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Abstract

This research work deals with the application of dual series equations to the problems of simply supported rectangular
plate with an internal line support under uniformly distributed load. Two different types of problem are considered depend-
ing on the nature of singularities that allowed in the fields, The first is the plate having an internal line unsagged support that
the moment singularity is assumed at the tip of internal line support. The second involves the advancing contact problem
between the plate and the internal line sagged support in which the shear singularity exhibits at the tip of contact. However,
both types of singularity are in the order of an inverse square root. By choosing the proper finite Hankel transform, the dual
series can be converted to the inhomogeneous Fredholm integral equation. This equation, with a numerical technique,
is then reduced to a set of simultaneous equations suitable for numerical solution. The physical quan-tities of the plates and the
extent of contact related to the level of loading in the case of free contact are provided in the present work.
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1. Introduction

Focusing on the problems of plate with mixed bound-
ary conditions, there are numerous analytical and numerical
methods used to analyze the problem. The numerical
methods are generally found to be unsatisfactory (Leissa et
al., 1969), especially at the transition point of discontinuous
boundary due to the problem singularity (Williams, 1952),
and then, the use of integral transform (Sneddon, 1972) is
one of the appropriately analytical methods to solve the
problem which leads to determine the solution of an integral
equation. Much attention has been said by many researchers
to investigate the static bending problems (Yang, 1968; Keer
and Sve, 1970; Kiattikomol et al., 1974; Kiattikomol and
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Porn-anupapkul,1985; Kiattikomol and Sriswasdi, 1988),
vibration characteristics, and stability and buckling behav-
iors (Leissa, 1969; Keer and Stahl, 1972; Stahl and Keer, 1972).
However, the mentioned works are the problems of plate
where the supports have the same level. Dundurs et al. (1974)
first investigated the contact between the plates and the
sagged supports in which the sagged supports are located
at the plate edges. For the cases of sagged support placed
in domain of the plate, recently, Sompornjaroensuk and
Kiattikomol (2006) treated the two problems of rectangular
plate simply supported on the two opposite edges and either
free or clamped on the two other edges with an internal line
sagged support. The singularity at the tips of contact
between the plate and an internal line sagged support is
introduced in the order of an inverse square root in the shear.
Therefore, this research considers the two problems of
simply supported rectangular plate with an internal line
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Figure 1. Rectangular plates with internal line: (a) un-
sagged support and (b) sagged support

sagged and unsagged supports. The solution technique
similar to the previous work is applied to the present work
while both types of problem are treated here within the same
formulation except that, for the problem of plate with un-
sagged support, the order of singularity is an inverse square
root in the moment instead of an inverse square root in the
shear as in the case of an internal line sagged support for
which the moment is bounded at the tips of contact.

2. Governing Equation and Boundary Conditions

Considering the geometry of plate as illustrated in
Figure 1, the actual dimensions of the plate are a and 2& and
scaled by the factor mja. The partial differential equation
governing the deflection function w|x, v }of the plate under
the uniformly distributed load q is expressed by

&w f'w  &w_ gd

21—+ =
&t &dy &t =D (1)

where D =Bk f12{1-v")=flexural rigidity, E = Young’s
modulus, ¥ =Poisson’s ratio, and h = plate thickness.

Due to the two-fold symmetry in deflection function,
the boundary conditions need only to be written on one
quadrant 0 =x <72 and 0=y =& as follows:

(2a,b)

, ¥y=0, ©)

Sompornjaroensuk & Kiattikomol / Songklanakarin J. Sci. Technol. 30 (1), 101-107, 2008
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W=4d, E=?=D e{_‘CEE , ¥y=0, (4ab,)

E’_:L'E

whilst & = the initial gap between the plate and the internal
line sagged support. Since & =10, the problem considered
becomes the plate with an internal line unsagged support.
It is also remarkable that Eqs (4) and (5) are the mixed
boundary conditions and the others are the regular boundary
conditions.

