

Original Article

Effect of doped SiO_2 and calcinations temperature on phase transformation of TiO_2 photocatalyst prepared by sol-gel method

Lek Sikong^{1#*}, Jiraporn Damchan¹, Kalayanee Kooptarnond^{1#} and Sutham Niyomwas^{2#}

[#]NANOTEC Center of Excellence at Prince of Songkla University

¹ Department of Mining and Materials Engineering, Faculty of Engineering,

² Department of Mechanical Engineering, Faculty of Engineering,
Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand .

Received 28 September 2007; Accepted 8 May 2008

Abstract

The purpose of this research was to study the effect of calcinations temperature and SiO_2 addition on phase transformation, crystallite size, and photocatalytic activity of $\text{SiO}_2/\text{TiO}_2$ thin films by using indigo carmine as an indicator. The composite particles were prepared by sol-gel method via calcinations at a temperature range of 300-700°C for 2 h, and the composite thin films were prepared by means of spin coating. The microstructure and crystallite size of pure TiO_2 and $\text{SiO}_2/\text{TiO}_2$ composite powders were characterized by using XRD, SEM and DTA. It was found that anatase structures were formed at a calcinations temperature range of 300-600°C and mixed phases of anatase and rutile were observed at a temperature of 700°C. Crystallite size of pure TiO_2 tends to increase with an increase in calcinations temperature. Doped SiO_2 in the TiO_2 has an effect on crystal phases and crystallite size of the composite powders and thin films, resulting in the change of the photocatalytic activity of TiO_2 .

Keywords: sol-gel method, $\text{SiO}_2/\text{TiO}_2$, photocatalyst, photocatalytic activity, phase transformation

1. Introduction

Titanium dioxide (TiO_2) thin-films have many applications, from environmental purification (Sun *et al.*, 1997; Amat *et al.*, 2005; Fujishima *et al.*, 2005; Hara-Kudo *et al.*, 2005; Ishiki *et al.*, 2005), over solar cells (Tai, 2001; Rodriguez *et al.*, 2004; Latour *et al.*, 2005;), and sunscreens (Serpon *et al.*, 2007), to bacteria killer, and self-cleaning surfaces (Watanabe *et al.*, 1999; Mills *et al.*, 2003; Yamashita *et al.*, 2003; Mellot *et al.*, 2005; Yuranova *et al.*, 2005;). In general, TiO_2 has three crystal forms namely, anatase, rutile and bookite. The efficient photocatalytic activity of TiO_2 deeply depends on its crystallite size, surface area, and crystal structure (Yang *et al.*, 2002). As known, anatase or

the mixture phase of anatase and rutile show the highest photocatalytic activity (Nakamura *et al.*, 2005; Zhang *et al.*, 2002). Anatase with large surface area, high crystallinity and nanoscaled crystallite size exhibits a high photocatalytic activity. Many studies have focused on doping metal oxides such as Fe_2O_3 (Feng *et al.*, 2004; Ismail, 2005), SiO_2 (Yuranova *et al.*, 2005; Guan, 2005; Kyeong *et al.*, 2004; Elizabeth *et al.*, 2004; Shang *et al.*, 2004; Awate *et al.*, 2005; Wang *et al.*, 2005), V_2O_5 (Begin *et al.*, 1996), Cr_2O_3 (Zakrzewaka *et al.*, 1997), Y_2O_3 (Ismail, 2005), SnO_2 (Liu *et al.*, 2004; Sermon *et al.*, 1997; Sambrano *et al.*, 2003; Kanai *et al.*, 2004; Sarah *et al.*, 2003; Tarre *et al.*, 2001; Rickerby *et al.*, 1998), ZnO (Liu *et al.*, 2004), Nb_2O_5 (Zhang *et al.*, 2002; Zakrzewaka *et al.*, 1997), and precious metals, such as Pt and Ag (Sermon *et al.*, 1997; Mao *et al.*, 2005). The phase transformation of TiO_2 depends on the calcinations temperature and dopant (Zhang *et al.*, 2002). Among these

*Corresponding author.

