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Abstract

A discrete time model for asset price changes is considered. The volatility process underlying these changes is modeled

as a first-order Gaussian autoregressive series. Inversion of the marginal characteristic function of the return process simplifies

the assessment of the tail behaviour of the probability density function of returns. The Generalized Method of Moments

(GMM) is used to calibrate the model and implement an overidentification test. Daily Euro/USD, Pound/USD, AUD/USD,

and Yen/USD exchange rates over the period January 1999 to October 2006 are used to illustrate the methods.
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1. Introduction

Many studies have confirmed the presence of heavy

tails  in  the  distributions  of  daily  returns  of  stock  market

indices and currency exchange rates, linked to statistically

significant  autocorrelations  among  squared  returns.  Taylor

(1994)  presented  the  different  statistical  models  used  to

address these issues. In general, these models can be divided

into two broad groups: (a) models dealing with a conditional

variance  or  so  called  heteroscedastic  variance,  and  (b)

models  with  stochastic  variance,  where  the  variance  is  a

function  of  a  new  noise  term.  Cox  (1981)  classified  these

respective models as data-driven and parameter driven, and

Shephard (1996) gives a more recent review. The stochastic

volatility model generated by an autoregressive time series

with lognormal white noise is widely used (Taylor, 1986),

and has a continuous time limit as the frequency of observa-

tions  increases  from  daily  to  an  infinitesimal  interval.  The

limiting process is the geometric Brownian motion, which is

widely used in the option pricing literature. Andersen (1992,

1994) has studied a more general class of stochastic volatility

models  (called  polynomial  stochastic  volatility  models).

Chysels et al. (1996) surveyed the various approaches of

volatility modeling and the associated parameter identifica-

tion problem. The discrete time model under consideration

is  called  the  Gaussian  autoregressive  stochastic  volatility

(GASV) model arising from discretisation of the Ornstein-

Uhlenbeck (OU) process. Stein and Stein (1991) used this

model  as  a  basis  for  option  pricing,  while  Heston  (1993)

considered a variation incorporating correlation between the

innovations driving the processes of returns and volatility.

However, Heston’s model may be of limited practical use,

because it does not include the special case of constant vola-

tility.

In exchange rate research it is now well known that

daily returns on currency exchange rates are best described

by distributions with fatter tails than the normal distribution.

The study by Boothe and Glassman (1987) confirmed this

fact by examining pairs of currencies GBP/USD, CAD/USD,

DMK/USD and JPY/USD over the period January 1973 to
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August 1984. They found that the daily and weekly exchange

rates  display  kurtosis  far  in  excess  of  that  for  the  normal

distribution.  Using  the  Pearson  goodness-of-fit  test  they

concluded that Student’s distribution and a mixture of two

normal distributions fitted the data better than stable Pareto

and normal distribution models. In describing the daily ex-

change data of four pairs of currencies, Student’s distribution

ranked first most often. This study also indicated that the

parameter  estimates  varied  over  the  time  periods.  These

issues were handled by introducing autoregressive condi-

tional heteroscedasticity (ARCH) models (Engle, 1982). The

paper by Baillie and Bollerslev (1989) gives a survey of pre-

vious analysis of exchange rate data and extends it further by

considering a generalized ARCH (GARCH) parameteriza-

tion. These models can generate fat tailed distributions show-

ing excess kurtosis. On the other hand, Mellino and Turnbull

(1990) found that daily returns simulated based on historical

volatility from daily CAD/USD exchange rates from 1973 to

1984 do not allow for excess kurtosis and correlation among

squared returns at the same time. However, a stochastic vola-

tility model resolved the problem.

Since its introduction in 1999, the Euro has played an

important role in the global currency market (Greene and

Mole, 2003) and there have been several studies based on

specific Euro/USD exchange rates (Corsetti 2004, Heaney

and Pattenden 2005, Nautz and Scheithauer 2005).

The objectives of the present paper are to assess the

unconditional  marginal  distribution  of  the  return  process

based on the GASV model, to estimate the parameters and

fit the model to daily exchange rate data. The Generalized

Method of Moments (GMM) is found to be feasible for esti-

mating the parameters. The model is fitted to four pairs of

currencies namely Euro/USD, Pound/USD, AUD/USD and

Yen/USD  over  the  period  from  January  1999  to  October

2006.

