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Abstract

The objectives of this paper are to analyze the bending behaviors of unilaterally simply supported square plate
subjected to the uniformly distributed load, and to examine the extent of receding contacts between the plate and the uni-
lateral supports. In the present problem the mixed boundary conditions exist along the plate edges, which can be written in
the form of dual series equations. These equations are further reduced to determine the solution of inhomogeneous Fredholm
integral equation of the second kind for an unknown auxiliary function by using the finite Hankel integral transform tech-
niques. Numerical results concerning the extent of receding contact, deflection, bending moment, twisting moment, and
support reaction of the plate are given and also compared with the results obtained by other available techniques. From
investigations, the conclusions can be stated that (i) the method used is found to be efficient for solving the problem consid-
ered, (ii) the extent of contact is independent of the level of loading, but dependent on the values of Poisson’s ratio of the

plate, and (iii) the support reactions are proportional to the applied load.

Keywords: dual series equations, Fredholm integral equation, Hankel integral transform, mixed boundary conditions,

plate bending, receding contact

1. Introduction

Many problems of thin elastic simply supported plates
having the right-angle corners anchored by the corner forces
are resulting from the twisting moments at the correspond-
ing corners to prevent parts of the plate near and including
the corners bent away from the supports upon loading
(Timoshenko and Woinowsky-Krieger, 1959). Since no
corner forces are provided, the plate corners in general have
a tendency to rise up from the supports and the plate is
pertained to the natural receding contact problems (Dundurs
and Stippes, 1970). This motivates researchers to investigate
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the actual extent of contact between the plate and the
supports. Keer and Mak (1981) first analytically determined
the loss of contact at the corner of semi-infinite plate resting
on the unilateral supports, while the problem of unilaterally
simply supported square plate was treated by Dempsey et al.
(1984). Both problems were analyzed using the finite Fourier
integral transforms in which the dual series equations that
obtained from the mixed boundary conditions can be reduced
to the Cauchy-type singular integral equation of the first
kind. Dempsey and Li (1986) further extended the Fourier
integral transform method used in the previous work to for-
mulate the problems of rectangular plates with no sag and
two opposite sagged supports. At the same time, Salamon et
al. (1986) performed the finite element method to model the
unilateral supports of square plates by using discrete elastic
springs as supports around the plate. Another numerical
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method was done by Hu and Hartley (1993) based on the
direct boundary element method.

As described above, the corner forces play an impor-
tant role especially in the case of a simply supported square
plate to prevent the separation between the plate corners
and the supports upon loading, thus the crucial step is the
identification of the correct behaviors of the plate due to an
absence of corner forces. For instance, the supports allow
the plate to seek its natural contact (Dundurs and Stippes,
1970), and the shear distribution along the supports, which is
singular at the tips of the contact intervals is in the order of an
inverse square root type, first explained by Keer and Mak
(1981). In addition, it is remarkable that for the numerical
treatments of square plate cases presented by Salamon et al.
(1986) and Hu and Hartley (1993), a singular distribution of
support reactions does not consider at the transition points of
support where the supports change to a free edge. With the
best knowledge of the authors, there is only one analytical
method (Keer and Mak, 1981; Dempsey et al., 1984;
Dempsey and Li, 1986) including singularities at the tips
of the contacts to be used in the analysis for this class of
problem.

Therefore, an alternative analytical method, the finite
Hankel integral transform, is applied in the present work for
solving the problem of square plate resting on the unilateral
supports under uniformly distributed load. The correct
singularity at the points of transition from unilateral support
to free edge is taken into an account in the analysis, and the
extent of contact is examined. Also the deflections and stress
resultants of the plate are provided numerically and graphi-
cally in this paper.

2. Governing equation and boundary conditions

Based on the Levy-Nadai’s approach (Timoshenko
and Woinowsky-Krieger, 1959), the deflection of the plate
can be taken in the form of single Fourier series. To simplify
the analysis, the scaled square plate is then considered as
shown in Figure 1, where the coordinates and dimensions are
scaled by the factor «t/a where a is the actual plate length.
Therefore, the equation governing the deflection w(x,y) of
the plate under the uniform load q in the scaled coordinates
(x,y) can be expressed as

o'w o'w  o'w ga’
T t2 5 4T A~ (1)

