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Let R be a ring. f is said to be a polynomial
in x  with coefficients in R if f is the form of sum

f = a
n
xn where a

n
∈  R for all n ∈  N ∪ {0}

n=0

∞

∑
such  that  a

n
 = 0  for  all  but  a  finite  number  of

indices n.
Let R[x] be the set of all polynomials in x

with coefficients in R.

For any f = a
n
xn

n=0

∞

∑  and g = b
n
xn

n=0

∞

∑ ,  define

binary operations +  and ·  on R[x] by

f + g = (a
n
+ b

n
)xn

n=0

∞

∑
and

f ⋅ g = a
i
b

n−i
xn =

i=0

n

∑
n=0

∞

∑ a
n
b

m
xn+m .

m=0

n

∑
n=0

∞

∑

Then  R[x]  is  a  ring  under  these  two  binary
operations + and · . The ring R[x] is called the ring
of polynomials in x with coefficients in R or the
polynomial ring (see Hungerford, 1980).

Let f ∈  R[x] where f   0. The degree of f
is max{n |  a

n
   0}. The degree of f is denoted by

deg f. A polynomial f ∈  R[x] such that deg f = n will
always be written in the form f(x) = a

0
 + a

1
x + a

2
x

2
 +

... + a
n
x

n
 where a

i
 ∈  R and a

n
   0. The next theorem

shows some properties of the degree of polynomials
in the ring R[x].

Theorem 1.1 (See Hungerford, 1980).
Let R be a ring and f, g ∈  R[x] \ {0}. The

following statements are true.
(i) fg = 0 or deg (fg) < deg f + deg g.

(ii) If R is an integral domain, then
deg (fg) = deg f + deg g.

(iii) f + g = 0 or deg (f + g) < max{deg f,
deg g}.

(iv) If deg f   deg g, then deg(f + g) =
max{deg f(x) , deg g(x)}.

Let f ∈  R[x] where f   0. The order of f is
min{n | a

n
     0} and the order of 0 is ∞ . The order

of f is denoted by ord f (see Grillet, 1999). The
next theorem shows some properties of the order
of the polynomials in the ring R[x].

Theorem 1.2 (see Grillet, 1999).
Let R be a ring and f, g ∈  R[x] \ {0}. The

following statements are true.
(i) fg = 0 or ord (fg) > ord f + ord g.
(ii) If R is an integral domain, then

ord (fg) = ord f + ord g.
(iii) f + g = 0 or ord (f + g) > min{ord f,

ord g}.
(iv) If ord f    ord g, then ord (f + g) =

min{ord f , ord g}.

In  this  paper,  we  generalize  Theorem  1.1
and Theorem 1.2.

The semigroup F
A

1 .
Let A be any nonempty set and

F
A
 = {a

1
a

2
...a

m
 | m ∈ N, a

i
 ∈  A for all i ∈  {1,...,m}}.

For a
1
a

2
...a

m
,b

1
b

2
...b

n
 ∈ F

A
 define a binary

operation on F
A
  by

≠
≠

≠

≠

≠
≠

≠
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(a
1
a

2
...a

m
)(b

1
b

2
...b

n
) = a

1
a

2
...a

m
b

1
b

2
...b

n
. (2.1)

It is easy to prove that F
A
 is a semigroup

under this binary operation. F
A
 is said to be a free

semigroup generated by the set A and A is called a
generating set of F

A
 (see Howie, 1975).

Next, let 1 be a new element and

F
A

1 = F
A

∪ {1}.

Define a binary operation on F
A

1  by

x1 = x = 1x  for all x ∈  F
A

1  and 1·1 = 1

and if x, y ∈  F
A

1  then xy satisfies (2.1).

We can easy to see that F
A

1  is a semigroup

under the above binary operation.

Example 2.1.  Let A = {x}. Then
1. By the definition of free semigroups F

A
,

we have
F

A
 = {x, x

2
, x

3
, ...} = {x

n
 | n ∈  N}

and x
i
x

j
 for all i, j ∈  N.

2. By the definition of the semigroups F
A

1 ,

we have

F
A

1  = {1, x, x
2
, x

3
, ...} = {x

n
 | n ∈  N ∪  {0}}

where 1 = x
0
 and 1x

i
 = x

i
 = x

i
1 for all i ∈  N, 1·1 =

1 and x
i
x

j
 = x

i+j
 for all i, j ∈  N.

Theorem 2.1.

If |A| > 1, then F
A

1  is not a commutative

semigroup.
Proof. Assume that |A| > 1. Then there exist

x, y ∈  A such that x   y. Then xy, yx ∈  F
A

1  and xy

 yx. Thus F
A

1  is not a commutative semigroup.

