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Abstract

Power assessing the goodness of fits of three cumulative link models for ordinal response data with interaction term of

explanatory variables is investigated. The three link models are the cumulative logit link models, the cumulative probit link

models, and the cumulative complementary log-log link models. The simulations have been conducted for the models with

three response categories, K=3, and two explanatory variables, namely X

1

~Ber(0.5) and X

2

~N(0,1). Data were simulated

under the sample sizes of 600, 800, 1000, and 1200. Given the set of parameters, of 
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0.0 4.5   (increment 0.3) from which it follows that the true model parameters are cor--

responding to the proportions, 

1

,p

2

,p  and 

3

p  of the response categories, Y = 1, 2, 3 in the sample data, respectively. TheThe

response’s outcomes ,  j = 1,..., n,

j

y  are then computed through the correctly specified models under each sample size.

Each condition was carried out for 1,000 repeated simulations using the developed macro program.

The results show that the cumulative logit link models generally improve the model fits when the sample sizes and



12

 are increased; however, results from the power using the score statistic, under the alternative model with indicators, are

probably stable and the power plots remain around the diagonal line. The cumulative probit link models, show that all the

power plots improve the model fits as the power approach 1 quite rapidly for every statistic as the 

12

 and sample sizes are

large. The last results, from the cumulative complementary log-log link models, show that every power plot is approaching 1

slowly. Therefore, overall the results reveal in general that the cumulative probit link models give the best power of the tests

for every test statistic. The likelihood ratio statistic and the Wald statistic perform better than the score statistic does.

Although, the score statistic gives the minimum power among the three test statistics, it still performs quite stably for every

link function and sample size. Thus, this statistic may not have high power, but it still has significantly high power against

the minimal null hypothesis.
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1. Introduction

For statistical analyses, generally data are from one of

the three sampling frameworks: historical data, experimental

data, and sample survey data. Historical data are observation

data which involve no randomization and so it is often diffi-

culty to assume that they are representative of a convenient

population. Experimental data are drawn from studies that

involve  randomization,  which  have  good  coverage  of  the

possibilities of treatments for the restricted protocol popula-

tion. Examples include studies where subjects are adminis-

tered different dosages of drug therapies. In sample survey

studies, subjects are randomly chosen, probably with equal

or unequal probabilities, from a larger study population and

have very good coverage of the larger population. Moreover,

some  sampling  designs  may  be  a  combination  of  sample
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survey and experimental data processes, which we randomly

select  a  study  population  and  then  randomly  assign  treat-

ments to the resulting study subjects (Stokes et al., 2000).

Frequently,  categorical  data  are  presented  in  the  form  of

contingency  tables.  Data  sets  with  categorical  categories,

particularly those in the behavioral and biomedical sciences

as well as in the social sciences, industrial quality control,

human genetics, ecology, marketing, and econometric are

mostly concerned with the analysis of categorical response

measures, regardless of whether any accompanying explana-

tory variables, X’s are also categorical or are continuous.

Categorical response, Y, can be dichotomous, polychoto-

mous, ordinal, nominal, discrete counts, or grouped survival

times. The statistical analyses, which has the task of trying to

understand the data involves looking for patterns in the data.

The data are examined and combined with the models of

interest  under  a  process  called  fitting  a  statistical  model.

Thus, for attention to the statistical modeling, data concerned

should come from the representative of the larger popula-

tion, either from sample survey or experiments or including a

combination  of  these  two  types  and  randomly  generated

works.

In this article, based on simulated data we empirically

study and discuss modeling the ordinal response variable,

primarily through the use of multinomial generalized linear

models, or shortly multinomial GLMs (McFadden, 1974),

under three different link functions and also review some

relevant basic methods. GLMs appeared on the statistical

scene in the path breaking article of Nelder and Wedderburn,

1972; McCullagh and Nelder, 1983; 1989. They generalize

the classical linear models based on the normal distribution

to involve two aspects: a variety of distributions from con-

tinuous to discrete or categorical, exponential family dis-

tribution models, and they also involve transformations of

mean, through the link functions, linking the systematic part

of models to the mean of one of the distributions. GLMs are

now a mature and well known data-analytic methodology.

We give particular interest in using the multinomial GLMs

and applying for ordinal responses, which will be also called

cumulative models. Our aims include investigating the per-

formance  of  the  cumulative  models  under  different  link

functions  applied  to  the  most  popular  cumulative  logit

models, known as proportional odds models (Walker and

Duncan,  1967;  McCullagh,  1980).  Statistical  analyses  for

assessing the model fits are using goodness-of-fit-statistics:

the likelihood ratio statistics, Wald statistic, and the score

statistic under the alternative model with indicators (Lipsitz,

et al., 1996) and evaluating the power of tests among the

three link functions: logit, probit, and complementary log-

log links when the response categories are ordinal count data.