2. Stochastic autoregressive volatility model

We consider the following model
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3. Parameter estimates

The reparametrized version of the stochastic volatility

model (1, 2) involves the three unknown parameters ,  and

  (assuming = 0). The standard deviation, kurtosis and cor-

relation of squared returns at lag 1, ][

2
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tt

yyE  may be used

to derive the estimates for ,  and  through the Method of

Moments (MM). However, the estimate of  can lead to a

nonstationary solution of (2). The problem might be resolved

by using the mixed moment of squares at some other lag, but

the  question  of  which  moment  to  choose  to  estimate  

remains  unanswered.  A  more  natural  way  of  deriving

estimates is the Generalized Method of Moments (GMM).

This approach has been used for lognormal SV models, e.g,

Mellino and Turnbull (1990) and Andersen (1992, 1994).

In the implementation of GMM the mixed moments
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In the applications considered, l = s+2, where s is a

number of mixed moments of squared returns.

The GMM estimate of q minimizes the quadratic form
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Care should be taken to ensure that the matrix S

n

 is

of full rank, although this is a cumbersome task due to the

involvement  of  a  high  number  of  similar  moments.  The

trade-off between singularity of the weighting matrix and a

number of restrictive moment conditions has been thoroughly

studied for the lognormal stochastic volatility model by

Andersen and Sørensen (1996) and by Jacquier et al. (1994).
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Different ways of estimating the weighting matrix

have been proposed, and it is a common practice to use a

nonparametric kernel estimate of the spectral density of the

moment vector (Andersen and Sørensen, 1996).

In the underlying GASV model the method advocated

by Newey and West (1987) has been implemented in order to

provide an alternative way of handling the problem of the

deterioration of the variance covariance matrix of the sample

moments S
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 can be approximated by
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on empirical studies the recommended bandwidth is m = 7.

Smoothing the weighting matrix reduces the variability of

the  autocovariances  of  the  sample  moments,  though  the

parameter estimates do not change significantly for data sets

considered in this paper.

Hansen and Singleton (1982) and Ferson and Foerster

(1994) considered the iterative GMM procedure that consists

of using an identity matrix to obtain the initial parameter esti-

mates, and the procedure continues until convergence of the

estimates. Jacquier et al. (1994) found that the estimates con-

verged after only few iterations of the weighting matrix.

Under regularity conditions Hansen (1982) showed

that the matrix V minimizes the limiting variance covariance

matrix in the sense of matrix norm. Therefore, this limiting

matrix appears to be an analogue of the Cramér-Rao bound

arising in maximum likelihood theory. For a discussion of

the issue of the efficiency of GMM estimates in consumpt-

ion and dividend growth Markov chain and lognormal SV

models, see Tauchen (1986) and Andersen et al. (1999).

The  standard  errors  of  GMM  estimates  of    are

derived as the vector of square roots of the diagonal elements

of the matrix (1/n)V

n

.

A by-product of the estimation procedure is a chi-

squared goodness of fit test, (Hansen 1982) based on the

overidentifying restrictions of the model. By construction a

Wald statistic
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4. Empirical results

The compounded daily returns of the currency ex-

change rates Euro/USD, Pound/USD, AUD/USD, and Yen/

USD  over  the  period  January  1999  to  October  2006  are

analyzed.  The  summary  statistics  for  the  mean-corrected

samples are given in Table 1.

The results show common characteristics of financial

returns across the pairs of currencies over the same period of

time and all have excess kurtosis relative to a normal distri-

bution. The kurtosis uses Fisher’s notation where the normal

distribution has a kurtosis equal to zero. Figure 1 shows that

the  sample  autocorrelations  of  the  Euro/USD  return  are

scattered around zero. The limits are based on 0.95 percen-

tiles of the normal distribution N(0,1/n). As observed by

Shephard (1996) for data based on JPY/GBP and DMK/

GBP over the period from January 1986 to April 1994, the

correlograms  of  compounded  returns  show  little  activity

compared  to  their  squares.  Batten  and  Ellis  (2001)  also

presented the detailed statistical analysis for returns of four

currency pairs (DMK/USD, SWF/USD, JPY/USD, and GBP/
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USD) over the same period from January 1985 to December

1998 and Liu’s study (2007) was based on seven pairs of

currencies relatives to the US dollar from 1982 to 1997. These

studies confirmed that the data fail to exhibit significant

autocorrelation at extended lags.

