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Abstract

Addiscrete time model for asset price changes is considered. The volatility process underlying these changes is modeled
as a first-order Gaussian autoregressive series. Inversion of the marginal characteristic function of the return process simplifies
the assessment of the tail behaviour of the probability density function of returns. The Generalized Method of Moments
(GMM) is used to calibrate the model and implement an overidentification test. Daily Euro/USD, Pound/USD, AUD/USD,
and Yen/USD exchange rates over the period January 1999 to October 2006 are used to illustrate the methods.
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1. Introduction

Many studies have confirmed the presence of heavy
tails in the distributions of daily returns of stock market
indices and currency exchange rates, linked to statistically
significant autocorrelations among squared returns. Taylor
(1994) presented the different statistical models used to
address these issues. In general, these models can be divided
into two broad groups: (a) models dealing with a conditional
variance or so called heteroscedastic variance, and (b)
models with stochastic variance, where the variance is a
function of a new noise term. Cox (1981) classified these
respective models as data-driven and parameter driven, and
Shephard (1996) gives a more recent review. The stochastic
volatility model generated by an autoregressive time series
with lognormal white noise is widely used (Taylor, 1986),
and has a continuous time limit as the frequency of observa-
tions increases from daily to an infinitesimal interval. The
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limiting process is the geometric Brownian motion, which is
widely used in the option pricing literature. Andersen (1992,
1994) has studied a more general class of stochastic volatility
models (called polynomial stochastic volatility models).
Chysels et al. (1996) surveyed the various approaches of
volatility modeling and the associated parameter identifica-
tion problem. The discrete time model under consideration
is called the Gaussian autoregressive stochastic volatility
(GASV) model arising from discretisation of the Ornstein-
Uhlenbeck (OU) process. Stein and Stein (1991) used this
model as a basis for option pricing, while Heston (1993)
considered a variation incorporating correlation between the
innovations driving the processes of returns and volatility.
However, Heston’s model may be of limited practical use,
because it does not include the special case of constant vola-
tility.

In exchange rate research it is now well known that
daily returns on currency exchange rates are best described
by distributions with fatter tails than the normal distribution.
The study by Boothe and Glassman (1987) confirmed this
fact by examining pairs of currencies GBP/USD, CAD/USD,
DMK/USD and JPY/USD over the period January 1973 to



800

August 1984. They found that the daily and weekly exchange
rates display kurtosis far in excess of that for the normal
distribution. Using the Pearson goodness-of-fit test they
concluded that Student’s distribution and a mixture of two
normal distributions fitted the data better than stable Pareto
and normal distribution models. In describing the daily ex-
change data of four pairs of currencies, Student’s distribution
ranked first most often. This study also indicated that the
parameter estimates varied over the time periods. These
issues were handled by introducing autoregressive condi-
tional heteroscedasticity (ARCH) models (Engle, 1982). The
paper by Baillie and Bollerslev (1989) gives a survey of pre-
vious analysis of exchange rate data and extends it further by
considering a generalized ARCH (GARCH) parameteriza-
tion. These models can generate fat tailed distributions show-
ing excess kurtosis. On the other hand, Mellino and Turnbull
(1990) found that daily returns simulated based on historical
volatility from daily CAD/USD exchange rates from 1973 to
1984 do not allow for excess kurtosis and correlation among
squared returns at the same time. However, a stochastic vola-
tility model resolved the problem.

Since its introduction in 1999, the Euro has played an
important role in the global currency market (Greene and
Mole, 2003) and there have been several studies based on
specific Euro/USD exchange rates (Corsetti 2004, Heaney
and Pattenden 2005, Nautz and Scheithauer 2005).

The objectives of the present paper are to assess the
unconditional marginal distribution of the return process
based on the GASV model, to estimate the parameters and
fit the model to daily exchange rate data. The Generalized
Method of Moments (GMM) is found to be feasible for esti-
mating the parameters. The model is fitted to four pairs of
currencies namely Euro/USD, Pound/USD, AUD/USD and
Yen/USD over the period from January 1999 to October
2006.

