
Original Article

Bending of a uniformly loaded square plate

resting on unilateral edge supports

Yos Sompornjaroensuk

1

* and Kraiwood Kiattikomol

2

1

 Department of Civil Engineering, Faculty of Engineering,

Mahanakorn University of Technology, Nong Chok, Bangkok, 10530 Thailand.

2

 Department of Civil Engineering, Faculty of Engineering,

King Mongkut’s University of Technology Thonburi, Bangmod, Thung Khru, Bangkok, 10140 Thailand.

Received  1 January 2008; Accepted  2 October 2008

Abstract

The  objectives  of  this  paper  are  to  analyze  the  bending  behaviors  of  unilaterally  simply  supported  square  plate

subjected to the uniformly distributed load, and to examine the extent of receding contacts between the plate and the uni-

lateral supports. In the present problem the mixed boundary conditions exist along the plate edges, which can be written in

the form of dual series equations. These equations are further reduced to determine the solution of inhomogeneous Fredholm

integral equation of the second kind for an unknown auxiliary function by using the finite Hankel integral transform tech-

niques. Numerical results concerning the extent of receding contact, deflection, bending moment, twisting moment, and

support reaction of the plate are given and also compared with the results obtained by other available techniques. From

investigations, the conclusions can be stated that (i) the method used is found to be efficient for solving the problem consid-

ered, (ii) the extent of contact is independent of the level of loading, but dependent on the values of Poisson’s ratio of the

plate, and (iii) the support reactions are proportional to the applied load.

Keywords: dual series equations, Fredholm integral equation, Hankel integral transform, mixed boundary conditions,
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1. Introduction

Many problems of thin elastic simply supported plates

having the right-angle corners anchored by the corner forces

are resulting from the twisting moments at the correspond-

ing corners to prevent parts of the plate near and including

the  corners  bent  away  from  the  supports  upon  loading

(Timoshenko  and  Woinowsky-Krieger,  1959).  Since  no

corner forces are provided, the plate corners in general have

a tendency to rise up from the supports and the plate is

pertained to the natural receding contact problems (Dundurs

and Stippes, 1970). This motivates researchers to investigate

the  actual  extent  of  contact  between  the  plate  and  the

supports. Keer and Mak (1981) first analytically determined

the loss of contact at the corner of semi-infinite plate resting

on the unilateral supports, while the problem of unilaterally

simply supported square plate was treated by Dempsey et al.

(1984). Both problems were analyzed using the finite Fourier

integral transforms in which the dual series equations that

obtained from the mixed boundary conditions can be reduced

to  the  Cauchy-type  singular  integral  equation  of  the  first

kind. Dempsey and Li (1986) further extended the Fourier

integral transform method used in the previous work to for-

mulate the problems of rectangular plates with no sag and

two opposite sagged supports. At the same time, Salamon et

al. (1986) performed the finite element method to model the

unilateral supports of square plates by using discrete elastic

springs  as  supports  around  the  plate.  Another  numerical
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method was done by Hu and Hartley (1993) based on the

direct boundary element method.

As described above, the corner forces play an impor-

tant role especially in the case of a simply supported square

plate  to  prevent  the  separation  between  the  plate  corners

and the supports upon loading, thus the crucial step is the

identification of the correct behaviors of the plate due to an

absence of corner forces. For instance, the supports allow

the plate to seek its natural contact (Dundurs and Stippes,

1970), and the shear distribution along the supports, which is

singular at the tips of the contact intervals is in the order of an

inverse square root type, first explained by Keer and Mak

(1981). In addition, it is remarkable that for the numerical

treatments of square plate cases presented by Salamon et al.

(1986) and Hu and Hartley (1993), a singular distribution of

support reactions does not consider at the transition points of

support where the supports change to a free edge. With the

best knowledge of the authors, there is only one analytical

method  (Keer  and  Mak,  1981;  Dempsey  et  al.,  1984;

Dempsey  and  Li,  1986)  including  singularities  at  the  tips

of  the  contacts  to  be  used  in  the  analysis  for  this  class  of

problem.