OX oxoy® oy =wn'D
where D =Eh®/12(1-v?) =flexural rigidity, E =Young’s
modulus, v =Poisson’s ratio, and h =plate thickness. The
symmetry of the geometry and the lateral load at the lines
x=n/2 and y=m/2 is leading to the symmetry of the
deflection function, thus it is necessary to consider only the

region bounded by the upper left quadrant of the plate. The
boundary conditions are as follows:

cy=L
_=0 1y_21 (2)

oy

0<x<™
2

Y. Sompornjaroensuk & K. Kiattikomol / Songklanakarin J. Sci. Technol. 30 (6), 767-774, 2008

]

Unilateral Support

Unilateral Support

Figure 1. Geometry of square plates on unilateral edge supporters
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whereas W_is the lifted-up deflection at the plate corners,
M, is the bending moment in the direction parallel to the y-
axis, and V_ is the supplemented or Kirchhoff shearing force
normal to the y-axis. The stress resultants corresponding
to the coordinates x,y of the plate can be expressed as
(Timoshenko and Woinowsky-Krieger, 1959)

nofif[FeE)
G bt
M, = D(l—v)(%jz aa:;vy =M., o
v, =—D(£j3 {637\'3\'%2 ) ai;\;vz] (11)
v, :-D("J V—%(Z— ) jigy] (12)
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and the corner force R is given by the relation

R=2D(1- v)( j sxg”y

in which M, V_can be explained in the same manner with
M, and V , respectively, and M, represents the twisting
moment about the x-axis in the direction of y.

It is remarkable that the corner forces are considered
as positive if they act on the plate in the downward direction
in order to prevent the plate corners from rising up during
bending.

2M, (13)

3. Formulation of an integral equation governing the
plate problem

Utilizing the Levy-Nadai approach, the deflection of
the plate automatically satisfies Equation (1), boundary
condition of Equation (7), and the conditions of the plate
edges (w=0w/ox* =0 at X=0,1 and w=0°w/dy” =
at y=0,m). Therefore, the total deflection function can be
written in the form

W=W, +W, +W,_, (14)
where
2 al i m~°[sin(mx) +sin(my)], (15)
i [Y, sin(mx) + X, sin(my)], (16)
and o

4
= %[A" cosh(my) + B, mysinh(my) + C,, sinh(my) + D,,my cosh(my)] ,
17

4
X, = %[Aﬂ cosh(mx) + B, mxsinh(mx) + C,, sinh(mx) + D, mxcosh(mx)] .

(18)

Substituting Equation (14) into Equations (2), (3),

and (4) leads to the relations of unknown constants A , B ,
and C_interms of D_ as follows:

A, =——+2Dn'cothf (19)
B, = —Dm cothB, (20)
4y
Co=- ” (21)
in which
1 mn
T R =—". (22a,b)
n 1-v b 2

The remaining boundary conditions as given in Equations (5)
and (6) are selected to be mixed with respect to the slope and
the shear (Dempsey et al., 1984) for the permission of the
dual series equations to be reduced easily into the proper
form for solution. By substituting Equation (14) into Equa-
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tions (5b) and (6), the dual series equations can be obtained
in the following forms:

D mP, cos(mx)=0; e < x<,
m=1,3,5,... 2

(23)

> {m3Pm @+ FEM)sin(mx)+m*P, [F? sinh(mx) — 2n cosh(mx)

m=13,5,...

+Fmxcosh(mx) —nmxsinh(mx)] }

= Y [F¥sin(mx)+F® + F® sinh(mx) - F® cosh(mx)

m=135,.
)

+FPmxcosh(mx) — F,¥mxsinh(mx)]; 0< x<e, (24)
where
2
P = == +D, cothB (25)
1-v
. 3+v’ (26)
1+ EO (3+v)sinhB coshp —(1-v)B
(3+v)cosh? B - @
F =q(2tanh B + Bsech’p), (28)
F® —ntanh B, (29)
2[(3—v)tanh B — (1—-v)Bsech?p]
|:(4) —
m (B+v)n°m? ’ (30)
4
®) _ _
Fm (3+V )TC5 2, (31)
2[2tanh B + (1-v)Bsech’B]
FO® —
m (B+v)n°m? ! (32)
2n tanh B
FO - s (33)
2n
ang) = °m2 (34)