All models contain the main effects and those contain the

interaction effects. Meanwhile, we review some of the most

important  basic  curves  with  the  shapes  for  the  ordinal

response categories having cumulative link models (Section

2)  and  that  for  the  simplicity  in  binary  responses  with  a

single  explanatory  variable  having  the  following  model

formulas:

The logit model for the binary response:

logit [P(Y = 1 | x)]  = x  . (1)

The appropriate link function is the log odds transformation,

called the logit link,

log 

( 1| x)

1 ( 1| x)

P Y

P Y



 

=  x  .

The probit model for the binary response:



-1

[P(y = 1| x)]   =  x  . (2)

Where,  is the standard normal cdf and the link function is

called the probit link function, 

-1

(.), 


and   are model

parameters.

The complementary log-log model for the binary response:

log[-log{1- P(y =1 | x )}] =  x  . (3)

Then, P(y = 1 | x)  =  1 - exp[-exp( x  ).

This link function is called the complementary log-

log link, log[-log{1-P(y =1 | x )}], since the log-log link

applies to the complement of P(y = 1 | x). It is asymmetric,

and P(y = 1 | x) approaching 0 fairly slowly but approaching

1 quite sharply. On the other hand, the logit and probit links

are symmetric about 0.5.

To summarize the above GLMs basic ideas, the GLMs

differ from the conventional general linear model (of which,

for example, regression model is a special case) in two major

respects. First, the distribution of the response variable can

be explicitly non-normal, i.e. it can be binomial, Poisson,

nominal or ordered multinomial or even product multinomial

etc. Second, the response values are predicted from a linear

combination of explanatory variables, which are also gener-

alized to mixed categorical and continuous or either of them,

and connected to the response variable via a link function.

In the general linear model the response variable values are

expected to follow the normal distribution, and the link func-

tion is a simple identity function. For GLMs the response

variable follows the exponential family distribution models,

and the most often used link functions are logit, probit, com-

plementary-log-log, and log links.

2. The three cumulative link models for ordinal responses

Consider a multinomial response variable, Y with

ordered categorical outcomes, denoted by 1, 2, …, K, and

let x

i

 denotes a p-dimensional vector of explanatory variables.
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Three models that simultaneously use all cumulative func-

tions for the cumulative logit link model, the cumulative

probit link model, and the cumulative complementary-log-

log link model are shown in the following Sections, 2.1-2.3,

respectively.

2.1  The cumulative logit link model:

logit [
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Where, P( jY   | x ) = 

1

 +

2

 +……+
j

 , 

1

 +

2

 +…… +

K

 = 1, j = 1,…., K. K denotes the number of response cat-

egories; p denotes the number of explanatory variables.

This model has the same effect of vector  for each

logit. Each cumulative logit has its own intercept and the

{
j


} are increasing in j, since P(Y < j | x) increases in j for

fixed x (Agresti, 2002). Thus, the logit is an increasing func-

tion of this probability and the effect is independent of the

cut point. The Model (4) also satisfies

logit [ P(Y <  j | x

1

) ] - logit [ P(Y < j | x

2

) ] = (x

1

 - x

2

).

The odds of making response 


 j at X = x

1

 are exp [(x

1

-

x

2

)] times the odds at X = x

2

. The log cumulative odds ratio

is proportional to the distance between X

1

 and X

2

. Similarly

to the simple case in Model (1), the same proportionality

constant applies to each logit and thus, McCullagh (1980)

called a proportional odds Model, (4). In many applications

of the probit and logit models, in particular those involving

decision making, the latent dependent or response variable

may  represent  the  probability  that  an  event  occurs  or  the

preference level a decision maker has for several alternative

outcomes. In probit, the distribution of the underlying vari-

able is assumed to be normal, while in logit, it is assumed to

be based on the logistic curve (Aldrich and Nelson, 1984).

Complementary log-log models represent a third alternative

to logit models and probit analyses. The complementary log-

log models are frequently used when the probability of an

event is very small or very large. Unlike logit and probit the

complementary log-log function is asymmetric and is often

applied to some studies in biological science and survival

analysis.

2.2  The cumulative probit link model:

_1



-1

[P (Y < j |
x

)] = 

'

j

  x . (5)

This  cumulative  link  model  links  the  cumulative

probabilities to the linear predictors. These cumulative probit

models provide fits similar to those for cumulative logit

models, and their parameter interpretation is simpler.

Moreover, an underlying extreme value distribution

for Y implies an alternative model of the cumulative com-

plementary log-log model in Section 2.3.

2.3  The cumulative complementary log-log link model:

log [-log {1- P(Y < j |
x

)}] = 

'

j

  x . (6)

The ordinal model using this cumulative complemen-

tary log-log link is sometimes called a proportional hazards

model (Agresti, 2002), since it results from a generalization

of the proportional hazards model survival data to handle

grouped survival times (Prentice and Gloeckler, 1987).

The cumulative logit models; particularly, those in the

form of the proportional odds models (Walker and Duncan,

1967; McCullagh, 1980) and the continuation-ratio models

for ordinal response (Fienberg, 1980) have been the primary

focus  in  epidemiological  and  biomedical  applications

(Amstrong  and  Sloan,  1989;  Bercedis  and  Harrell,  1990;

Lipsitz et al., 1996; Cole et al., 2003) while other forms of

models for the analysis of ordinal outcomes have received

less attention.

