempty set and R a ring. Let $f \in R[F_A^1] \setminus \{0\}$ such that $f = \sum_{s \in F_A^1} a_s s$. The *degree* of f is $\max\{L(s) \mid a_s \neq 0\}$. For $f \in R[F_A^1]$, the degree of f is denoted by $\deg f$.

Example 4.1.

Let $A = \{a, b\}$ and \mathbf{R} be the set of all real numbers. Let $f = 2ab + 3a^3 + 4b^2a^2 \in \mathbf{R}[F_A^1]$. By the definition of the degree of elements in $\mathbf{R}[F_A^1]$, it is easy to see that $\deg f = 4$.

In the remainder of this section, let A be a nonempty set and R a ring.

Theorem 4.1.

Let $f, g \in R[F_A^1]$. If $f \neq 0$ and $g \neq 0$, then $fg = 0$ or $\deg(fg) \leq \deg f + \deg g$.

Proof. Let $f = \sum_{s \in S} a_s s$ and $g = \sum_{s \in S} b_s s$ be any two elements in $R[F_A^1]$ such that $f \neq 0$ and $g \neq 0$. We have $fg = \sum_{s \in S, s' \in S} (a_s b_{s'}) (ss')$. Assume $fg \neq 0$. Thus $\deg(fg) = \max\{L(ss') \mid a_s b_{s'} \neq 0\} = \max\{L(s) + L(s') \mid a_s b_{s'} \neq 0\}$ by Theorem 2.2 $\leq \max\{L(s) + L(s') \mid a_s \neq 0 \text{ and } b_{s'} \neq 0\} \leq \max\{L(s) \mid a_s \neq 0\} + \max\{L(s') \mid b_{s'} \neq 0\} = \deg f + \deg g$.

Theorem 4.2.

Let R be an integral domain and $f, g \in R[F_A^1]$. If $f \neq 0$ and $g \neq 0$, then $\deg(fg) = \deg f + \deg g$.

Proof. Let $f = \sum_{s \in S} a_s s$ and $g = \sum_{s \in S} b_s s$ be any

two elements in $R[F_A^1]$ such that $f \neq 0$ and $g \neq 0$.

Assume $\deg f = n$ and $\deg g = m$. Let $u \in \{s \in F_A^1 \mid L(s) = n \text{ and } a_s \neq 0\}$ and $v \in \{s \in F_A^1 \mid L(s) = m \text{ and } b_s \neq 0\}$. So $a_u \neq 0$ and $b_v \neq 0$. Since R is an integral domain, $a_u b_v \neq 0$. By properties of u and v , we have

$$f = a_u u + \sum_{\substack{s \in S \\ L(s) \leq n \\ s \neq u}} a_s s \quad \text{and} \quad g = b_v v + \sum_{\substack{s \in S \\ L(s) \leq n \\ s \neq v}} b_s s.$$

$$\text{Thus } fg = a_u b_v uv + \sum_{\substack{s \in S \\ L(ss') \leq m+n \\ ss' \neq uv}} b_s s.$$

From Theorem 2.2, we have known that $L(uv) = L(u) + L(v) = m + n$. Hence,

$$\deg(fg) = m + n = \deg f + \deg g,$$

as required.

Theorem 4.3.

Let $f, g \in R[F_A^1]$. If $f \neq 0$ and $g \neq 0$, then $f + g = 0$ or $\deg(f + g) \leq \max\{\deg f, \deg g\}$.

Proof. Let $f = \sum_{s \in S} a_s s$ and $g = \sum_{s \in S} b_s s$ be any two elements in $R[F_A^1]$ such that $f \neq 0$ and $g \neq 0$.

Let $\deg f = n$ and $\deg g = m$.

Case 1: $m > n$. We have that

$$\begin{aligned} f + g &= \sum_{s \in S} a_s s + \sum_{s \in S} b_s s \\ &= \sum_{\substack{s \in S \\ L(s) \leq n}} (a_s + b_s) s + \sum_{\substack{s \in S \\ L(s) > n}} b_s s \end{aligned}$$

so

$$\begin{aligned} \deg(f + g) &= \max\{L(s) \mid b_s \neq 0 \text{ and } L(s) > n\} \\ &= m \\ &= \max\{m, n\} \\ &= \max\{\deg f, \deg g\}. \end{aligned}$$

Case 2: $n > m$. We have that

$$f + g = \sum_{s \in S} a_s s + \sum_{s \in S} b_s s$$

$$= \sum_{\substack{s \in S \\ L(s) \leq m}} (a_s + b_s) s + \sum_{\substack{s \in S \\ L(s) > m}} a_s s$$

so

$$\begin{aligned} \deg(f+g) &= \max\{L(s) \mid a_s \neq 0 \text{ and } L(s) > m\} \\ &= n \\ &= \max\{m, n\} \\ &= \max\{\deg f, \deg g\}. \end{aligned}$$

Case 3: $m = n$. We have that

$$f+g = \sum_{s \in S} a_s s + \sum_{s \in S} b_s s$$

Case 3.1 : $g = -f$. So $f+g = 0$.