Therefore, an alternative analytical method, the finite

Hankel integral transform, is applied in the present work for

solving the problem of square plate resting on the unilateral

supports  under  uniformly  distributed  load.  The  correct

singularity at the points of transition from unilateral support

to free edge is taken into an account in the analysis, and the

extent of contact is examined. Also the deflections and stress

resultants of the plate are provided numerically and graphi-

cally in this paper.

2. Governing equation and boundary conditions

Based on the Levy-Nadai’s approach (Timoshenko

and Woinowsky-Krieger, 1959), the deflection of the plate

can be taken in the form of single Fourier series. To simplify

the analysis, the scaled square plate is then considered as

shown in Figure 1, where the coordinates and dimensions are

scaled by the factor a  where a  is the actual plate length.

Therefore, the equation governing the deflection ( , )w x y  of

the plate under the uniform load q  in the scaled coordinates

( , )x y  can be expressed as

4 4 4 4

4 2 2 4 4

2

w w w qa

x x y y D

  

  

   

, (1)

where 

3 2

12(1 )D Eh    flexural rigidity, E  Young’ss

modulus,  Poisson’s ratio, and h  plate thickness. The

symmetry of the geometry and the lateral load at the lines

2x   and 2y   is leading to the symmetry of the

deflection function, thus it is necessary to consider only the

region bounded by the upper left quadrant of the plate. The

boundary conditions are as follows:

0

w

y







: 0

2

x



  ; 

2

y



 , (2)

0

y

V  : 
0

2

x



 
; 

2

y





, (3)

0

y

M 

: 0

2

x



 
; 0y  , (4)

0

w

w

x



 



: 

2

e x



 
; 0y  , (5)

0

y

V 
: 0 x e 

; 0y  , (6)

c

w W : 0x  ; 
0y 

, (7)

whereas W

c

 is the lifted-up deflection at the plate corners,

M

y

 is the bending moment in the direction parallel to the y-

axis, and V

y

 is the supplemented or Kirchhoff shearing force

normal to the y-axis. The stress resultants corresponding

to  the  coordinates  x, y  of  the  plate  can  be  expressed  as

(Timoshenko and Woinowsky-Krieger, 1959)
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Figure 1.  Geometry of square plates on unilateral edge supporters
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and the corner force R is given by the relation

2

2

2 (1 ) 2

xy

w

R D M

a x y
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, (13)

in which M

x

, V

x

 can be explained in the same manner with

M

y

  and  V

y

 ,  respectively,  and  M

xy

  represents  the  twisting

moment about the x-axis in the direction of y.

It is remarkable that the corner forces are considered

as positive if they act on the plate in the downward direction

in order to prevent the plate corners from rising up during

bending.

3. Formulation  of  an  integral  equation  governing  the

plate problem

Utilizing the Levy-Nadai approach, the deflection of

the  plate  automatically  satisfies  Equation  (1),  boundary

condition of Equation (7), and the conditions of the plate

edges (

2 2

0w w x   
 at 0,x   and 

2 2

0w w y   

at 0,y  ). Therefore, the total deflection function can be

written in the form
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Substituting  Equation  (14)  into  Equations  (2),  (3),

and (4) leads to the relations of unknown constants A

m

, B

m

,

and C

m

 in terms of D

m

 as follows:
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The remaining boundary conditions as given in Equations (5)

and (6) are selected to be mixed with respect to the slope and

the shear (Dempsey et al., 1984) for the permission of the

dual series equations to be reduced easily into the proper

form for solution. By substituting Equation (14) into Equa-

tions (5b) and (6), the dual series equations can be obtained

in the following forms:
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The solution techniques similar to those used by Stahl

and Keer (1972); Kiattikomol et al. (1974); Kiattikomol et al.

(1985) and Sompornjaroensuk and Kiattikomol (2008) for the

problems of plate having anchors at the corners are applied

to the present work, except that, the order of singularity is

assumed to be an inverse square root in the shear instead of

the moment (Keer and Mak, 1981; Dempsey et al., 1984;

Dempsey and Li, 1986; Sompornjaroensuk and Kiattikomol,

2006). This is due to the nature of contact problems in which

the  singularity  in  the  moments  cannot  be  allowed  at  the

transition points from support to no contact (Dundurs and

Stippes, 1970). By introducing the function P

m

 in the form

of a finite Hankel integral transform
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2

1

0
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which automatically satisfies the first dual series equations in

Equation (23), and ( ) , 

1

( )J  are the unknown auxiliary

function and Bessel function of the first kind and order 1,

respectively.