The solution techniques similar to those used by Stahl
and Keer (1972); Kiattikomol et al. (1974); Kiattikomol et al.
(1985) and Sompornjaroensuk and Kiattikomol (2008) for the
problems of plate having anchors at the corners are applied
to the present work, except that, the order of singularity is
assumed to be an inverse square root in the shear instead of
the moment (Keer and Mak, 1981; Dempsey et al., 1984;
Dempsey and Li, 1986; Sompornjaroensuk and Kiattikomol,
2006). This is due to the nature of contact problems in which
the singularity in the moments cannot be allowed at the
transition points from support to no contact (Dundurs and
Stippes, 1970). By introducing the function P_in the form
of a finite Hankel integral transform
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m’R, = [tp(t)J;(Mt)dt; m=135,..., (35)
0
which automatically satisfies the first dual series equations in
Equation (23), and @( ), J,( ) are the unknown auxiliary
function and Bessel function of the first kind and order 1,
respectively.
Utilizing the identity that presented by Stahl and Keer
(1972) as

2 1 xH(x-t) 7Il,(ts)cosh(xs)
J,(mt)cos(mx) =—— ds -
m:l,zs,: 1(mt) cos(my) 2t 2t(x* -t?)¥? +j exp(ms)+1

5, 0
X+t<m, (36)
where H( ) is the Heaviside unit step function and 1,( ) is
the modified Bessel function of the first kind and order n.
Also using the identities given in Gradshteyn and Ryzhic
(1980) and Abramowitz and Stegun (1964), hence, the
second dual series equations given in Equation (24) are
reduced to the following inhomogeneous Fredholm integral
equation of the second kind,

W(p)+[K(p,¥(r)dr=f(p); 0<p,r<1, (37)

where
Y(p)=9(ep); ¥(r)=op(er),

K(p,r) =2e2r{ >

m=1,35,..

(38)
[-2nm-nm (mep) ~nmepL, (mep)
+mF®J, (mep) +m(F? — F&)1, (mep)
+m’FPep,(mep)]J, (mer)

—_T slexp(rs)+1]™"1,(sep) Il(ser)ds} , (39)

o

f(p)=2 X [F"3,(mep)+(F” —F”)I,(mep)+mF Vepl,(mep)

m=135,...

w

+(F® - )L, (mep) —mFPepL, (mep)], (40)
in which L () is the modified Struve function of order n,
and p, r are the dummy variables.

Since the deflection at the plate corners W_ has
remained to be determined, it can be obtained by substituting
Equations (19) to (21), together with Equation (25) and
imposing y = 0 in Equation (14) leading to
w(x,0 :q_a4 3 P sin(mx)+W,.- 0< x <

(x,0) (l—v)szl,Zs,:s,.,, n Sin(MX) +W,; 0 < x < X
Using the function P_ presented by Equation (35) and the
identity that shown below (Stahl and Keer, 1972),

. 1{X(t2x2);+tsin1(xﬂ; x <t
> m?J,(mt)sin(mx) = t t

m=135... Tt ;ox>t
8

(41)
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X+t<m, (42)
it is found that the quantity of W_can immediately be deter-
mined by applying the boundary condition given in Equation
(5a). Therefore,

ga‘ne® ¢ ,
- 30v)D j p*¥(p)dp .
It is interesting to note that the unknown constants
presented by Equations (19) to (21) are related to the func-
tion ¥(p) by using Equations (25), (35) and (38), thus the
deflection function as given in Equation (14) can be
expressed in terms of function ¥ (p) after performing Equa-
tion (37). However, the correct value of ¥ (p) is still con-
strained with the condition of zero corner force due to the
unilateral supports capable of exerting forces in one direction
only, which differ from the problems of simply supported
square plate. Therefore, the zero corner force condition can
be determined by setting Equation (13) to be zero and after
changing the variable t =er, 0 <r <1 with using Equation
(35), that results as

(43)

ezj'T(er)r‘P(r)dr =B, (44)

where

T(er) = i (n"tanh  — Bsech®B)J, (mer), (45)

m=L3,5,...
B=2 i [%(tanhﬁ—ﬁsechzﬁ)] (46)
m=135,.L7T M
and
o L1+v
= E (47)

4. Numerical results and Discussions

All physical quantities of the plate can be evaluated
when the function ¥ (p) is known by transforming Equation
(37) to a system of linear algebraic equations with using the
Simpson’s rule as explained in Sompornjaroensuk and Kiat-
tikomol (2006, 2007) and then, the function ¥(p) is solved
numerically. However, the correct value of ¥(p) as well as
the noncontact length e can be found by iteration until
Equation (44) is satisfied. After that the deflection and stress
resultants of the plate are, respectively, computed from
Equation (14) and Equations (8) to (12). The results are
compared with the other analytical (Dempsey et al., 1984;
Dempsey and Li, 1986) and numerical (Salamon et al., 1986;
Hu and Hartley, 1993) solutions as shown in Tables 1 to 3
and presented graphically in Figures 2 to 4.