Case 3.2 : $g \neq -f$. So $f+g \neq 0$. Then

$$\begin{aligned} \deg(f+g) &= \max\{L(s) \mid a_s + b_s \neq 0\} \\ &\leq \max\{\max\{L(s) \mid a_s \neq 0 \text{ or } b_s \neq 0\}\} \\ &\leq \max\{\max\{L(s) \mid a_s \neq 0\}, \max\{L(s) \mid b_s \neq 0\}\} \\ &= \max\{\deg f, \deg g\}. \end{aligned}$$

Therefore, $f+g = 0$ or $\deg(f+g) \leq \max\{\deg f, \deg g\}$, as required.

Corollary 4.4.

Let $f, g \in R[F_A^1]$ such that $f \neq 0$ and $g \neq 0$.

If $\deg f \neq \deg g$, then $\deg(f+g) = \max\{\deg f, \deg g\}$.

Proof. By the proof of Case 1 and Case 2 of Theorem 4.3.

The order of polynomials in the ring $R[F_A^1]$.

Let A be a nonempty set and R a ring. For

$f \in R[F_A^1]$ such that $f = \sum_{s \in F_A^1} a_s s$. If $f \neq 0$, the *order*

of f is $\min\{L(s) \mid a_s \neq 0\}$ and the order of 0 is ∞ .

For $f \in R[F_A^1]$, the order of f is denoted by $\text{ord } f$.

Example 5.1.

Let $A = \{a, b\}$ and \mathbf{R} be the set of all real numbers. Let $f = 2ab + 3a^3 + 4b^2 \in \mathbf{R}[F_A^1]$. By the definition of the order of elements

in $\mathbf{R}[F_A^1]$, it is easy to see that $\text{ord } f = 2$.

In the remainder of this section, let A be a

nonempty set and R a ring.

Theorem 5.1.

Let $f, g \in R[F_A^1]$. If $f \neq 0$ and $g \neq 0$, then $fg = 0$ or $\text{ord}(fg) \geq \text{ord } f + \text{ord } g$.

Proof. Let $f = \sum_{s \in S} a_s s$ and $g = \sum_{s \in S} b_s s$ be any

two elements in $R[F_A^1]$ such that $f \neq 0$ and $g \neq 0$.

We have $fg = \sum_{s \in S} \sum_{s' \in S} (a_s b_{s'}) (ss')$. Assume that $fg \neq 0$.

Then we have that

$$\begin{aligned} \text{ord}(fg) &= \min\{L(ss') \mid a_s b_{s'} \neq 0\} \\ &= \min\{L(s) + L(s') \mid a_s b_{s'} \neq 0\} \\ &\quad \text{by Theorem 2.2} \\ &\geq \min\{L(s) + L(s') \mid a_s \neq 0 \text{ and } b_{s'} \neq 0\} \\ &\geq \min\{L(s) \mid a_s \neq 0\} + \min\{L(s') \mid b_{s'} \neq 0\} \\ &= \text{ord } f + \text{ord } g. \end{aligned}$$

Hence, $\text{ord}(fg) > \text{ord } f + \text{ord } g$.

Theorem 5.2.

Let R be an integral domain and $f, g \in R[F_A^1]$. If $f \neq 0$ and $g \neq 0$, then $\text{ord}(fg) = \text{ord } f + \text{ord } g$.

Proof. Let $f = \sum_{s \in S} a_s s$ and $g = \sum_{s \in S} b_s s$ be any

two elements in $R[F_A^1]$ such that $f \neq 0$ and $g \neq 0$.