Email address: lek.s@psu.ac.th

doping materials SiO_2 exhibits a good hydrophilic property for cotton textiles surfaces (Yuranova *et al.*, 2005) and self-cleaning glasses (Mellot *et al.*, 2005; Watanabe *et al.*, 1999; Yamashita *et al.*, 2003). In this study, the effect of SiO_2 loading of SiO_2 coupled TiO_2 photocatalyst and the calcinations temperature on phase transformation of TiO_2 and the photocatalytic reaction of $\text{TiO}_2/\text{SiO}_2$ films coated on glass substrate were investigated. Sol-gel technique widely used for the manufacturing of nanophase of TiO_2 was applied to prepare Si^{4+} ion doping TiO_2 nanoparticles and films of $\text{TiO}_2/\text{SiO}_2$ coated on a glass substrate. Because of the synthesis from atomic or molecular precursors, sol-gel technique can give a better control of particle size and homogeneity in the particle distribution (Liun *et al.*, 2005).

2. Experimental

2.1 Preparation of titania - silica composite powder

A conventional sol-gel method (Figure 1) was employed for preparing of TiO_2 and SiO_2 (5, 10, 15, 20 mol %). Titanium (IV) isopropoxide (TTIP, 99.95%, Fluka Sigma-Aldrich) and Tetraethylorthosilicate (TEOS, 98%, Fluka Sigma-Aldrich) were used as starting materials. Ethanol (99.9%; Merck Germany) was used as a solvent. Firstly, TTIP was dissolved in ethanol mixed TEOS, stirred 30 min at a room temperature and followed by the dropping reaction with the addition of 2 M HCl to the solution until pH = 3.5.

Distilled water was finally added and the solution was further stirred for 30 min. The solution was dried at 105°C for 24 h and then calcined the powders at a temperature range between 300-700°C. These synthesized powders were characterized in terms of phase compositions and crystallite size by using X-ray diffraction (XRD) (Philips E'pert MPD, Cu-K α), SEM and differential thermal analysis (DTA). These results can be used to elucidate the phase of the film coated on the glass substrate that calcined at the same conditions.

2.2 Thin film coating preparation

$\text{TiO}_2/\text{SiO}_2$ thin films were formed on soda lime glass substrate (10×10×0.3 cm) by spinning the sol solutions at room temperature. Before coating, the substrates were cleaned with ultrasonic for 15 min, then washed with distilled water, and dried at 60°C for 2 h. The spinning speed used was fixed at 2,200 rpm. The coated substrates were dried at 60°C for 30 min. heated at the temperature range of 300-500°C for 2 h with a heating rate of 10°C/min. The phases of thin films were characterized by using data of composite powder calcined at the same conditions.

2.3 Photocatalytic reaction test

The photocatalytic activity of the titania -silica thin film coated on glass substrates was tested by using an aqueous solution of indigo carmine having an initial concentra-

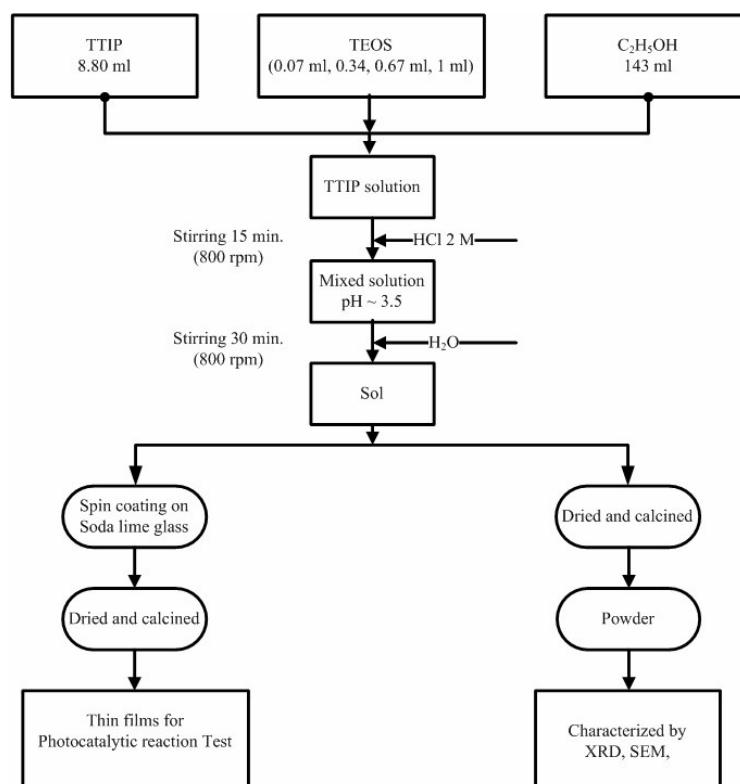


Figure 1. Illustration of SiO_2 doped TiO_2 preparation procedure using sol-gel method.

tion of 2 mg/l as an indicator under the UV-lamp (black light) of 20 W power. The intensity irradiated to the thin film surface is about 1.5 mW/cm² at 310-400 nm wavelengths. The distance between the testing substrate and the light source was 32 cm. The photocatalytic reaction test was done in a dark chamber by UV light irradiated at various times, 45, 90, 135, and 180 min. After that the photocatalytic degradation of indigo carmine was determined by an UV-VIS spectrometer.