It revealed that the extent of contact e/n is only
depended on the Poisson’s ratio v of the plate as seen in Table
1. The free edge deflections near the corner and the deflec-
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Table 1. The noncontact lengths for different values of the Poisson’s ratio.

eln
v Dempsey etal. Dempsey and Li Salamonetal. Huand Hartley Present
(1984) (1986) (1986) (1993)

0.10 0.307 0.300 0.3078 - 0.3015

0.15 - - 0.2974 0.300 0.2922

0.30 0.268 0.262 0.2663 0.250 0.2626

0.50 0.224 0.218 0.2248 - 0.2188

Table 2. Deflections of square plates resting on unilateral edge supports.
w(x,0)/(qa*/10°D) w(x,mt / 2)/(qa*/10°D) w(x, X)/(qa’/10°D)
Vv - Dempsey  Huand Present Dempsey Huand Present Dempsey Present
and Li Hartley and Li Hartley and Li
(1986) (1993) (1986) (1993) (1986)

0.10 0.0 -1.12 - -1.1346 0.00 - 0.0000 -1.12 -1.1346
0.1 -0.488 - -0.4815 1.52 - 1.5307 0.278 0.2726
0.2 -0.100 - -0.0969 2.85 - 2.8549 1.74 1.7469
0.3 0.000 - 0.0000 3.84 - 3.8517 3.18 3.1878
0.4 0.000 - 0.0000 4.46 - 4.4641 4.26 4.2681
0.5 0.000 - 0.0000 4.66 - 4.6699 4.66 4.6699
0.15 0.0 - - -1.0329 - - 0.0000 - -1.0329
0.1 - - -0.4225 - - 1.5011 - 0.2930
0.2 - - -0.0754 - - 2.8012 - 1.7158
0.3 - - 0.0000 - - 3.7812 - 3.1277
0.4 - - 0.0000 - - 4.3839 - 4.1908
0.5 - - 0.0000 - - 4.5867 - 4.5867
0.30 0.0 -0.756 -0.7702  -0.7647 0.00 0.0000  0.0000 -0.756  -0.7647
0.1 -0.283 -0.2923  -0.2721 1.43 14296  1.4299 0.347 0.3447
0.2 -0.030 -0.0347  -0.0282 2.67 2.6709  2.6715 1.64 1.6393
0.3 0.000 0.0000 0.0000 3.61 3.6101  3.6108 2.98 2.9820
0.4 0.000 0.0000 0.0000 4.19 41896  4.1904 4.00 4.0043
0.5 0.000 0.0000 0.0000 4.38 4.385 4.3857 4.38 4.3857
050 0.0 -0.479 - -0.4817 0.00 - 0.0000 -0.479  -0.4817
0.1 -0.135 - -0.1262 1.37 - 1.3678 0.394 0.3930
0.2 -0.001 - -0.0014 2.56 - 2.5582 1.57 1.5691
0.3 0.000 - 0.0000 3.46 - 3.4618 2.85 2.8535
0.4 0.000 - 0.0000 4.02 - 4.0211 3.84 3.8410
0.5 0.000 - 0.0000 4.21 - 4.2100 4.21 4.2100

tions along the center line and diagonal line of the plate are
shown in Figure 2 corresponding with the numerical results
given in Table 2. It can be seen that their magnitudes are
increasing with decreasing Poisson’s ratio.

The bending and twisting moments are presented in
Figure 3. From the obtained results, with increasing the
Poisson’s ratio v , both of the bending moments M (x,x/2)
and M, (x,m/2) are decreasing, but the twisting moments
M, (X,X) are increasing. In addition, the distribution of
M., (X, X) along the diagonal line of the plate increases in

magnitude for all values of v up to some certain maximum
value and then decreases to zero at the center of the plate.
It is important to note that the twisting moments are vanished
at the plate corner for all values of the Poisson’s ratio due
to the condition of zero corner force. This satisfies the
behaviors of plates with no anchoring at the plate corners.
Figure 4 illustrates the distributions of support re-
action along the unilateral support. It can be observed that
they are singular at the end point x = e of the support when
changed to a free edge (Dempsey et al., 1984; Dempsey and
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Table 3. Bending moments, twisting moments, and support reactions of square plates on unilateral edge supports.