Utilizing the identity that presented by Stahl and Keer

(1972) as
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where ( )H  is the Heaviside unit step function and ( )

n

I  is

the modified Bessel function of the first kind and order n.

Also  using  the  identities  given  in  Gradshteyn  and  Ryzhic

(1980)  and  Abramowitz  and  Stegun  (1964),  hence,  the

second  dual  series  equations  given  in  Equation  (24)  are

reduced to the following inhomogeneous Fredholm integral

equation of the second kind,
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in which ( )

n

L  is the modified Struve function of order n,

and  , r are the dummy variables.

Since  the  deflection  at  the  plate  corners  W

c

  has

remained to be determined, it can be obtained by substituting

Equations  (19)  to  (21),  together  with  Equation  (25)  and

imposing y = 0 in Equation (14) leading to
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Using the function P

m

 presented by Equation (35) and the

identity that shown below (Stahl and Keer, 1972),
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it is found that the quantity of W

c

 can immediately be deter-

mined by applying the boundary condition given in Equation

(5a). Therefore,

1
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It is interesting to note that the unknown constants

presented by Equations (19) to (21) are related to the func-

tion 
( )

 by using Equations (25), (35) and (38), thus the

deflection  function  as  given  in  Equation  (14)  can  be

expressed in terms of function 
( )

 after performing Equa-

tion (37). However, the correct value of ( )  is still con-

strained with the condition of zero corner force due to the

unilateral supports capable of exerting forces in one direction

only, which differ from the problems of simply supported

square plate. Therefore, the zero corner force condition can

be determined by setting Equation (13) to be zero and after

changing the variable t er , 0 1r   with using Equation

(35), that results as

1

2

0
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and
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1
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4. Numerical results and Discussions

All physical quantities of the plate can be evaluated

when the function ( )  is known by transforming Equation

(37) to a system of linear algebraic equations with using the

Simpson’s rule as explained in Sompornjaroensuk and Kiat-

tikomol (2006, 2007) and then, the function ( )  is solved

numerically. However, the correct value of ( )  as well as

the  noncontact  length  e  can  be  found  by  iteration  until

Equation (44) is satisfied. After that the deflection and stress

resultants  of  the  plate  are,  respectively,  computed  from

Equation  (14)  and  Equations  (8)  to  (12).  The  results  are

compared with the other analytical (Dempsey et al., 1984;

Dempsey and Li, 1986) and numerical (Salamon et al., 1986;

Hu and Hartley, 1993) solutions as shown in Tables 1 to 3

and presented graphically in Figures 2 to 4.

It  revealed  that  the  extent  of  contact  e    is  only

depended on the Poisson’s ratio v of the plate as seen in Table

1. The free edge deflections near the corner and the deflec-
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Table 1. The noncontact lengths for different values of the Poisson’s ratio.

                                                   e /

v Dempsey et al. Dempsey and Li Salamon et al. Hu and Hartley Present

(1984) (1986) (1986) (1993)

0.10 0.307 0.300 0.3078 - 0.3015

0.15 - - 0.2974 0.300 0.2922

0.30 0.268 0.262 0.2663 0.250 0.2626

0.50 0.224 0.218 0.2248 - 0.2188

Table 2. Deflections of square plates resting on unilateral edge supports.

          w(x,0)/(qa

4

/10

3

D)        w(x,/ 2)/(qa

4

/10

3

D)             w(x, x)/(qa

4

/10

3

D)

v

n

x

Dempsey Hu and Present Dempsey Hu and Present Dempsey Present

and Li Hartley and Li Hartley and Li

(1986) (1993) (1986) (1993) (1986)