3. Results and Discussion

3.1 The effect of calcinations temperature and doped SiO₂

XRD was used to investigate the phase structure of the prepared SiO₂-doped and undoped TiO₂. Figure 2 shows the effect of temperature on the phase structures of the TiO₂ powders prepared by sol-gel method. It was found that TiO₂ powders exhibit a phase transformation from amorphous to anatase (see the peaks at $2\theta = 37.5^\circ, 47.5^\circ, 53^\circ, 55^\circ, 62^\circ, 75^\circ$ and 83°) or from anatase to rutile as the calcinations temperature increases ($600^\circ\text{C} \sim 700^\circ\text{C}$). A single phase of anatase can be seen in temperature range of $300\text{--}600^\circ\text{C}$ and both anatase and rutile phases were formed at the temperature of 700°C (Figure 2 and Table 1) since anatase phase is not stable at such a high temperature. The phase ratio of anatase to rutile at this temperature is about 66:34.

The crystallite size was determined from XRD peaks using the Scherer equation (Bakardjieva *et al.*, 2005),

$$D = 0.9\lambda \beta \cos\theta_B \quad (1)$$

Where D is crystallite size; λ is the wavelength of the X-ray radiation ($\text{CuK}_\alpha = 0.15406 \text{ nm}$), and β is the angle width at half-maximum height, and θ_B is the half diffraction angle of the centroid of the peak in degree. The peaks of anatase (101) and rutile (110) occurred at $2\theta = 25.3^\circ$ and 27.4° , respectively. The calculated crystallite sizes of anatase or rutile are listed in Table 1. It is seen that the crystallite size of TiO₂ powder depends on the TiO₂/SiO₂ ratio. For pure TiO₂, the crystallite size of anatase phase increases with increasing calcinations temperature from 300°C to 700°C . It is due to the grain growth induced by an increased temperature as illustrated in Figure 3. The crystallite size of single phase anatase increases from 8.3 nm to 33 nm when calcinations temperature is raised from 300°C to 600°C . It is noted that the anatase phase is transformed to rutile phase at the temperature of between $600\text{--}700^\circ\text{C}$ as the crystallite size of more than 33 nm. Calcinations at a temperature of 700°C give the crystallite size of the anatase and rutile phases of 41 nm.

Figure 4 illustrated the XRD peaks of SiO₂-doped TiO₂ powders calcined at the temperature of 700°C for 2 h. It shows that the mole percentage of 5-20% SiO₂ added seems to have an effect on the XRD patterns of the composite powders. For calcinations temperatures of $300\text{--}400^\circ\text{C}$ it was found that the height of the $2\theta = 25.3^\circ$ peak becomes

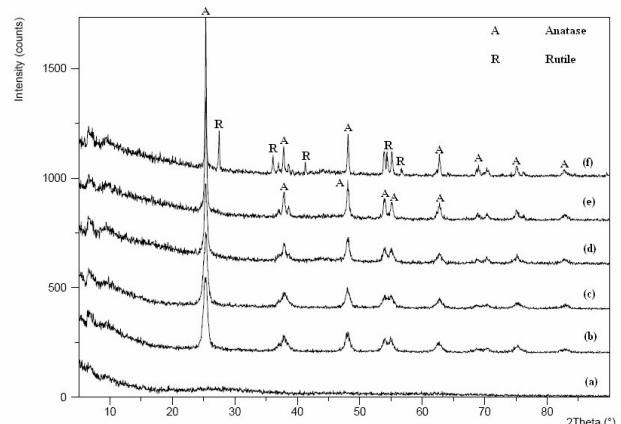


Figure 2. XRD patterns of pure TiO₂ powders prepared by sol-gel method, with (a) no calcinations, and calcined at temperatures of (b) 300°C , (c) 400°C , (d) 500°C , (e) 600°C , and (f) 700°C .