2. Stochastic autoregressive volatility model
We consider the following model

Y,=u +o(l+8u,)z, )
ut = y ut.]_ + nW ! (2)

where y, is the compounded return, given by y, = 100In(P, /
P.,), P, is the spot exchange rate at day tand u, 5, 8,y and
are unknown parameters associated with the return process,
while w,and z are independent standardised Gaussian white
noise processes. The background for consideration of sto-
chastic volatility u, modelled by (2) is inspired by its con-
tinuous time counterpart, an Ornstein-Uhlenbeck process
(Stein and Stein, 1991).

According to Chirtkiatsakul (2002), without loss of

generality (2) is parameterised by specifying n =1-7°.
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Based on the moment generating function, if u, ~ N(0,1) and
u, is a stationary process, i.e. |y | < 1, then the characteristic
function of the stationary process y, is

¢ (©) = Elexp(i6 y)1=
2n 2
V1+8% %2 2(1+8°c707)
Due to the parameterisation of u, the marginal distri-
bution of y, is invariant with respect to y. For simplicity
assume p =0 since in this case the corresponding prob-

ability density function (pdf) is a symmetric function.
If u=0, then the standard deviation of y, is

sd[y,]=cv1+87,

the kurtosis of y, using Fisher’s (1958) definition is
65°(2+8°)
kurt[y,]=———————
L] 1+82)°

and the autocorrelation function of yt2 atlagsis

3 (2+8%°)

corr[y?, y2. 1= PV s> 0.

3. Parameter estimates

The reparametrized version of the stochastic volatility
model (1, 2) involves the three unknown parameters g, ¢ and
v (assuming u = 0). The standard deviation, kurtosis and cor-
relation of squared returns at lag 1, E[y/ y;,] may be used
to derive the estimates for 8, c and y through the Method of
Moments (MM). However, the estimate of y can lead to a
nonstationary solution of (2). The problem might be resolved
by using the mixed moment of squares at some other lag, but
the question of which moment to choose to estimate y
remains unanswered. A more natural way of deriving
estimates is the Generalized Method of Moments (GMM).
This approach has been used for lognormal SV models, e.g,
Mellino and Turnbull (1990) and Andersen (1992, 1994).

In the implementation of GMM the mixed moments
m 9 = E[yy, "] are used with combinations of p=2 and
g=0, 2, experimenting with different lagss > 0. The moment
discrepancies form a Ix1 vector m(0) , with 6 = (3, o, 7), of
components of differences between sample and analytical
moments, of the form e " and m ™ respectively, where

el =% D oVPyi.

k=s+1

In the applications considered, | = s+2, where s is a
number of mixed moments of squared returns.
The GMM estimate of g minimizes the quadratic form
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q®)=m@©)W,"m@),
by
én =argminqg@©),

where W, is a (possibly random) positive definite weighting
matrix. R

Under some regularity conditions 6 | is consistent and
asymptotically normal (Hansen, 1982):

Jn@®,-0)~N(0V),as N —> oo,

The asymptotic variance covariance matrix V can be
consistently estimated by

Vn = (Dr:Wn_lDr-:— )_l DI{IWn_lann_l D: (DI:Wn_l DI‘T )_11
where D, is the 3x| Jacobian matrix

om(@®
b = M)
00
evaluated at 6 , a consistent estimator of 6, and S, is the
sample variance-covariance matrix of the moment discrep-
ancy vector m(0).
L_et S, = (Sn)ij) )= 0,1, | be the_ appropriately
standardised sample variance covariance matrix of moments
with entries

13 ..
Snij == Z(ykpyl?—i —ePN)(Y Y —e)) ifi>].

k=i+1

(4)
Care should be taken to ensure that the matrix S_is
of full rank, although this is a cumbersome task due to the
involvement of a high number of similar moments. The
trade-off between singularity of the weighting matrix and a
number of restrictive moment conditions has been thoroughly
studied for the lognormal stochastic volatility model by
Andersen and Sgrensen (1996) and by Jacquier et al. (1994).

By setting W =S the expression for V_simplifies to

‘9:6,,

V, =(D;S,"D;) ™.

Different ways of estimating the weighting matrix
have been proposed, and it is a common practice to use a
nonparametric kernel estimate of the spectral density of the
moment vector (Andersen and Sgrensen, 1996).