3. Formulation

Utilizing the Levy-Nadai approach (Timoshenko and
Woinowsky-Krieger, 1959), the deflection function satisfy-
ing the support conditions of the plate edges at x=10, 7 is
taken as the sum of the particular (w ) and complementary
(w,) solutions of Eq.(1),

w= 1’1-:5. + -H:C y (6)
where
v, =2 S wsia(m); w,= 3 Lein(mx), (7ab)

F %D e
and
F= il [ A, ecsh{ g+ B npsinh| me) +C_ sich{mg)+ 0 mpecosh] )|
Dt LT LR TR LTS D
)
in which the constants A , B , C_, and D_ are determined

from the boundary conditions of Egs.(2) and (3) that yield
the following relations, with letting # =mb,

22 i . A
4 = L—‘+:£'?'1:a.t'1h,5_:' +D, I‘ﬂnhﬁu:cs‘hﬁ B) o
x m cosh F cosh™ & !
2
B =+—D tanh
" xmcoshf T A, (10)
C_‘ =_D_‘ . (11)

It can be noted that the problems are now reduced to
the determination of a single constant D_. The application of
the mixed boundary conditions given in Egs.(4c) and (5)
leads to the dual series equations as follows:

> m:P1sin|_:mx_'|=[I': §<x£%, (12)

m=133, <

Z mEP‘ I_:1+F‘_'|sin|_:mx_'|= i G, Siﬂ[:mx_]_. [I'iix{e,

mml 30, mml3l,
(13)
where
_ 2 [, (2+punhpg] _ (sinhBcoshf-4g"
P’- - .:TE?HE [" I.\ c I}Shﬁ' -;l_. + '-lI\ c Dsh_‘ }5! -;li (14)
I+ F = cosh™ & 15

" sinhfcoshf- g’
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For the case of an internal line unsagged support, the
dual series equations can be reduced to a single integral
equation by representing the unknown function P_ by a finite
Hankel transform (Kiattikomol et al., 1974; Kiattikomol and
Porn-anupapkul, 1985)

m'P =J f:;i[r}[JJ [ mr}—iil |'me}}dr; m=1,3.5__, 17
)| Aim )= me
]

and for an internal line sagged support, the function P_is
replaced by (Dundurs et al., 1974; Sompornjaroensuk and
Kiattikomol, 2006)

mP_ = [14(t)J,(mt)dt: m=13.5,
a
while ¢ { z) is the unknown auxiliary functionand J, (') isthe
Bessel tunction of the first kind and order 1.

By the same procedure as used in the previous works
(Kiattikomol et al., 1974; Sompornjaroensuk and Kiatti-
komol, 2006), substituting P_ from Eqgs.(17) and (18) that
satisfy to each case of the plates into Eq.(13) and using the
identity given in Stahl and Keer (1972),

= oo 1 xHxI-f
¥ Jmt oo (o) =——

m-131,

(18)

: (£ jocshfz3) 's& x+<A
2(x* —r' p(7s) =1 :

(19)
where H( ), I,( ) are the Heaviside unit step function and
the modified Bessel function of the first kind and order 1,
respectively, and then, after some manipulations and with the
help of certain identities found in Gradshteyn and Ryzhic
(1956), the second dual series equations, Eq.(13) can be
reduced to the final form of an inhomogeneous Fredholm
integral equation of the second kind

-\_

=

1
tI-[,c:'_'|—J'K"3'[p=r_'|tI-[r_]aﬁ- =f(p); 0= p=1, (20)
o

in which

Q(p)=¢lep). @(r)=d(er), 1)

[1 for an intemal line unsagged support L@
| 2 for an intemal line sagged support

r - L

> mF,[J(mer)—rd(me)]J, (mep)|

| m=1Z8
E¥ pr)=2er! L
£ s[fllmr':l r!llsglljfllsgp:lﬁ

| J; e:-lpllrrs.Hl J

(23a)

2)F o N sl (zer) I (ze2) |
K'..I_,“J:r_,-—;&!'r E mf, J | msr-.f msp-—!$ _|’
(23b)
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Figure 2. Auxiliary functions of square plate with internal
line: (a) unsagged support and (b) sagged support

fle)=2 X G J(mep) (24)

mml3 5
An integral equation presented in Eq.(20) can be solved
numerically to obtain the unknown auxiliary function & ( g |
by using standard methods. o

4. Numerical Analysis and Results
Two different solutions can be determined from the
same formulation by solving Eq.(20). In order to evaluate the
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Figure 3. Deflections at 0= x =g,y =0 for square plate

with internal line: (a) unsagged support and (b)
sagged support
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Figure 4. Deflections at *= 72,02 p< 7/2 for square

plate with internal line: (a) unsagged support and
(b) sagged support

physical quantities, the unknown auxiliary function @ (o |
must be obtained. Simpson’s rule was chosen for this purpose
because it is a simple method, leading to a system of linear
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Figure 5. Deflections surfaces bounded by the region

0= xp%af2 for square plate with internal line:
(a) unsagged support and (b) sagged support

algebraic equations and using the Gaussian elimination with
partial pivoting to solve for the discretized values of & | & jas
shown in Figure 2. It should be remarked that the closed form
expressions for the improper infinite integral in Egs. (23a,b)
were not found. However, a numerical integration is easily
performed with using a 16-point Gauss-Legendre quadrature
formula. The infinite series in the kernel and in
the function f (=) were calculated to a relative error of
0.00001. The numerical evaluation was carried out only for
the case of a square plate of scaled length 7 with various
cases of the scaled half-length of internal line support ¢ and
the Poisson’s ratio was taken as 0.3.