Table 1. Phases and crystallite sizes of the synthesized powders

Calcinations Temperatures (°C)	Crystallite size (nm)		Content of phase (%)	
	Anatase	Rutile	Anatase	Rutile
300	8.27	-	100	0
400	33.10	-	100	0
500	23.64	-	100	0
600	33.10	-	100	0
700	41.38	41.56	66	34

lower and broader for SiO₂-doped TiO₂ powders than for undoped ones (Figure 2). At an SiO₂ mole percentage of SiO₂ range from 5 to 20 mol% (Figure 4). Because the Si-O nets produced by SiO₂ prevent the formation of anatase crystalline and grain growth. However, at higher temperatures between $500\text{--}700^\circ\text{C}$, such phenomenon was not found due to the influence of the temperature. It was also apparent that the anatase phase could withstand at a temperature of 700°C . It means that the anatase phase exhibits to be more stable at a higher temperature when SiO₂ is doped to TiO₂. Because the SiO₂ phase inhibits the growth of anatase particles (Lee *et al.*, 2005) it is leading to the formation of nanocrystallite size of TiO₂/SiO₂ powders. It is evident from Figure 4 that doped SiO₂ has a significant effect on the crystallite size of SiO₂ doped anatase. Figure 5 shows that the crystallite size of TiO₂/SiO₂, prepared by the sol-gel technique and calcined at a temperature of 500°C , drastically decreases (from 23.6 nm to 7-8 nm) as the small amount of SiO₂ (such as 5-10 mol%) is added to TiO₂. With an increase in SiO₂ addition (10-20 mol%), the crystallite size shows almost no change, remaining in the 8-9 nm range. Although the addition of SiO₂ has an effect on the decrease in crystallite size or on the other hand an increase in surface area, it cannot enhance the

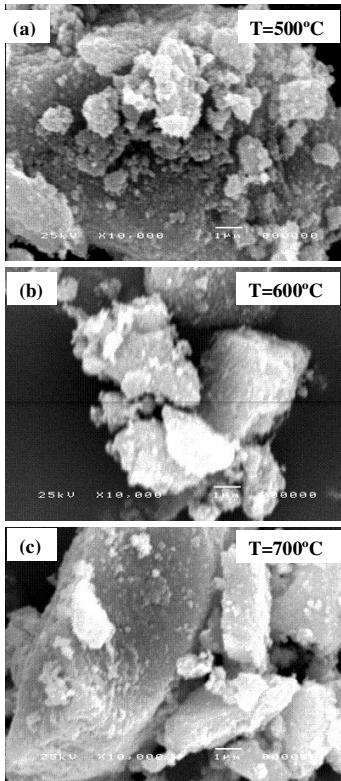


Figure 3. SEM images of pure TiO₂ powders prepared by sol-gel process via calcinations at temperatures of (a) 500°C, (b) 600°C and (c) 700°C.

photocatalytic activity. It is due to a decrease in crystallinity of the anatase structure as SiO₂ is an insulator having no photocatalytic activity. The addition of SiO₂ can inhibit the amorphous-anatase transformation as well as the subsequent anatase-rutile transformation (Muralidharan *et al.*, 1997). The amorphous-to-anatase and anatase-to-rutile transformation temperatures are higher as the SiO₂ content increases. This finding confirms the similar work of Yu *et al.* (2002) and co-workers even though the SiO₂/TiO₂ thin films of their work were prepared by sol-gel technique of different starting precursors and dip coating method was used.

3.2 Photocatalytic reaction

Figure 6 gives the photocatalytic degradation curves of indigo carmine in an aqueous solution treated by using undoped TiO₂ and doped SiO₂/TiO₂ coated on glass substrates as the photocatalysts calcined at a temperature of 500°C. Doped SiO₂ about 5 mol% exhibits the highest rate of degradation of indigo carmine, while those of about 10~20 mol% tend to have no effect on the photocatalytic reaction after irradiation with UV light in a dark chamber for 3 h. It is well known that the photocatalytic activity of TiO₂ is greatly influenced by its crystallinity, grain size, surface areas and surface hydroxyl content (Yu and Yu, 2002).