Let A be a nonempty set. For s = a
1
a

2
...a

n
 ∈

F
A
 where a

i
 ∈ A for all i ∈  {1, 2, ..., n}, the length

of s is n and the length of 1 is 0. For s ∈  F
A

1 , the

length of s is denoted by L(s).

Example 2.2.

Let A = {a, b}, Then 1, aba, a
2
bab

3
 ∈  F

A

1 .

By definition of the length of element in F
A

1 , we

have that
L(1) = 0, L(aba) = 3 and L(a

2
bab

3
) = 7.

The next theorem shows some properties of

the length of elements in F
A

1 .

Theorem 2.2.

Let A be any nonempty set. For x, y ∈  F
A

1 ,

we have
L(xy) = L(x) + L(y).
Proof. Let A be a nonempty set and x, y ∈

F
A

1 . Then x = 1 or  x ∈  F
A
 and y = 1 or y ∈  F

A
.

Case 1 : x = 1. Then L(x) = 0. Thus
L(xy) = L(y) = 0 + L(y)  = L(x) + L(y).

Case 2 : x ∈  F
A
. Then x = a

1
a

2
...a

n
 for some

a
1
,a

2
,...a

n
 ∈  A.

Case 2.1: y = 1. Then L(y) = 0. Thus
L(xy) = L(x) =  L(x)  + 0 = L(x) + L(y).
Case 2.2: y ∈  F

A
. Then there exist b

1
,b

2
,...b

m

∈  A such that y = b
1
b

2
...b

m
. We have that

xy = a
1
a

2
...a

n
b

1
b

2
...b

m
,

so
L(xy) = m + n  = L(x) + L(y).

Therefore, L(xy) = L(x) + L(y) for all x, y ∈  F
A

1 .

The ring R[S].
Let R be a ring and S a semigroup. f is said

to be a polynomial on S with coefficients in R if f

is the form of finite sums f = a
s
s

s ∈  S
∑  where s ∈  S

and a
s
 ∈  S.
Let R[S] be the set of all polynomials on S

with  coefficients  in  R.  For  any  f = a
s
s

s ∈  S
∑   and

g = b
s
s

s ∈  S
∑ , define binary operations + and · on

R[S]  by

f + g = a
s
s

s ∈  S
∑ + b

s
s

s ∈  S
∑ = (a

s
+ b

s
)s

s ∈  S
∑

and

f ⋅ g = ( a
s
s)

s ∈  S
∑ ( b

′s
′s

′s  ∈  S
∑ ) = (a

s
b

′s
)(s ′s )

′s  ∈  S
∑

s ∈  s
∑ .

≠
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Then R[S] is a ring under these binary operations
+ and ·  (see Zhang, Chen and Li, 1996).

If A = {x}, by Example 2.1, we have known

that F
A

1 ={1,x,x
2
,...}. By the definition of the rings

R[S], it is easy to see that R[ F
A

1 ] = R[x]. There-

fore, the ring R[S] is a generalization of the ring
R[x].

The degree of polynomials in the ring R[ F
A

1].
Let A be a nonempty set and R a ring. Let

f ∈  R[F
A

1 ] \ {0}.  such that f = a
s
s

s ∈  FA
1

∑ . The degree

of f is max{L(s) | a
s
  0}. For f ∈  R[F

A

1 ], the degree

of f is denoted by deg f.

Example 4.1.
Let A = {a, b} and R be the set of all real

numbers. Let f = 2ab + 3a
3
 + 4b

2
a

2
 ∈  R[ F

A

1 ]. By

the definition of the degree of elements in R[ F
A

1 ],

it is easy to see that deg f = 4.
In the remainder of this section, let A be a

nonempty set and R a ring.

Theorem 4.1.

Let f,g ∈ R[ F
A

1 ]. If f    0 and g   0, then fg = 0

or deg (fg) < deg f + deg g.

Proof. Let f = a
s
s

s ∈  S
∑  and g = b

s
s

s ∈  S
∑  be any

two elements in R[ F
A

1 ] such that f    0 and g   0. We

have fg = (a
s
b

′s
)(s ′s )

′s  ∈  S
∑

s ∈  S
∑ . Assume fg    0. Thus

deg (fg) = max{L(ss′) | a
s
b

s′    0}
= max{L(s) + L(s′) | a

s
b

s′    0}
by Theorem 2.2

< max{L(s) + L(s′) | a
s
   0 and b

s′   0}
< max{L(s) | a

s
   0} + max {L(s′) | b

s′   0}
= deg f + deg g.