In the underlying GASV model the method advocated
by Newey and West (1987) has been implemented in order to
provide an alternative way of handling the problem of the
deterioration of the variance covariance matrix of the sample
moments S . The weighting matrix S_can be approximated by

_ ~ m-1 ~ ~
S, =Sy + > W(r,m)s, +S))
r=1

with Bartlett weights w(r,m)=1-r/(m+1), bandwidth m

and S, = (5, ij), a variance covariance matrix with entries
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§r'ij = Sy, (i+n)j referring to (4). In particular, S, = S, Based
on empirical studies the recommended bandwidth is m = 7.
Smoothing the weighting matrix reduces the variability of
the autocovariances of the sample moments, though the
parameter estimates do not change significantly for data sets
considered in this paper.

Hansen and Singleton (1982) and Ferson and Foerster
(1994) considered the iterative GMM procedure that consists
of using an identity matrix to obtain the initial parameter esti-
mates, and the procedure continues until convergence of the
estimates. Jacquier et al. (1994) found that the estimates con-
verged after only few iterations of the weighting matrix.

Under regularity conditions Hansen (1982) showed
that the matrix V minimizes the limiting variance covariance
matrix in the sense of matrix norm. Therefore, this limiting
matrix appears to be an analogue of the Cramér-Rao bound
arising in maximum likelihood theory. For a discussion of
the issue of the efficiency of GMM estimates in consumpt-
ion and dividend growth Markov chain and lognormal SV
models, see Tauchen (1986) and Andersen et al. (1999).

The standard errors of GMM estimates of 6 are
derived as the vector of square roots of the diagonal elements
of the matrix (1/n)V,.

A by-product of the estimation procedure is a chi-
squared goodness of fit test, (Hansen 1982) based on the
overidentifying restrictions of the model. By construction a
Wald statistic

g, =M(@,)'S,'m@,).

asymptotically has a j distribution with degrees of free-
dom o equal to the dimension of m(0) less the number of
estimated parameters. Therefore, oo =1 -3 and q,, converges
in distribution toy 2, as n— oo,

4. Empirical results

The compounded daily returns of the currency ex-
change rates Euro/USD, Pound/USD, AUD/USD, and Yen/
USD over the period January 1999 to October 2006 are
analyzed. The summary statistics for the mean-corrected
samples are given in Table 1.

The results show common characteristics of financial
returns across the pairs of currencies over the same period of
time and all have excess kurtosis relative to a normal distri-
bution. The kurtosis uses Fisher’s notation where the normal
distribution has a kurtosis equal to zero. Figure 1 shows that
the sample autocorrelations of the Euro/USD return are
scattered around zero. The limits are based on 0.95 percen-
tiles of the normal distribution N(0,1/n). As observed by
Shephard (1996) for data based on JPY/GBP and DMK/
GBP over the period from January 1986 to April 1994, the
correlograms of compounded returns show little activity
compared to their squares. Batten and Ellis (2001) also
presented the detailed statistical analysis for returns of four
currency pairs (DMK/USD, SWF/USD, JPY/USD, and GBP/
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Table 1. Numerical summary of daily returns over Jan 1999-
Oct 2006

Compounded return Size St Dev Kurt
Euro/USD 1953 0.619 0.696
Pound/USD 1953 0.514 0.573
AUD/USD 1953 0.488 1.920
Yen/USD 1953 0.233 2.016

USD) over the same period from January 1985 to December
1998 and Liu’s study (2007) was based on seven pairs of
currencies relatives to the US dollar from 1982 to 1997. These
studies confirmed that the data fail to exhibit significant
autocorrelation at extended lags.

The estimation of parameters is based on the second,
fourth and mixed moments as follows.

mg'o :Gz(1+82)1
my® =3c*(1+65°+35*) and
m2? = [1+282(L+2y°)+8*(1+2y *)].