When SiO₂ is introduced to TiO₂ thin films, the composite thin films formed are different from pure TiO₂ thin

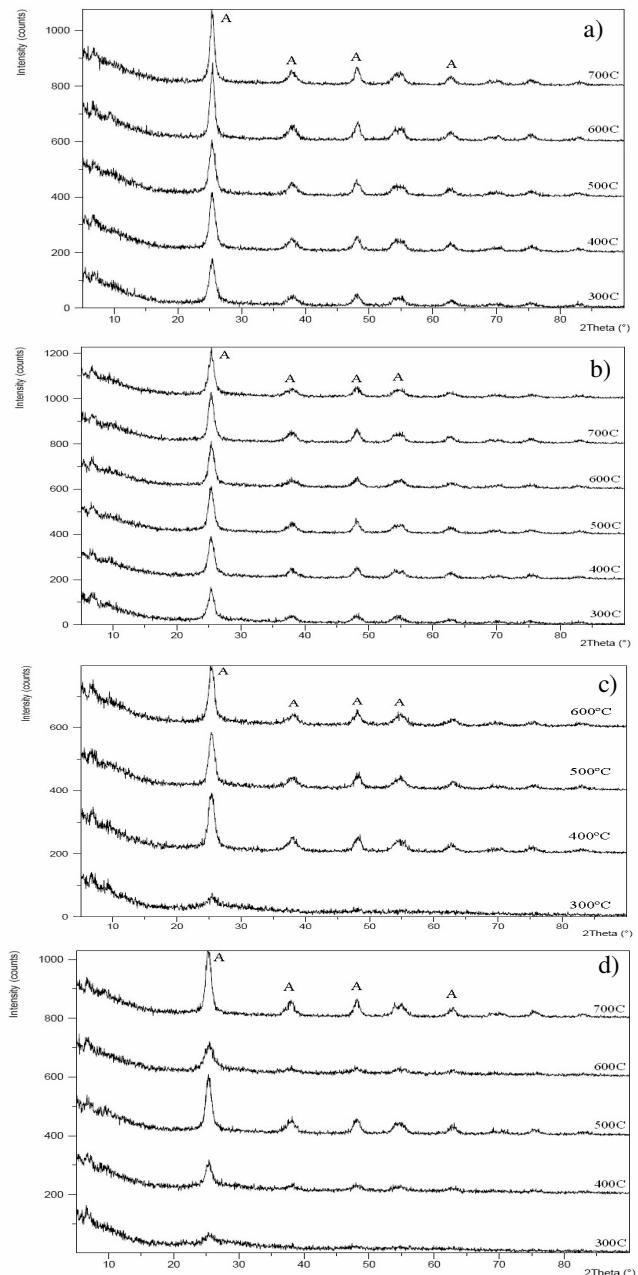


Figure 4. XRD patterns of TiO₂/SiO₂ powders prepared by sol-gel method and calcined at temperatures of 300-700°C with (a) 5 mol%, (b) 10 mol%, (c) 15 mol% and (d) 20 mol% SiO₂/TiO₂.

film in both physical and chemical characteristics, such as phase types (Figure 4), surface areas, surface hydroxyl groups, grain size (Figure 5), and chemical compositions. A certain percentage of SiO₂ doped TiO₂ films shows higher activity than pure TiO₂. When the addition of SiO₂ is 5 mol%, the photocatalytic reaction rate tends to increase with an increase in the irradiation time. Small amounts of added SiO₂ result in a decrease in the crystallite size, which may have a larger driving force for charge transfer existing in a quantum sized TiO₂ in composite thin film. Zhang and Reller (2002) mentioned that a small amount of SiO₂ in the composite thin

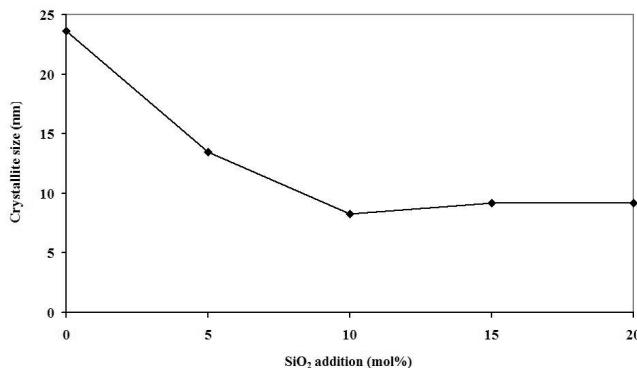


Figure 5. Crystallite size of TiO₂/SiO₂ powder prepared by the sol-gel technique and calcined at a temperature of 500°C.