Theorem 4.2.
Let R be an integral domain and f,g ∈  R

[ F
A

1 ]. If f   0 and g   0, then deg (fg) = deg f +

deg g.

Proof.  Let f = a
s
s

s ∈  S
∑  and g = b

s
s

s ∈  S
∑  be any

two elements in R[ F
A

1 ] such that f   0 and g   0.

Assume deg f = n and deg g = m. Let u ∈  {s ∈  F
A

1 |

L(s) = n and a
s
   0} and v ∈  {s ∈   F

A

1 | L(s) = m

and b
s
   0}. So a

u
    0 and b

v
    0. Since R is an

integral domain, a
u
 b

v
   0. By properties of u and

v, we have

f = a
u
u + a

s
s

s ∈  S
L(s)≤n
s≠u

∑   and  g = g
v
v + b

s
s

s ∈  S
L(s)≤n
s≠v

∑ .

Thus fg = a
u
b

v
uv + b

s
s

s ∈  S
L(s ′s )≤m+n
s ′s ≠ uv

∑ .

From Theorem 2.2, we have known that L(uv) =
L(u) + L(v) = m + n. Hence,

deg (fg) = m + n = deg f +deg g,

as required.

Theorem 4.3.

Let f,g ∈  R[ F
A

1 ]. If f    0 and g   0, then f +

g = 0  or deg (f + g) < max{deg f, deg g}.

Proof.  Let f = a
s
s

s ∈  S
∑  and g = b

s
s

s ∈  S
∑  be any

two elements in R[ F
A

1 ] such that f    0 and g    0.

Let deg f = n and deg g = m.

Case 1: m > n. We have that

f + g = a
s
s

s ∈  S
∑ + b

s
s

s ∈  S
∑

= (a
s
+ b

s
)s

s ∈  S
L(s)≤n

∑ + b
s
s

s ∈  S
L(s)>n

∑

so
deg (f + g) = max{L(s) | b

s
   0 and L(s) > n}

= m
= max{m, n}
= max{deg f, deg g}.

Case 2: n > m. We have that

f + g = a
s
s

s ∈  S
∑ + b

s
s

s ∈  S
∑

≠ ≠

≠ ≠
≠

≠
≠

≠
≠ ≠

≠ ≠

≠ ≠

≠
≠ ≠ ≠

≠

≠ ≠

≠ ≠

≠
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= (a
s
+ b

s
)s

s ∈  S
L(s)≤m

∑ + a
s
s

s ∈  S
L(s)>m

∑

so
deg (f + g) = max{L(s) | a

s
    0 and L(s) > m}

= n
= max{m, n}
= max{deg f, deg g}.

Case 3: m = n. We have that

f + g = a
s
s

s ∈  S
∑ + b

s
s

s ∈  S
∑

Case 3.1 : g = -f. So f + g = 0.
Case 3.2 : g    -f. So f + g    0. Then

deg (f + g) = max{L(s) | a
s
 + b

s
    0}

< max{max{L(s) | a
s
   0 or b

s
   0}}

<  max{max{L(s) | a
s
   0}, max{L(s) |

    b
s
   0}}

= max{deg f, deg g}.

Therefore, f + g = 0 or deg (f + g) < max
{deg f, deg g}, as required.

Corollary 4.4.

Let f,g ∈  R [ F
A

1 ] such that f   0 and g   0.

If deg f    deg g, then deg(f + g) = max{deg f, deg
g}.

Proof. By the proof of Case 1 and Case 2 of
Theorem 4.3.

The order of polynomials in the ring R[ F
A

1].
Let A be a nonempty set and R a ring. For

f ∈  R[ F
A

1 ]  such that f = a
s
s

s ∈ FA
1

∑ . If f     0, the order

of f is min{L(s) | a
s
     0} and the order of 0 is ∞ .

For f ∈  R[ F
A

1 ], the order of f is denoted by ord f.

Example 5.1.
Let A = {a, b} and R be the set of all real

numbers. Let f = 2ab + 3a
3
 + 4b

2
a

2

∈  R[ F
A

1 ]. By the definition of the order of elements

in R[ F
A

1 ], it is easy to see that ord f = 2.

In the remainder of this section, let A be a

nonempty set and R a ring.

Theorem 5.1.

Let f,g ∈  R [ F
A

1 ]. If f    0 and g   0, then

fg = 0 or ord (fg) > ord f + ord g.

Proof.  Let f = a
s
s

s ∈  S
∑  and g = b

s
s

s ∈  S
∑  be any

two elements in R[ F
A

1 ] such that f     0 and g     0.

We have fg = (a
s
b

′s
)(s ′s )

′s  ∈  S
∑

s ∈  S
∑ . Assume that fg   0.