Assume $\text{ord } f = n$ and $\text{ord } g = m$. Let $u \in \{s \in F_A^1 \mid L(s) = n \text{ and } a_s \neq 0\}$ and $v \in \{s \in F_A^1 \mid L(s) = m \text{ and } b_s \neq 0\}$. So $a_u \neq 0$ and $b_v \neq 0$. Since R is an integral domain, $a_u b_v \neq 0$. By properties of u and v , we have

$$f = a_u u + \sum_{\substack{s \in S \\ L(s) \geq n \\ s \neq u}} a_s s \quad \text{and} \quad g = b_v v + \sum_{\substack{s \in S \\ L(s) \geq m \\ s \neq v}} b_s s.$$

$$\text{Thus } fg = a_u b_v uv + \sum_{\substack{s \in S \\ L(ss') \geq m+n \\ ss' \neq uv}} a_s b_{s'} ss'.$$

By Theorem 2.2, we have $L(uv) = L(u) + L(v) = m+n$. Hence, $\text{ord}(fg) = m+n = \text{ord } f + \text{ord } g$, as required.

Theorem 5.3.

Let $f, g \in R[F_A^1]$. If $f \neq 0$ and $g \neq 0$, then $f+g = 0$ or $\text{ord}(f+g) \geq \min\{\text{ord } f, \text{ord } g\}$.

Proof. Let $f = \sum_{s \in S} a_s s$ and $g = \sum_{s \in S} b_s s$ be any two elements in $R[F_A^1]$ such that $f \neq 0$ and $g \neq 0$.

Let $\text{ord } f = n$ and $\text{ord } g = m$.

Case 1: $m > n$. We have that

$$\begin{aligned} f + g &= \sum_{s \in S} a_s s + \sum_{s \in S} b_s s \\ &= \sum_{\substack{s \in S \\ L(s) \geq m}} (a_s + b_s) s + \sum_{\substack{s \in S \\ L(s) < m}} a_s s \end{aligned}$$

so

$$\begin{aligned} \text{ord } (f + g) &= \min\{L(s) \mid a_s \neq 0 \text{ and } L(s) < m\} \\ &= n \\ &= \min\{m, n\} \\ &= \min\{\text{ord } f, \text{ord } g\}. \end{aligned}$$

Case 2: $n > m$. We have that

$$\begin{aligned} f + g &= \sum_{s \in S} a_s s + \sum_{s \in S} b_s s \\ &= \sum_{\substack{s \in S \\ L(s) \geq n}} (a_s + b_s) s + \sum_{\substack{s \in S \\ L(s) < n}} b_s s \end{aligned}$$

so

$$\begin{aligned} \text{ord } (f + g) &= \min\{L(s) \mid b_s \neq 0 \text{ and } L(s) < n\} \\ &= m \\ &= \min\{m, n\} \\ &= \min\{\text{ord } f, \text{ord } g\}. \end{aligned}$$

Case 3: $m = n$. We have that

$$f + g = \sum_{s \in S} (a_s + b_s) s$$

Case 3.1: $g = -f$. So $f + g = 0$.

$$\begin{aligned} \text{Case 3.2: } g &\neq -f. \text{ So } f + g \neq 0. \text{ Then} \\ \text{ord } (f + g) &= \min\{L(s) \mid a_s + b_s \neq 0\} \\ &\geq \min\{\min\{L(s) \mid a_s \neq 0 \text{ or } b_s \neq 0\}\} \\ &\geq \min\{\min\{L(s) \mid a_s \neq 0\}, \min\{L(s) \mid b_s \neq 0\}\} \\ &= \min\{\text{ord } f, \text{ord } g\} \end{aligned}$$

Therefore $f + g = 0$ or $\text{ord } (f + g) \geq \min\{\text{ord } f, \text{ord } g\}$, as required.

Corollary 5.4.

Let $f, g \in R[F_A^1]$ such that $f \neq 0$ and $g \neq 0$.

If $\text{ord } f \neq \text{ord } g$, then $\text{ord}(f + g) = \min\{\text{ord } f, \text{ord } g\}$.

Proof. By the proof of Case 1 and Case 2 of Theorem 5.3.

Acknowledgments

The author would like to thank the referee for the useful and helpful suggestions.

References

- Grillet, P.A. 1999. Algebra, John Wiley & Sons, Inc., New York.
Howie, J.M. 1975. An introduction to semigroup theory, Academic Press, London.
Hungerford, T.W. 1980. Algebra, Springer-Verlag, New York.
Zhang, M.C., Chen Y.Q. and Li, Y.H. 1996. The intersection property of quasi-ideals in rings and semigroup rings, SEA Bull. Math., 20 : 117-122.