The estimation of parameters is based on the second,

fourth and mixed moments as follows.
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Table 2 shows the estimated parameters for each pair

of currencies and the results based on the chi-squared good-

ness-of-fit test. The standard error for each parameter and

the degrees of freedom  of the 

2 

distribution are given in

parentheses.  The  GMM  procedure  achieved  convergence

with respect to an increasing number of moment restrictions.

The goodness-of-fit test is used to investigate the tail

behaviour of the marginal distribution function of y

t

. The

probability density function (pdf) of y

t

 can be obtained by

inverting  its  characteristic  function,  and  evaluating  the

integral numerically, using a method of integration of oscilla-

tory functions over an infinite interval (Davis and Rabinovitz,

1967). As an alternative to numerical integration, the modi-

fied  Fourier  Transform  (FT)  is  suggested  (Chirtkiatsakul,

2002). For y  0 the stationary pdf of y

t

 is approximated by
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where () is the characteristic function of y

t

. The choice of

h  and  N  may  require  some  experimentation,  which  is  a

common problem in practice with FT implementations (Seal

1977; Waller et al., 1995).

Figure 2 shows the fitted curves of both the prob-

ability density function of y (solid line) and the normal dis-

tribution (light line) superimposed on the histogram of the

returns. The probability density function of y fits the data

Table 1. Numerical summary of daily returns over Jan 1999-

Oct 2006

Compounded return Size St Dev Kurt

   Euro/USD 1953 0.619 0.696

   Pound/USD 1953 0.514 0.573

   AUD/USD 1953 0.488 1.920

   Yen/USD 1953 0.233 2.016

Table 2. Parameter estimates, standard errors and p-values corresponding

to values of Wald statistics

     Estimated parameters       Wald 

2

Exchange rates

   p-value Euro/USD

  Euro/USD 0.9692 0.2126 0.5900 10.38 0.32

(0.0047) (0.0003) (0.0025) (9)

  Pound/USD 0.7751 0.2158 0.4977 1.06 0.78

(0.1257) (0.0002) (0.0033) (3)

  AUD/USD 0.9478 0.2783 0.6392 8.52 0.39

(0.0073) (0.0067) (0.0006) (8)

  Yen/USD 0.7862 0.3618 0.5766 9.60 0.29

(0.0509) (0.0003) (0.0100) (8)

0 5 10 15 20 25

-0.05

0

0.05

daily return

0 5 10 15 20 25

Figure 1. Sample autocorrelation plots of daily return (left panel) and squared returns (right panel) at lag 1 to 20

of Euro/USD Jan 1999 – Oct 2006
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better  than  the  normal  distribution.  The  magnified  tail

behaviour is shown on the right hand panel of the graphs.

After fitting this stochastic volatility model to the rest of the

data, the tail behaviour showed the same pattern.

The  

2

  goodness-of-fit  statistic  is  used  to  evaluate

how well this model fits the data. The choices of classes for

the test, based on Kendall and Stuart’s (1967) recommenda-

tion, is 3(n - 1)

2/5

, where n is the sample size. The sample is

1953 and the number of classes is approximately 62. Table 3

shows that the stochastic volatility fits to all series except

Yen/USD.

5. Conclusions and Discussion

A discrete time stochastic volatility model is consid-

ered to fit the asset price changes. The volatility underlying

these  changes  is  modeled  as  a  first-order  Gaussian  auto-

regressive  series.  This  model  is  fitted  to  the  compounded

daily returns of the foreign exchange rates Euro/USD, Pound/

USD, AUD/USD, and Yen/USD assuming that there is no

correlation between the change in the volatility and the daily

return.  The  GMM  is  used  to  estimate  the  parameters  and

assessing  the  tail  behaviour  of  the  marginal  distribution

function of the compounded returns of this model by invert-

ing its probability density function using a numerical inver-

sion of Fourier transform. The fit of the model was evaluated

using Pearson’s chi-squared goodness-of-fit test. The model

shows a reasonable fits to the all series that have quite a small

kurtosis except Yen/USD.

However, in this result the dependence of observa-

tions in the goodness-of-fit test was not taken into account.

The estimation using the GMM is generally not efficient.

Knight et al. (2002) pointed out that this method can miss

important information in the data when there are only a finite

number of moment conditions.
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