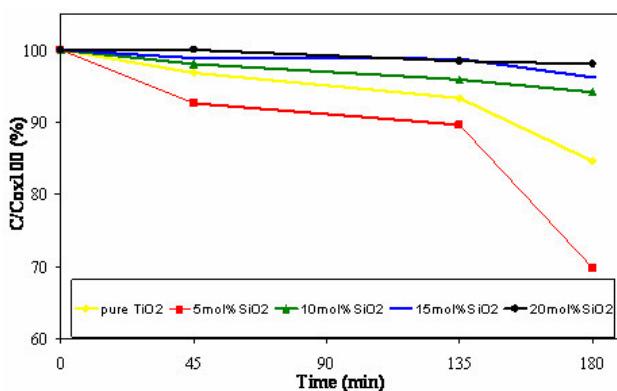


Figure 6. Photocatalytic decomposition of indigo carmine solution by using pure TiO₂ and SiO₂ doped TiO₂ catalysts calcined at a temperature of 500°C.

films did not play a significant role in determining their photocatalytic activity, because SiO₂ is an insulator and has no photocatalytic activity. Therefore, with 10-20 mol% SiO₂ addition, the photocatalytic activity is lower than of pure TiO₂. Another reason is due to the larger band gap energy of SiO₂ (11.7 eV) compared to that of TiO₂ (3.2 eV), which led to a decrease in its quantum yield of SiO₂/TiO₂ films. This may explain why the samples have relatively poor photoactivity when the amount of added SiO₂ is over 10 mol% (Yu and Yu., 2002).

4. Conclusions

This study focused on the effect of calcinations temperature and the amount of added SiO₂ on phase transformation, crystallite size, and photocatalytic activity of SiO₂/TiO₂ thin films by using indigo carmine as an indicator. The composite particles were prepared from precursor solutions by sol-gel method via calcinations at a temperature range of 300~700°C and the composite thin films were then prepared by means of spin coating. It was shown that the crystal phases and crystallite sizes of SiO₂/TiO₂ synthesized powders

largely depend on the calcinations temperature. Crystalline anatase single phase was found at a calcinations temperature range of 300~600°C and mixed phases of anatase and rutile were formed at a temperature of about 700°C. Crystallite size of pure TiO₂ tends to increase with an increase in the calcinations temperature. Doped SiO₂ in the TiO₂ has an effect on the crystal phases of the composite powders and thin films. Photocatalytic activity of TiO₂ is greatly influenced by its crystallinity, grain size, surface areas and surface hydroxyl content. SiO₂ inhibits the growth of crystallite size of anatase and the amorphous-anatase transformation as well as the subsequent anatase-rutile transformation. The higher amount of SiO₂ added the more amorphous phase of anatase observed at low calcinations temperatures of 300-400°C. However, at higher temperatures of 500-700°C, such phenomenon was not found due to the effect of temperature. The addition of 5 mol% SiO₂ seems to exhibit a higher photocatalytic activity than pure TiO₂, because of a large surface area effect. However, when a higher amount of SiO₂ was added, the non-active phase, such as SiO₂, covered on the TiO₂ surface has a significant influence on the decrease in the photocatalytic activity. It was also found that an increase in irradiation time could enhance the degradation of the indigo carmine concentration.

Acknowledgements

The authors are pleased to acknowledge the financial support for this research by the Center of Excellence in Nanotechnology, under the Southern Thailand Science Park, Prince of Songkla University, Thailand, and a partial financial support from the National Research Council of Thailand (NRCT).

References

- Amat, A.M., Arques, A., LÓpez F. and Miranda, M.A. 2005. Solar photo-catalysis to remove paper mill wastewater pollutants. *Solar Energy*. 79, 393-401.
- Awate, S.V., Jacob, N.E., Deshpande, S.S., Gaydhankar, T.R. and Belhekar, A.A. 2005. Synthesis, characterization and photocatalytic degradation of aqueous eosin over Cr containing Ti/MCM-41 and SiO₂-TiO₂ catalysts using visible light. *Journal of Molecular Catalysis A: Chemical*. 226, 149-154.
- Bakardjieva, S., Šubrt, J., Štengl, V., Dianez, M. and Sayagues, M. 2005. Photoactivity of anatase-rutile TiO₂ nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. *Applied Catalysis B: Environmental*. 58, 193-202.
- Begin-Colin, S., Le Caér, G., Mocellin, A., Jurenka, C. and Zandona, M. 1996. Investigation of grinding effects in binary mixtures from the TiO₂-SnO₂-V₂O₅ system. *Journal of Solid State Chemistry*. 127, 98-108.
- Feng, J., Wong, R., Hu, X. and Yue, P. 2004. Discoloration and mineralization of orange II by using Fe³⁺-doped