M (x,m / 2)/(qa’/100) M,(x,m / 2)/(qa*/100) V,(x,0)/(qa/10)
% — Dempsey Huand Present Dempsey Huand Present w Dempsey Huand Present
andLi  Hartley and Li Hartley (@@7100)  andLi  Hartley
(1986) (1993) (1986) (1993) (1986)  (1993)

0.10 0.0 0.00 - 0.0000 0.00 - 0.0000  0.0000 0.00 - 0.0000
0.1 2.26 - 2.2699 1.44 - 1.4442  1.8633 0.00 - 0.0000

0.2 3.56 - 3.5661 2.72 - 2.7255  2.1525 0.00 - 0.0000

0.3 4.20 - 4.2040 3.70 - 3.7111  1.2763 - - 0.0000

0.4 4.46 - 4.4696 4.32 - 4.3280 0.3601 5.16 - 5.1095

0.5 4.53 - 4.5383 4.53 - 45383  0.0000 4.97 - 4.9107

0.15 0.0 - - 0.0000 - - 0.0000 0.0000 - - 0.0000
0.1 - - 2.2715 - - 15312 1.8305 - - 0.0000

0.2 - - 3.6060 - - 2.8487 2.0541 - - 0.0000

0.3 - - 4.2909 - - 3.8460 1.1942 - - 10.7430

0.4 - - 4.5920 - - 44643  0.3346 - - 4.9146

0.5 - - 4.6738 - - 4.6738 0.0000 - - 4.7784

0.30 0.0 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.00 0.000  0.0000
0.1 231 2.3087  2.3098 1.78 17786 1.7775 1.6937 0.00 0.000  0.0000

0.2 3.75 3.7558  3.7569 3.21 3.2113  3.2100 1.7404 0.00 0.000  0.0000

0.3 4.57 45728 45732 4.16 42521 4.2513 0.9586 5.28 6.780  5.2843

0.4 4.97 49731 49731 4.88 4.8811 4.8808 0.2634 4.48 4590  4.4507

0.5 5.09 5.0914  5.0913 5.09 5.0914 5.0913 0.0000 4.47 4488  4.4339

050 0.0 0.00 - 0.0000 0.00 - 0.0000 0.0000 0.00 - 0.0000
0.1 242 - 2.4235 2.09 - 2.0912 1.4002 0.00 - 0.0000

0.2 4.03 - 4.0270 3.69 - 3.6886 1.2766 0.00 - 0.0000

0.3 5.00 - 5.0047 4.81 - 4.8064 0.6652 3.99 - 3.9739

0.4 5.52 - 5.5221 5.47 - 5.4655 0.1794 4.24 - 4.0104

0.5 5.68 - 5.6830 5.68 - 5.6830 0.0000 4.08 - 4.0644

Li, 1986), according to each case of the plate with various
Poisson’s ratio values as listed in Table 1. At this point, it
can be concluded from the results presented in Figure 4 that
the support reactions are proportional to the level of the
applied loads (Dundurs and Stippes, 1970). This feature is
opposed to the advancing contact problems (Dundurs et al.,
1974; Sompornjaroensuk and Kiattikomol, 2006) because
the extent of receding contact is only depended on the values
of the Poisson’s ratio of the plate. The variation for the dis-
tribution of stress resultants with Poisson’s ratio is tabulated
and also compared with the results obtained by other
methods as shown in Table 3.

