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Abstract

Power assessing the goodness of fits of three cumulative link models for ordinal response data with interaction term of
explanatory variables is investigated. The three link models are the cumulative logit link models, the cumulative probit link
models, and the cumulative complementary log-log link models. The simulations have been conducted for the models with
three response categories, K=3, and two explanatory variables, namely X ~Ber(0.5) and X ,~N(0,1). Data were simulated

under the sample sizes of 600, 800, 1000, and 1200. Given the set of parameters, of o, =log ( 1 ), o, =log (%),
3

bt 3
B, =log2, B,=1log3, and B,, =0.0-4.5 (increment 0.3) from which it follows that the true model parameters are cor-

responding to the proportions, P;, P,, and P; of the response categories, Y = 1, 2, 3 in the sample data, respectively. The
response’s outcomes Y, J=1,..,n, are then computed through the correctly specified models under each sample size.
Each condition was carried out for 1,000 repeated simulations using the developed macro program.

The results show that the cumulative logit link models generally improve the model fits when the sample sizes and
B3,, are increased; however, results from the power using the score statistic, under the alternative model with indicators, are
probably stable and the power plots remain around the diagonal line. The cumulative probit link models, show that all the
power plots improve the model fits as the power approach 1 quite rapidly for every statistic as the §,, and sample sizes are
large. The last results, from the cumulative complementary log-log link models, show that every power plot is approaching 1
slowly. Therefore, overall the results reveal in general that the cumulative probit link models give the best power of the tests
for every test statistic. The likelihood ratio statistic and the Wald statistic perform better than the score statistic does.
Although, the score statistic gives the minimum power among the three test statistics, it still performs quite stably for every
link function and sample size. Thus, this statistic may not have high power, but it still has significantly high power against
the minimal null hypothesis.
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1. Introduction culty to assume that they are representative of a convenient
population. Experimental data are drawn from studies that

For statistical analyses, generally data are from one of  involve randomization, which have good coverage of the

the three sampling frameworks: historical data, experimental
data, and sample survey data. Historical data are observation
data which involve no randomization and so it is often diffi-
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possibilities of treatments for the restricted protocol popula-
tion. Examples include studies where subjects are adminis-
tered different dosages of drug therapies. In sample survey
studies, subjects are randomly chosen, probably with equal
or unequal probabilities, from a larger study population and
have very good coverage of the larger population. Moreover,
some sampling designs may be a combination of sample
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survey and experimental data processes, which we randomly
select a study population and then randomly assign treat-
ments to the resulting study subjects (Stokes et al., 2000).
Frequently, categorical data are presented in the form of
contingency tables. Data sets with categorical categories,
particularly those in the behavioral and biomedical sciences
as well as in the social sciences, industrial quality control,
human genetics, ecology, marketing, and econometric are
mostly concerned with the analysis of categorical response
measures, regardless of whether any accompanying explana-
tory variables, X’s are also categorical or are continuous.
Categorical response, Y, can be dichotomous, polychoto-
mous, ordinal, nominal, discrete counts, or grouped survival
times. The statistical analyses, which has the task of trying to
understand the data involves looking for patterns in the data.
The data are examined and combined with the models of
interest under a process called fitting a statistical model.
Thus, for attention to the statistical modeling, data concerned
should come from the representative of the larger popula-
tion, either from sample survey or experiments or including a
combination of these two types and randomly generated
works.

In this article, based on simulated data we empirically
study and discuss modeling the ordinal response variable,
primarily through the use of multinomial generalized linear
models, or shortly multinomial GLMs (McFadden, 1974),
under three different link functions and also review some
relevant basic methods. GLMs appeared on the statistical
scene in the path breaking article of Nelder and Wedderburn,
1972; McCullagh and Nelder, 1983; 1989. They generalize
the classical linear models based on the normal distribution
to involve two aspects: a variety of distributions from con-
tinuous to discrete or categorical, exponential family dis-
tribution models, and they also involve transformations of
mean, through the link functions, linking the systematic part
of models to the mean of one of the distributions. GLMs are
now a mature and well known data-analytic methodology.
We give particular interest in using the multinomial GLMs
and applying for ordinal responses, which will be also called
cumulative models. Our aims include investigating the per-
formance of the cumulative models under different link
functions applied to the most popular cumulative logit
models, known as proportional odds models (Walker and
Duncan, 1967; McCullagh, 1980). Statistical analyses for
assessing the model fits are using goodness-of-fit-statistics:
the likelihood ratio statistics, Wald statistic, and the score
statistic under the alternative model with indicators (Lipsitz,
et al., 1996) and evaluating the power of tests among the
three link functions: logit, probit, and complementary log-
log links when the response categories are ordinal count data.
All models contain the main effects and those contain the
interaction effects. Meanwhile, we review some of the most
important basic curves with the shapes for the ordinal
response categories having cumulative link models (Section
2) and that for the simplicity in binary responses with a
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single explanatory variable having the following model
formulas:

The logit model for the binary response:
logit [P(Y=1|x)] = a + Bx. (1)

The appropriate link function is the log odds transformation,
called the logit link,

P(Y =1]x)

The probit model for the binary response:
OP(Y=1|x)] = o +PBx. )

Where, @ is the standard normal cdf and the link function is
called the probit link function, ®'(.), oc and B are model
parameters.