Then we have that
ord (fg) = min{L(ss′) | a

s
b

s′    0}
= min{L(s) + L(s′) | a

s
b

s′    0}
by Theorem 2.2

> min{L(s) + L(s′) | a
s
    0 and b

s′    0}
> min{L(s) | a

s
    0} + min {L(s′) | b

s′    0}
= ord f + ord g.

Hence,   ord (fg) > ord f + ord g.

Theorem 5.2.
Let  R  be  an  integral  domain  and  f,g  ∈   R

[ F
A

1 ]. If f    0 and g    0, then ord (fg) = ord f + ord g.

Proof. Let f = a
s
s

s ∈  S
∑  and g = b

s
s

s ∈  S
∑  be any

two elements in R[ F
A

1 ] such that f  0 and g   0.

Assume ord f = n and ord g = m. Let u ∈  {s ∈  F
A

1 |

L(s) = n and a
s
   0}  and v ∈  {s ∈   | L(s) = m   and

b
s
    0}. So a

u
    0 and b

v
    0. Since R is an integral

domain, a
u
 b

v
   0. By properties of u and v, we

have

f = a
u
u + a

s
s

s ∈  S
L(s)≥n
s≠u

∑   and   g = b
v
v + b

s
s

s ∈  S
L(s)≥m
s≠v

∑ .

Thus fg = a
u
b

v
uv + a

s
b

′s
s ′s .

s ∈  S
L(s ′s )≥m+n
s ′s ≠uv

∑

By Theorem 2.2, we have L(uv) = L(u) + L(v) =
m+n. Hence, ord (fg) = m + n = ord f + ord g, as
required.

Theorem 5.3.

Let f,g ∈  R[ F
A

1 ].  If f     0 and g    0, then f +

g = 0 or ord (f + g) > min{ord f, ord g}.

≠

≠ ≠
≠
≠ ≠
≠

≠

≠ ≠
≠

≠

≠

≠ ≠

≠≠
≠

≠
≠

≠ ≠
≠ ≠

≠ ≠

≠

≠
≠ ≠ ≠

≠

≠ ≠
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Proof.  Let f = a
s
s

s ∈  S
∑  and g = b

s
s

s ∈  S
∑  be any

two elements in R [ F
A

1 ] such that f    0 and g    0.

Let ord f = n and ord g = m.

Case 1: m > n. We have that

f + g = a
s
s + b

s
s

s ∈  S
∑

s ∈  S
∑

    
= (a

s
+ b

s
)s + a

s
s

s ∈  S
L(s)<m

∑
s ∈  S
L(s)≥m

∑

so
ord (f + g) = min{L(s) | a

s
    0 and L(s) < m}

= n
= min{m, n}
= min{ord f, ord g}.

Case 2: n > m. We have that

f + g = a
s
s + b

s
s

s ∈  S
∑

s ∈  S
∑

    
= (a

s
+ b

s
)s + b

s
s

s ∈  S
L(s)<n

∑
s ∈  S
L(s)≥n

∑

so
ord (f + g) = min{L(s) | b

s
    0 and L(s) < n}

= m
= min{m, n}
= min{ord f, ord g}.

Case 3: m = n. We have that

f + g = (a
s
+ b

s
)s

s ∈  S
∑

Case 3.1: g = -f . So  f + g = 0.

Case 3.2: g    -f . So f + g    0. Then
ord (f + g) =  min{L(s) | a

s
 + b

s
    0}

>  min{min{L(s) | a
s
    0 or b

s
    0}}

>  min{min{L(s) | a
s
    0}, min{L(s) |

    b
s
    0}}

= min{ord f, ord g}

Therefore f + g = 0 or ord (f + g) > min{ord
f, ord g}, as required.

Corollary 5.4.

Let f,g ∈  R[ F
A

1 ] such that  f    0 and g   0.

If ord f    ord g, then ord(f + g) = min{ord f, ord
g}.

Proof. By the proof of Case 1 and Case 2 of
Theorem 5.3.

Acknowledgments

The author would like to thank the referee
for the useful and helpful suggestions.

References
Grillet, P.A. 1999. Algebra, John wiley & Sons, Inc.,

New York.
Howie, J.M. 1975. An introduction to semigroup theory,

Academic Press, London.
Hungerford, T.W. 1980. Algebra, Springer-Verlag, New

York.
Zhang, M.C., Chen Y.Q. and Li, Y.H. 1996. The inter-

section property of quasi-ideals in rings and
semigroup rings , SEA Bull. Math., 20 : 117-122.

≠ ≠

≠

≠

≠ ≠
≠
≠ ≠
≠

≠

≠ ≠
≠