5. Conclusions

This paper presents the natural receding contact
between the square plate and the unilateral supports under
the uniformly distributed load using the method of finite
Hankel integral transform incorporating the square root shear
singularity at the points of discontinuous support. The solu-
tion is first set up by utilizing the Levy-Nadai approach. The
mixed boundary conditions resulting from the discontinuity
of the boundary conditions are written in the form of dual

series equations, and can further be reduced to the inhomoge-
neous Fredholm integral equation of the second kind in terms
of an unknown auxiliary function, in which this function can
conveniently be solved numerically using the Simpson’s rule.
The extent of contact between the plate and the unilateral
supports and the physical quantities of deflections, bending
and twisting moments, and support reactions are calculated
and compared with results obtained by other investigators.
It is seen that the present results are in close agreement with
the results obtained by analytical methods (Dempsey et al.,
1984; Dempsey and Li, 1986), in which the inverse square
root shear singularities have been included in their analysis,
and in good agreement when compared with the numerical
method (Hu and Hartley, 1993). However, the singularity is
excluded in the latter results. This is the highlight of the
present problem. From the analysis, the following conclusions
can be drawn: the extent of contact is independent of the
level of loading but dependent on the values of Poisson’s
ratio, the support reactions are proportional to the applied
loads, and the proposed method is found to be efficient for
solving the problem of plates with mixed boundary condi-
tions.
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Figure 3. Bending and twisting moments of square plates on uni-
lateral edge supports.

References

Abramowitz, M. and Stegun, I.A. 1964. Handbook of Math-
ematical Functions with Formulas, Graphs, and Math-
ematical Tables, Dover Publications, New York.

Dempsey, J.P. and Li, H. 1986. Rectangular plates on uni-
lateral edge supports: Part 2-implementation; con-
centrated and uniform loading. Journal of Applied
Mechanics, 53, 151-156.

Dempsey, J.P., Keer, L.M., Patel, N.B. and Glasser, M.L.
1984. Contact between plates and unilateral supports.
Journal of Applied Mechanics, 51, 324-328.

10

T'y(.\:())/(qa/l())

2

Figure 4. Support reactions of square plates on unilateral edge
supports.

Dundurs, J. and Stippes, M. 1970. Role of elastic constants
in certain contact problems. Journal of Applied
Mechanics, 37, 965-970.

Dundurs, J., Kiattikomol, K. and Keer, L.M. 1974. Contact
between plates and sagged supports. Journal of the
Engineering Mechanics Division, 100, 445-456.

Gradshteyn, I.N. and Ryzhik, I.M. 1980. Table of Integrals,
Series, and Products, Academic Press, New York.

Hu, C. and Hartley, G.A. 1993. Boundary element analysis of
thin plates unilaterally edge supported. Engineering
Analysis with Boundary Element, 12, 47-55.

Keer, L.M. and Mak, A.F. 1981. Loss of contact in the
vicinity of a right-angle corner for a simply supported,
laterally loaded plate. Journal of Applied Mechanics,
48, 597-600.

Kiattikomol, K., Keer, L.M. and Dundurs, J. 1974. Applica-
tion of dual series to rectangular plates. Journal of the
Engineering Mechanics Division, 100, 433-443.

Kiattikomol, K., Porn-anupapkul, S. and Thonchangya, N.
1985. Application of dual series equations to a square
plate with varying corner supported lengths. Proceed-
ings of The Recent Advances in Structural Engineer-
ing, Bangkok, Thailand, Mar. 14-15, 115-130.

Salamon, N.J., Pawlak, T.P. and Mahmoud, F.F. 1986. Plates
in unilateral contact with simple supports: pressure
loading. Journal of Applied Mechanics, 53, 141-145.

Sompornjaroensuk, Y. and Kiattikomol, K. 2006. Singularity
of advancing contact problems of plate bending. The
Tenth East Asia-Pacific Conference on Structural En-
gineering and Construction, Bangkok, Thailand, Aug.
3-5,193-198.

Sompornjaroensuk, Y. and Kiattikomol, K. 2007. Dual-series
equations formulation for static deformation of plates
with a partial internal line support. Theoretical and
Applied Mechanics, 34, 221-248.



774 Y. Sompornjaroensuk & K. Kiattikomol / Songklanakarin J. Sci. Technol. 30 (6), 767-774, 2008

Sompornjaroensuk, Y. and Kiattikomol, K. 2008. Exact ana-  Stahl, B. and Keer, L.M. 1972. Vibration and buckling of a

lytical solutions for bending of rectangular plates with rectangular plate with an internal support. Quarterly
a partial internal line support. Journal of Engineering Journal of Mechanics and Applied Mathematics, 25,
Mathematics, 62, 261-276 467-478.

Timoshenko, S.P. and Woinowsky-Krieger, S. 1959. Theory
of Plates and Shells, 2" ed., McGraw-Hill, Singapore.