Table 2 shows the estimated parameters for each pair
of currencies and the results based on the chi-squared good-
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ness-of-fit test. The standard error for each parameter and
the degrees of freedom o of the x> distribution are given in
parentheses. The GMM procedure achieved convergence
with respect to an increasing number of moment restrictions.
The goodness-of-fit test is used to investigate the tail
behaviour of the marginal distribution function of y. The
probability density function (pdf) of y, can be obtained by
inverting its characteristic function, and evaluating the
integral numerically, using a method of integration of oscilla-
tory functions over an infinite interval (Davis and Rabinovitz,
1967). As an alternative to numerical integration, the modi-
fied Fourier Transform (FT) is suggested (Chirtkiatsakul,
2002). For y # 0 the stationary pdf of y, is approximated by

< SINOYT2) 4 4 2% o (jhycos(jhy).

Ty =1

f(y)

where ¢(0) is the characteristic function of y. The choice of
h and N may require some experimentation, which is a
common problem in practice with FT implementations (Seal
1977; Waller et al., 1995).

Figure 2 shows the fitted curves of both the prob-
ability density function of y (solid line) and the normal dis-
tribution (light line) superimposed on the histogram of the
returns. The probability density function of y fits the data
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Figure 1. Sample autocorrelation plots of daily return (left panel) and squared returns (right panel) at lag 1 to 20

of Euro/USD Jan 1999 — Oct 2006

Table 2. Parameter estimates, standard errors and p-values corresponding

to values of Wald statistics

Estimated parameters Wald y*
Exchange rates
Y 1) c p-value  Euro/USD
Euro/USD 0.9692 0.2126  0.5900 10.38 0.32
(0.0047) (0.0003) (0.0025) 9)
Pound/USD  0.7751 0.2158 0.4977 1.06 0.78
(0.1257) (0.0002) (0.0033) (3)
AUD/USD 0.9478 0.2783  0.6392 8.52 0.39
(0.0073) (0.0067) (0.0006) (8)
Yen/USD 0.7862 0.3618 0.5766 9.60 0.29
(0.0509) (0.0003) (0.0100) 8)




N. McNeil et al. / Songklanakarin J. Sci. Technol. 30 (6), 799-804, 2008 803

Euro/USb (
0.16

0.14
0.12 A

0.1
0.08
0.06
0.04
0.02

Tail behaviour

0 —=fl b
-2 0 2

2 25 3 35 4

Figure 2. Histogram, f(y) and normal approximation, with light and solid lines corresponding to pdfs of normal and

y, distributions, respectively

Table 3. Pearson y? goodness-of-fit test with 59 degree of

freedom
Compounded return XZSQ p-value
Euro/USD 75.60 0.108
Pound/USD 79.86 0.110
AUD/USD 66.65 0.231
Yen/USD 86.04 0.012

better than the normal distribution. The magnified tail
behaviour is shown on the right hand panel of the graphs.
After fitting this stochastic volatility model to the rest of the
data, the tail behaviour showed the same pattern.

The x* goodness-of-fit statistic is used to evaluate
how well this model fits the data. The choices of classes for
the test, based on Kendall and Stuart’s (1967) recommenda-
tion, is 3(n - 1)*°, where n is the sample size. The sample is
1953 and the number of classes is approximately 62. Table 3
shows that the stochastic volatility fits to all series except
Yen/USD.

5. Conclusions and Discussion

A discrete time stochastic volatility model is consid-
ered to fit the asset price changes. The volatility underlying
these changes is modeled as a first-order Gaussian auto-
regressive series. This model is fitted to the compounded
daily returns of the foreign exchange rates Euro/USD, Pound/
USD, AUD/USD, and Yen/USD assuming that there is no
correlation between the change in the volatility and the daily
return. The GMM s used to estimate the parameters and
assessing the tail behaviour of the marginal distribution
function of the compounded returns of this model by invert-
ing its probability density function using a numerical inver-
sion of Fourier transform. The fit of the model was evaluated
using Pearson’s chi-squared goodness-of-fit test. The model
shows a reasonable fits to the all series that have quite a small
kurtosis except Yen/USD.

However, in this result the dependence of observa-
tions in the goodness-of-fit test was not taken into account.

The estimation using the GMM is generally not efficient.
Knight et al. (2002) pointed out that this method can miss
important information in the data when there are only a finite
number of moment conditions.
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