0.10 0.0 -1.12 - -1.1346 0.00 - 0.0000 -1.12 -1.1346

0.1 -0.488 - -0.4815 1.52 - 1.5307 0.278 0.2726

0.2 -0.100 - -0.0969 2.85 - 2.8549 1.74 1.7469

0.3 0.000 - 0.0000 3.84 - 3.8517 3.18 3.1878

0.4 0.000 - 0.0000 4.46 - 4.4641 4.26 4.2681

0.5 0.000 - 0.0000 4.66 - 4.6699 4.66 4.6699

0.15 0.0 - - -1.0329 - - 0.0000 - -1.0329

0.1 - - -0.4225 - - 1.5011 - 0.2930

0.2 - - -0.0754 - - 2.8012 - 1.7158

0.3 - - 0.0000 - - 3.7812 - 3.1277

0.4 - - 0.0000 - - 4.3839 - 4.1908

0.5 - - 0.0000 - - 4.5867 - 4.5867

0.30 0.0 -0.756 -0.7702 -0.7647 0.00 0.0000 0.0000 -0.756 -0.7647

0.1 -0.283 -0.2923 -0.2721 1.43 1.4296 1.4299 0.347 0.3447

0.2 -0.030 -0.0347 -0.0282 2.67 2.6709 2.6715 1.64 1.6393

0.3 0.000 0.0000 0.0000 3.61 3.6101 3.6108 2.98 2.9820

0.4 0.000 0.0000 0.0000 4.19 4.1896 4.1904 4.00 4.0043

0.5 0.000 0.0000 0.0000 4.38 4.385 4.3857 4.38 4.3857

0.50 0.0 -0.479 - -0.4817 0.00 - 0.0000 -0.479 -0.4817

0.1 -0.135 - -0.1262 1.37 - 1.3678 0.394 0.3930

0.2 -0.001 - -0.0014 2.56 - 2.5582 1.57 1.5691

0.3 0.000 - 0.0000 3.46 - 3.4618 2.85 2.8535

0.4 0.000 - 0.0000 4.02 - 4.0211 3.84 3.8410

0.5 0.000 - 0.0000 4.21 - 4.2100 4.21 4.2100

tions along the center line and diagonal line of the plate are

shown in Figure 2 corresponding with the numerical results

given  in  Table  2.  It  can  be  seen  that  their  magnitudes  are

increasing with decreasing Poisson’s ratio.

The bending and twisting moments are presented in

Figure 3. From the obtained results, with increasing the

Poisson’s ratio  , both of the bending moments ( , 2)

x

M x 

and ( , 2)

y

M x   are decreasing, but the twisting moments

( , )

xy

M x x  are increasing. In addition, the distribution of

( , )

xy

M x x  along the diagonal line of the plate increases in

magnitude for all values of   up to some certain maximum

value and then decreases to zero at the center of the plate.

It is important to note that the twisting moments are vanished

at the plate corner for all values of the Poisson’s ratio due

to  the  condition  of  zero  corner  force.  This  satisfies  the

behaviors  of plates with no anchoring at the plate corners.

Figure 4 illustrates the distributions of support re-

action along the unilateral support. It can be observed that

they are singular at the end point x = e of the support when

changed to a free edge (Dempsey et al., 1984; Dempsey and
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Table 3. Bending moments, twisting moments, and support reactions of square plates on unilateral edge supports.

    M

x

(x,/ 2)/(qa

2

/100)  M

y

(x,/ 2)/(qa

2

/100)                                 V

y

(x,)/(qa/10)

v

n

x

Dempsey Hu and Present Dempsey Hu and Present Dempsey Hu and Present

and Li Hartley and Li Hartley and Li Hartley

(1986) (1993) (1986) (1993) (1986) (1993)