- TiO₂ and bentonite clay-based Fe nanocatalysts. *Catalysis Today*. 98, 441-446.
- Fujishima, A. and Zhang, X. 2005. Titanium dioxide photocatalysis: present situation and future Approaches. *C.R. Chimie*. 8, 1-11.
- Guan, K. 2005. Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO₂/SiO₂ films. *Surface & Coatings Technology*. 191, 155-160.
- Hara-Kudo, Y., Segawa, Y. and Kimura, K. 2006. Sanitation of seawater effluent from seaweed processing plants using a photo-catalytic TiO₂ oxidation. *Chemosphere*. 62, 149-154.
- Hong, S.S., Lee, M., Park, S., and Lee, G. 2003. Sythesis of TiO₂/SiO₂ nanoparticles in a water-in-carbon-dioxide microemulsion and their photocatalytic activity. *Research on Chemical Intermediates*, 31, 379-389.
- Ishiki, R.R., Ishiki, H.M. and Takashima, K. 2005. Photocatalytic degradation of imzethapyr herbicide at TiO₂/H₂O interface. *Chemosphere*. 58, 1461-1469.
- Ismail, A.A. 2005. Synthesis and characterization of Y₂O₃/Fe₂O₃/TiO₂ nanoparticles by sol-gel method. *Applied Catalysis B: Environmental*. 58, 115-121.
- Yu, J., Yu, J.C. and Zhao, X. 2002. The effect of SiO₂ addition on the grain size and photocatalytic activity on TiO₂ thin films. *Journal of Sol-Gel Science and Technology*. 24, 95-103.
- Jung, K.Y. and Park, S.B. 2004. Photoactivity of SiO₂/TiO₂ and ZrO₂/TiO₂ mixed oxides prepared by sol-gel method. *Materials Letters*. 58, 2897-2900.
- Kanai, N., Nuida, T., Ueta, K., Hashimoto, K., Watanabe, T. and Ohsaki, H. 2004. Photocatalytic efficiency of TiO₂/SnO₂ thin films stacks prepared by DC magnetron sputtering. *Vacuum*. 74, 723-727.
- Latour, V., Pigot, T., Mocho, P., Blanc, S. and Lacombe, S. 2005. Supported photosensitizers as new efficient materials for gas-phase photo-oxidation. *Catalysis Today*. 101, 359-367.
- Lee, M.S., Hong, S. and Mohseni, M. 2005. Synthesis of photocatalytic nanosized TiO₂-Ag particles with sol-gel method using reduction agent. *Journal of Molecular Catalysis*. 242, 135-140.
- Liqun, M., Qinglin, L., Hongxin D. and Zhang, Z. 2005. Systhesis of nanocrystalline TiO₂ with high photoactivity and large specific surface area by sol-gel method. *Materials Research Bullein*. 40, 201-208.
- Liu, Z., Pan, K., Zhang, Q., Liu, M., Jia, R., Lu, Q., Wang, D., Bai, Y. and Li, T. 2004. The performances of the mercurochrome-sensitized composite semiconductor photoelectrochemical cells based on TiO₂/SnO₂ and ZnO/SnO₂ composites. *Thin Solid Films*. 468, 291-297.
- Mellott, N.P., Durucan, C., Pantano, C.G. and Guglielmi, M. 2006. Commercial and laboratory prepared titanium dioxide thin films for self-cleaning glasses: photocatalytic performance and chemical durability. *Thin Solid Films*. 502, 112-120.
- Mills, A., Lepre, A., Elliott, N., Bhopal, S., Parkin, I. and O'Neill, S.A. 2003. Characterization of the photocatalyst pilkington activTM: a reference film photocatalyst. *Journal of Photochemistry and Photobiology A: Chemistry*. 160, 213-224.
- Muralidharan, B.G. and Agrawal, D.C. 1997. Sol-Gel derived TiO₂-SiO₂ fibres. *Journal of Sol-Gel Science and Technology*. 9, 85-93.
- Nakamura, T., Ichitsubo, T., Matsubara, E., Muramatsu, A., Sato, N., and Takahashi, H. 2005. On the preferential formation of anatase in amorphous titanium oxide film. *Scripta Materialia*. 53, 1019-1023.
- Pabón, E., Retuert, J., Quijada, R. and Zarate, A. 2004. TiO₂-SiO₂ mixed oxides prepared by a combined sol-gel and polymer inclusion method. *Microporous and Mesoporous Materials*. 67, 195-203.
- Pilkenton, S. and Raftery, D. 2003. Solid-State NMR studies of the adsorption and photooxidation of ethanol on mixed TiO₂-SnO₂ photocatalysts. *Solid State Nuclear Magnetic Resonance*. 24, 236-253.
- Rickerby, D.G. and Horrillo, M.C. 1998. Crystallite size distributions and lattice defects in R.F. sputtered nanograin TiO₂ and SnO₂ films. *Nanostructured Materials*. 10, 357-363.
- Rodríguez, S., Gálvez, J., Rubio, M.I., Ibáñez, P., Padilla, D., Pereira, M., Mendes, J., and Oliveira, J. 2004. Engineering of solar photocatalytic collectors. *Solar Energy*. 77, 513-524.
- Sambrano, J.R., Vasconcellos, L.A., Martins, J.B.L., Santos, M.R.C., Longo, E., and Beltran, A. 2003. A theoretical analysis on electronic structure of the (110) surface of TiO₂-SnO₂ mixed oxide. *Journal of Molecular Structure (Theochem)*. 629, 307-314.
- Shang, J., Yao, W., Zhu, Y. and Wu, N. 2004. Structure and photocatalytic performance of Glass/SnO₂/TiO₂ interface composite film. *Applied Catalysis A: General*. 257, 25-32.
- Sermon, P.A. and Walton, T.J. 1997. Pt-doped and SnO₂-templated TiO₂: properties and reactivity towards CO. *Solid State Ionics*. 101-103, 673-676.
- Serpon, N., Dondi, D. and Albini, A. 2007. Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. *Inorganica Chimica Acta*. 360, 794-802.
- Sun, Q., Jehng, J., Hu, H., Herman, R.G., Wachs, I.E., Kamil Klier, K. 1997. In situ Raman spectroscopy during the partial oxidation of methane to formaldehyde over supported vanadium oxide catalysts. *Journal of Catalysis*. 165, 91-101.
- Tai, W. 2001. Photoelectrochemical properties of SnO₂/TiO₂ coupled electrode sensitized by a mercurochrome dye. *Materials Letters*. 51, 451-454.
- Tarre, A., Rosental, A., Sammelselg, V. and Usetare, T. 2001. Comparative study of low-temperature chloride atomic-layer chemical vapor deposition of TiO₂ and SnO₂. *Applied Surface Science*. 175-176, 111-116.