The complementary log-log model for the binary response:
log[-log{1-P(y=1|x)}]= o +Px. 3)
Then, P(y=1|x) = 1 -exp[-exp(a + B X).

This link function is called the complementary log-
log link, log[-log{1-P(y =1 | x )}], since the log-log link
applies to the complement of P(y = 1 | x). It is asymmetric,
and P(y = 1 | x) approaching 0 fairly slowly but approaching
1 quite sharply. On the other hand, the logit and probit links
are symmetric about 0.5.

To summarize the above GLMs basic ideas, the GLMs
differ from the conventional general linear model (of which,
for example, regression model is a special case) in two major
respects. First, the distribution of the response variable can
be explicitly non-normal, i.e. it can be binomial, Poisson,
nominal or ordered multinomial or even product multinomial
etc. Second, the response values are predicted from a linear
combination of explanatory variables, which are also gener-
alized to mixed categorical and continuous or either of them,
and connected to the response variable via a link function.
In the general linear model the response variable values are
expected to follow the normal distribution, and the link func-
tion is a simple identity function. For GLMs the response
variable follows the exponential family distribution models,
and the most often used link functions are logit, probit, com-
plementary-log-log, and log links.

2. The three cumulative link models for ordinal responses
Consider a multinomial response variable, Y with

ordered categorical outcomes, denoted by 1, 2, ..., K, and
let x, denotes a p-dimensional vector of explanatory variables.
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Three models that simultaneously use all cumulative func-
tions for the cumulative logit link model, the cumulative
probit link model, and the cumulative complementary-log-
log link model are shown in the following Sections, 2.1-2.3,
respectively.

2.1 The cumulative logit link model:

logit [P(Y <j|x)]
PY <jlx))
“log Py <jx)
P(Y<] |x)
“lelpy s x)

T+t

log
T et Ty

o +BX, j=1,..,K-1, i=1,...,p. (4)

Where, P(Y < j | x) = m+m,+...... +n;, mAm, +
n.=1, J=1,...., K. K denotes the number of response cat-
egories; p denotes the number of explanatory variables.

This model has the same effect of vector B for each
logit. Each cumulative logit has its own intercept and the
{0 } are increasing in j, since P(Y <j | x) increases in j for
fixed x (Agresti, 2002). Thus, the logit is an increasing func-
tion of this probability and the effect is independent of the
cut point. The Model (4) also satisfies

logit [ P(Y < j|x,)]- logit [ P(Y <j | x)] =B (x, -x,).

The odds of making response < j at X = x, are exp [B'(x,-
x,)] times the odds at X = x,. The log cumulative odds ratio
is proportional to the distance between X, and X,. Similarly
to the simple case in Model (1), the same proportionality
constant applies to each logit and thus, McCullagh (1980)
called a proportional odds Model, (4). In many applications
of the probit and logit models, in particular those involving
decision making, the latent dependent or response variable
may represent the probability that an event occurs or the
preference level a decision maker has for several alternative
outcomes. In probit, the distribution of the underlying vari-
able is assumed to be normal, while in logit, it is assumed to
be based on the logistic curve (Aldrich and Nelson, 1984).
Complementary log-log models represent a third alternative
to logit models and probit analyses. The complementary log-
log models are frequently used when the probability of an
event is very small or very large. Unlike logit and probit the
complementary log-log function is asymmetric and is often
applied to some studies in biological science and survival
analysis.
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2.2 The cumulative probit link model:

®'P(Y<j|x)=a;+BX. (5)

This cumulative link model links the cumulative
probabilities to the linear predictors. These cumulative probit
models provide fits similar to those for cumulative logit
models, and their parameter interpretation is simpler.

Moreover, an underlying extreme value distribution
for Y implies an alternative model of the cumulative com-
plementary log-log model in Section 2.3.

2.3 The cumulative complementary log-log link model:

log [-log {1-P(Y <j|x)}]=a; + B X. (6)

The ordinal model using this cumulative complemen-
tary log-log link is sometimes called a proportional hazards
model (Agresti, 2002), since it results from a generalization
of the proportional hazards model survival data to handle
grouped survival times (Prentice and Gloeckler, 1987).