Therefore, the deflection function of the plates that
demonstrated in Figures 3 to 5 can be evaluated from Eq.(6).
It is seen that the deflections of both cases are increased with
the increasing of e/ -ratio. After the deflection is obtained,
the stress resultants are calculated as follows:

y =_D[£] [B_MB_WJ (25)
i ax dy
M = —D(EJ: [az_ﬁ’wﬁ], (26)
a dy- ax
i
v =—DE] E—‘;‘H[z—pj%} @7)
5
g =—D[§] {%"L(z—p)_‘_;‘;] (28)

where M, M, are the bending moments and V,, v, are the
support reactions.
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Figure 6. Bending moments M, (x,0) and 0<x<e for

square plate with internal line: (a) unsagged
support and (b) sagged support
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Figure 7. Bending moments M (x,0)and 0<x<e for
square plate with internal line: (a) unsagged
support and (b) sagged support

Figures 6 and 7 show the bending moments outside
an internal line support (0<x<e, y=0) for both cases of
the plate with internal line sagged and unsagged supports.
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Figure 8.

The moments at x = e are singular for plate having an internal
line unsagged support but bounded for the case of plate with
an internal line sagged support. This is the difference of the
two problems.

In case of free contact, since the distribution of sup-
port reaction is singular of order square root at the tips of
contact, it is integrable and the results are illustrated as in
Figure 8 for the plate with an internal line sagged support. It is
seen that, at x = e, the support reaction V,(x,0) is singular
and the reactions are not proportional to the applied load.

Only for the case of free contact between the plate and
the internal line sagged support, the contact curve (Dundurs
et al., 1974) of plate can be determined from the deflection
w(x,0) by supposing the contact length 2c. If the sag of
internal line support is specified as &, the uniform load
required to produce the deflection w = & for each specified
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support versus level of loading for square plate

contact length can be calculated by writing the sag in the
form

4

ga
D
where @° is the given uniform load for plate without partial
internal line sagged support or the load at which the plate
starts to touch the internal line sagged support, and ¢ is the
constant value.
When the contact length is specified as 2c, the
maximum deflection can be computed from Eq.(6) with
setting y = 0 and has the form

, (29)

o=

4

w_ =pg3% (30)

ax D

in which g is the applied uniform load and £ is the constant
value.

In view of Egs.(29) and (30), thus, the uniform load
q required to produce the deflection w_,. =& with contact
length 2c is given by the following relation

g_z, (31)

7
Hence, the relationshin between the contact length 2c and
the increased load gfgr“ required to produce this contact is
obtained. Figure 9 shows the extent of contact versus the
level of loading. It revealed that the lengths of contact
depend on the level of loading.

5. Conclusions

The analytical investigations presented in this work
are concerned with the bending problem of plate having an
internal line unsagged support and the advancing contact
problem between the plate and internal line sagged support.
Both problems are treated within the same formulation by
writing the mixed boundary conditions in the form of dual
series equations. Utilizing the proper finite Hankel transform
that satisfied the singularity order in each problem type, then
the dual series equations can be reduced to the inhomoge-
neous Fredholm integral equation of the second kind, which
is suitable for numerical evaluation. The deflection and stress
resultants of the plate are determined numerically and
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presented graphically. From the obtained results, it found
that the magnitude of deflection for both cases of plate is
increased when the ratio of ef7 is also increased. The
bending moment in both directions at x =& is singular for
plate with internal line unsagged support but finite value for
plate with internal line sagged support. Although the support
reaction at the tips of contact between the plate and the
internal line sagged support is singular, however, it can be
determined. It is seen that the reaction is not proportional to
the applied load. Finally, the extent of contact with internal
sagged support depends on the level of loading where the
required load at which the plate starts to touch the sagged
support is 246.16 D fa* for the Poisson’s ratio taken as 0.3.
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