- Wang, X., Zhong, S., and Xiao, X. 2005. Photo-catalysis of ethane and carbon dioxide to produce hydrocarbon oxygenates over $ZnO-TiO_2/SiO_2$ catalyst. *Journal of Molecular Catalysis A: Chemical.* 229, 87-93.
- Watanabe, T., Nakajima, A., Wang, R., Minabe, M., Koizumi, S., Fujishima, A. and Hashimoto, K. 1999. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. *Thin Solid Films.* 351, 260-263.
- Xu, M., Bao, S. and Zhang, X. 2005. Enhanced photocatalytic activity of magnetic TiO_2 photocatalyst by silver deposition. *Materials Letters.* 59, 2194-2198.
- Yamashita, H., Nakao, H., Takeuchi, M., Nakatani, Y. and Anpo, M. 2003. Coating of TiO_2 photocatalysts on super-hydrophobic porous teflon membrane by an ion assisted deposition method and their self-cleaning performance. *Nuclear Instruments and Methods in Physics Research B.* 206, 898-901.
- Yang, J., Li, D., Wang, X., Yang, X., and Lu, L. 2002. Rapid synthesis of nanocrystalline TiO_2/SnO_2 binary oxides and their photoinduced decomposition of methyl orange. *Journal of Solid State Chemistry.* 165, 193-198.
- Yuranova, T., Mosteo, R., Bandara, J., Laub, D. and Kiwi, J. 2005. Self-cleaning cotton textiles surfaces modified by photoactive SiO_2/TiO_2 coating. *Journal of Molecular Catalysis A: Chemical.* 244, 160-167.
- Zhang, Y. and Reller, A. 2002. Phase transformation and grain growth of doped nanosized titania. *Materials Science and Engineering.* 19, 323-326.
- Zakrzewaka, K., Radecka, M. and Rekas, M. 1997. Effect of Nb, Cr, Sn additions on gas sensing properties of TiO_2 thin films. *Thin Solid Films.* 310, 161-166.