The cumulative logit models; particularly, those in the
form of the proportional odds models (Walker and Duncan,
1967; McCullagh, 1980) and the continuation-ratio models
for ordinal response (Fienberg, 1980) have been the primary
focus in epidemiological and biomedical applications
(Amstrong and Sloan, 1989; Bercedis and Harrell, 1990;
Lipsitz et al., 1996; Cole et al., 2003) while other forms of
models for the analysis of ordinal outcomes have received
less attention.

Hence, for example, when K=3, and j =1, 2 (for K-1
=2), the Model (4) consists of two simultaneously equations,
under the cumulative link-functions for solving the model
parameters, in the followings:

P(YSJ|X) 7511

log| P(Y>j |x) - logl Tyt T I'=
o, +B'x, for j=1,

RSPl mtm

€Up(y>jx) 1 Tlel g7

o, +p'x, for j=2.

Where, o are the intercept parameters,

B =(Bi,Bys-B) is a vector of coefficients cor-
responding to x’s, and P(Y < J|x )= m+m, +...+m;, and
P(Y > jIx)=m, +7n,*..+tm, J=1,., K1

The Model (4) for any K > 3 is often called the prop-
ortional odds model (McCullagh, 1980). It is based on the
assumption that the effects of the explanatory variables X,

vy Xp are the same for all categories, on the logarithmic
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scale. It probably also represents the most widely used ordi-
nal categorical model at the present time (Pongsapukdee and
Sukgumphaphan, 2007).

Similarly to the above Model (4), we apply the use of
logit, probit and complementary log-log links for the case of
two explanatory variables, we then have Model (7) to (12).

For evaluating the likelihood ratio statistic or model
chi-square or change of deviances statistic, the Model (7) to
(12) are fitted. Each cumulative link model has its own
intercept. The {OL;} are increasing in j, since P(Y < j | )
increases in j for fixed x, and the link function is an increas-
ing function of this probability. Each cumulative link
function uses all K response categories (Lawal, 2003).

The three cumulative link models (main effects or
minimal models):

Ty + et T,
log| —————
Tige T Tk

=0+ BX; +BaXys j=1,2, K=3, i=12..n, 7

o' [+t T )]

=0+ B+ By J=1.2, K =3, i=1.2.0. . ®
log [-log {1-(m, +..+ 7, )}]
=a +BX; + By, j=12, K=3, i=12,.n_ .. Q)

The three cumulative links with two-factor- inter-
action models (Interaction effects or alternative models):

( T+ ok Ty ]
log| ————
Tigar T o H ik
=0 +BiX; + BaXoi + BroXiXs j=12, K=3, i=12,.n.
....(10)
@’ [(ni!]+...+ ni‘(K_]))]
=otj + ByXg + BoXoi + BraXiiXei» j=1,2, K=3, i=1,2,..n.
...(1D

og [-log {1-(m +..+ nig(K_]))}]
=0+ By + BoXi + BrXiXy, j=12, K=3,i=1,2,.,n.

For evaluating the score tests, the following alternative
models, which are similar to Model (10) to (12) except that
for adding the indicator term, are fitted and compared with
Model (7) to (9), respectively.

D1
Ly =0y + B Xy +BoXg + BoXiXy +z (N

r=1

k=1,...,K-1.i=1,...,n,and r=1, ..., D-1.

Where, L, stands for each of the three choices of link func-
tions.
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3. Simulation and Statistical Analyses

From the models in Section 2, the simulations have
been conducted for the three response categories or K=3,
and for two explanatory variables. Data were simulated
under the sample sizes of 600, 800, 1000, and 1200 units.
Due to the samples needed to achieve the power 0.90-0.95,
when using the Bernoulli (0.5) explanatory variable, the
units would be around 1000-2000 (Shieh, 2001). When either
the association parameter ( 3,, ) increases or the sample size
is small, the sparseness in the contingency tables may occur
(Sukgumphaphan and Pongsapukdee, 2008). Thus, we choose
the moderate to large sample sizes. The explanatory variables
are X ~Bernoulli(0.5) and X,~Normal(0,1). Given the set
of parameters {a,,a,,pB,,B,} of a, =log (T'), a,=

h T M3
log (%}, which are the different intercepts when X’s
3

values are zeroes, B, =log2, B, =log3, and B, = 0.00-
4.5(increment 0.3) are fixed, from which it follows that the
true model parameters are corresponding to the proportions,
P,, P,, and P, of the response categories, Y =1, 2,3 in the
sample data, respectively. The response’s outcomes Y
j=L,..,n, are then computed through the correctly speci-
fied models under each sample size. Each condition is
carried out for 1,000 repeated simulations using the devel-
oped macro program run with the Minitab Release 11
(command syntax) and 15 (power plots) on Pentiums I'V.