0.10 0.0 0.00 - 0.0000 0.00 - 0.0000 0.0000 0.00 - 0.0000

0.1 2.26 - 2.2699 1.44 - 1.4442 1.8633 0.00 - 0.0000

0.2 3.56 - 3.5661 2.72 - 2.7255 2.1525 0.00 - 0.0000

0.3 4.20 - 4.2040 3.70 - 3.7111 1.2763 - - 0.0000

0.4 4.46 - 4.4696 4.32 - 4.3280 0.3601 5.16 - 5.1095

0.5 4.53 - 4.5383 4.53 - 4.5383 0.0000 4.97 - 4.9107

0.15 0.0 - - 0.0000 - - 0.0000 0.0000 - - 0.0000

0.1 - - 2.2715 - - 1.5312 1.8305 - - 0.0000

0.2 - - 3.6060 - - 2.8487 2.0541 - - 0.0000

0.3 - - 4.2909 - - 3.8460 1.1942 - - 10.7430

0.4 - - 4.5920 - - 4.4643 0.3346 - - 4.9146

0.5 - - 4.6738 - -  4.6738 0.0000 - - 4.7784

0.30 0.0 0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.0000 0.00 0.000 0.0000

0.1 2.31 2.3087 2.3098 1.78 1.7786 1.7775 1.6937 0.00 0.000 0.0000

0.2 3.75 3.7558 3.7569 3.21 3.2113 3.2100 1.7404 0.00 0.000 0.0000

0.3 4.57 4.5728 4.5732 4.16 4.2521 4.2513 0.9586 5.28 6.780 5.2843

0.4 4.97 4.9731 4.9731 4.88 4.8811 4.8808 0.2634 4.48 4.590 4.4507

0.5 5.09 5.0914  5.0913 5.09  5.0914  5.0913 0.0000 4.47 4.488 4.4339

0.50 0.0 0.00 - 0.0000 0.00 - 0.0000 0.0000 0.00 - 0.0000

0.1 2.42 - 2.4235 2.09 - 2.0912 1.4002 0.00 - 0.0000

0.2 4.03 - 4.0270 3.69 - 3.6886 1.2766 0.00 - 0.0000

0.3 5.00 - 5.0047 4.81 - 4.8064 0.6652 3.99 - 3.9739

0.4 5.52 - 5.5221 5.47 - 5.4655 0.1794 4.24 - 4.0104

0.5  5.68 - 5.6830  5.68 -  5.6830 0.0000 4.08 - 4.0644

M

xy

(x,x)

(qa

2

/100)

Li, 1986), according to each case of the plate with various

Poisson’s ratio values as listed in Table 1. At this point, it

can be concluded from the results presented in Figure 4 that

the  support  reactions  are  proportional  to  the  level  of  the

applied loads (Dundurs and Stippes, 1970). This feature is

opposed to the advancing contact problems (Dundurs et al.,

1974; Sompornjaroensuk and Kiattikomol, 2006) because

the extent of receding contact is only depended on the values

of the Poisson’s ratio of the plate. The variation for the dis-

tribution of stress resultants with Poisson’s ratio is tabulated

and  also  compared  with  the  results  obtained  by  other

methods as shown in Table 3.

5. Conclusions

This  paper  presents  the  natural  receding  contact

between the square plate and the unilateral supports under

the uniformly distributed load using the method of finite

Hankel integral transform incorporating the square root shear

singularity at the points of discontinuous support. The solu-

tion is first set up by utilizing the Levy-Nadai approach. The

mixed boundary conditions resulting from the discontinuity

of the boundary conditions are written in the form of dual

series equations, and can further be reduced to the inhomoge-

neous Fredholm integral equation of the second kind in terms

of an unknown auxiliary function, in which this function can

conveniently be solved numerically using the Simpson’s rule.

The extent of contact between the plate and the unilateral

supports and the physical quantities of deflections, bending

and twisting moments, and support reactions are calculated

and compared with results obtained by other investigators.

It is seen that the present results are in close agreement with

the results obtained by analytical methods (Dempsey et al.,

1984; Dempsey and Li, 1986), in which the inverse square

root shear singularities have been included in their analysis,

and in good agreement when compared with the numerical

method (Hu and Hartley, 1993). However, the singularity is

excluded in the latter results. This is the highlight of the

present problem. From the analysis, the following conclusions

can be drawn: the extent of contact is independent of the

level of loading but dependent on the values of Poisson’s

ratio, the support reactions are proportional to the applied

loads, and the proposed method is found to be efficient for

solving the problem of plates with mixed boundary condi-

tions.
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