Statistical analyses for assessing goodness-of-fits of
the models using several statistics are performed for each
combination of the model conditions. The likelihood ratio
statistics, Wald statistic, and the score statistic from the
partition of the deciles (D=10) data are processed and evalu-
ated through the models in Section 2. Under the deciles data
we have compared the null main effect models and the alter-
native interaction effect models for every condition.

All the statistics are computed using the following
formulae:

G,, = -2 [In(LO-In(LM)] (The likelihood ratio or model chi-
square statistic: Change of Deviances).

W =B -B,) [cov(B)] "B B, (The Wald statistic).

f} denotes the estimated vector of [} , and B, is the null hy-
pothesized parameters.

The indicator for the (D-1) grouped data follows
Lipsitz et al. (1996). That is

1
I =
ir {0

K
Where, [, = %Sk pik , S¢=k, p, = the probability of

if 1, is in region r,
if otherwise.
i=1l,...,n,and r=1, ..., D-1.

K
response k, 2P =1,i=1,..,n
kK ik
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The alternative model:

D-1

Lic =0t + BiXyi + BoXy; + BraXiXy +Z Ly, k=1, .., K-1

r=1

The null model:
Lic = oy + BXyi +BoXy +BoX;iXis

which is corresponding to the above alternative model
parameters,

Yipn==Yoa1 =Yi2 = =Vpo2 =Vika ==Yk
=0, D=10, K=3.

The power of the test is the percentage correspond-
ing to the rejection of H  when H, is false in 1,000 simula-
tions. Whereas, n is the sample size, LO is the likelihood
function for the model containing only the main effects. LM
is the likelihood function for the model containing the inter-
action effects. L, is for each of the three choices of link
functions relating the elements of the probabilities of Y to
the explanatory variables.

4. Results

In this section the results of the comparisons in terms
of power plots between the power of the tests and the para-

power plot
logit link function
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meter B, are evaluated for each test statistic, likelihood ratio
statistic, Wald statistic, and the score statistic from the alter-
native model using indicators and the partition of the deciles
(D=10) data. Four sample sizes that are simulated and
compared for each of the three cumulative link models for
ordered response categories have been performed. Firstly,
the results from the first link function, the cumulative logit
link models show that the power 1, using the likelihood ratio
statistic, the power 2, using the Wald statistic, both of them
perform well and improve the models fitted when the sample
sizes and f3,, are increased; however, results from the power
3, using the score statistic under the alternative model with
indicators, are probably more stable and the power plots
remain around in the diagonal line (Figure 1). Secondly, the
results from the cumulative probit link models, show that all
the power plots are probably giving very much improved the
model fits as the power plots approach 1 quite rapidly for
the power 1, power 2, and the power 3, the last one, respec-
tively, as the B , and sample sizes are large. In these plots it
is found that the power 3 in Figure 2 can give more power
than that of power 3 in Figure 1. The final results, from the
cumulative complementary log-log link models show that all
power plots are approaching 1 slowly (Figure 3). Therefore,
overall, the power 1 and 2 perform better than the power 3
does. In addition, the power 3 does vary less dependently
upon the three link functions and all sample sizes (Figure 1-
3).
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Figure 1. Power Plots of Cumulative Logit Models Classified by Statistics in each Sample size of 600, 800, 1000, and 1200
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Figure 2. Power Plots of Cumulative Probit Models Classified by Statistics in each Sample size of 600, 800, 1000, and 1200
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Figure 3. Power Plots of Cumulative Complementary-log-log Models Classified by Statistics in each Sample size of 600, 800, 1000,
and 1200
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5. Conclusion and Discussion

The results are concluded for the use of the three link
functions applied to the cumulative GLMs for the ordinal
response variable. All the power plots increase as the 3, and
sample sizes are increased. The results also reveal in general,
that the cumulative probit link models give the best power of
the tests for every test statistic. The likelihood ratio statistic
and the Wald statistic perform better than the score statistic
does. For results when the samples are large, the score test of
the indicator variable do still confirm those results in Lipsitz
etal. (1996), where samples are much smaller. This probably
dues to the same strategy grouping effects. However, in stead
of partitioning the subjects in to 10 groups, as we and the
Lipsitz et al. (1996) did, we find in Xie et al. (2008) that
they proposed new method of partitioning the subjects using
differing number of groups by clustering in the continuous
covariates’ space and the power of the tests were improved.
Although, all power plots show that the power 3, the score
statistic, gives the minimum power among the three test
statistics. It still performs quite stably for every link function
and sample size. Thus, this statistic may not have high power,
but it is probably able to be used safely and has statistically
significant results against the minimal null hypothesis.
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