Hence, for example, when K=3, and j = 1, 2 (for K-1

= 2), the Model (4) consists of two simultaneously equations,

under the cumulative link-functions for solving the model

parameters, in the followings:
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Where, 

j

 are the intercept parameters,

  = (

1 2 p

, ,..., ) '    is a vector of coefficients cor--

responding to x’s, and P(Y j | x ) = 
1 2 j

+  +…+    , and

P( Y j | x ) = 

j+1 

+ 

j+2 

++ 

K

, j =1, ..., K-1.

The Model (4) for any K 3 is often called the prop-

ortional odds model (McCullagh, 1980). It is based on the

assumption that the effects of the explanatory variables X

1

,

..., X

p

  are the same for all categories, on the logarithmic
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scale. It probably also represents the most widely used ordi-

nal categorical model at the present time (Pongsapukdee and

Sukgumphaphan, 2007).

Similarly to the above Model (4), we apply the use of

logit, probit and complementary log-log links for the case of

two explanatory variables, we then have Model (7) to (12).

For evaluating the likelihood ratio statistic or model

chi-square or change of deviances statistic, the Model (7) to

(12)  are  fitted.  Each  cumulative  link  model  has  its  own

intercept. The {

j

 } are increasing in j, since P(Y j | x)

increases in j for fixed x, and the link function is an increas-

ing  function  of  this  probability.  Each  cumulative  link

function uses all K response categories (Lawal, 2003).

The three cumulative link models (main effects or

minimal models):

 log




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. .….  (7)



-1
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j i i

x x i n        . .….  (8)

log [-log {1-(

i,1
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j i i

x x i n       

. .….  (9)

The three cumulative links with two-factor- inter-

action models (Interaction effects or alternative models):
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For  evaluating  the  score  tests,  the  following  alternative

models, which are similar to Model (10) to (12) except that

for adding the indicator term, are fitted and compared with

Model (7) to (9), respectively.

1

1 2 2 2 12 1 2

1

D

ik k i i i i ir

r

L x x x x I    




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 ,

k=1, …, K-1. i =1, …, n, and  r = 1, …, D-1.

Where, L

ik 

stands for each of the three choices of link func-

tions.

3. Simulation and Statistical Analyses

From the models in Section 2, the simulations have

been conducted for the three response categories or K=3,

and  for  two  explanatory  variables.  Data  were  simulated

under the sample sizes of 600, 800, 1000, and 1200 units.

Due to the samples needed to achieve the power 0.90-0.95,

when using the Bernoulli (0.5) explanatory variable, the

units would be around 1000-2000 (Shieh, 2001). When either

the association parameter (

12

 ) increases or the sample size

is small, the sparseness in the contingency tables may occur

(Sukgumphaphan and Pongsapukdee, 2008). Thus, we choose

the moderate to large sample sizes. The explanatory variables

are X

1

~Bernoulli(0.5) and X

2

~Normal(0,1). Given the set

of parameters }β,β,α,α{

2121

 of 

1

1

2 3

log  ( ),  

p

p p

 



 

2

 =

1 2
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 log  ( ),

p p

p





  which are the different intercepts when X’ss

values are zeroes, ,2log

1


 ,3log

2


 and 

12

 = 0.00-

4.5(increment 0.3) are fixed,  from which it follows that the

true model parameters are corresponding to the proportions,

1

,p

2

,p  and 

3

p  of the response categories,  Y = 1, 2, 3 in the

sample data, respectively. The response’s outcomes y

j

,

,  j = 1,..., n,

j

y  are then computed through the correctly speci-

fied  models  under  each  sample  size.  Each  condition  is

carried out for 1,000 repeated simulations using the devel-

oped  macro  program  run  with  the  Minitab  Release  11

(command syntax) and 15 (power plots) on Pentiums IV.

Statistical analyses for assessing goodness-of-fits of

the models using several statistics are performed for each

combination of the model conditions. The likelihood ratio

statistics,  Wald  statistic,  and  the  score  statistic  from  the

partition of the deciles (D=10) data are processed and evalu-

ated through the models in Section 2. Under the deciles data

we have compared the null main effect models and the alter-

native interaction effect models for every condition.

All the statistics are computed using the following

formulae:

G

M

 = -2 [ln(LO-ln(LM)] (The likelihood ratio or model chi-

square statistic: Change of Deviances).

W = )( ][)(

1

00

βββββ 







ˆ

)

ˆ

cov(

ˆ

           (The Wald statistic).

β

ˆ
denotes the estimated vector of β , and 

0

β is the null hy-

pothesized parameters.

The  indicator  for  the  (D-1)  grouped  data  follows

Lipsitz et al. (1996). That is

I

ir

 =    

ˆ1    ,

0 .

i

if is in region r

if otherwise








i =1, …, n, and  r = 1, …, D-1.

Where, ˆ

i

 = 

K

k

k
ik

s p


, 

k

s = k, 

ik

p = the probability of

response k, 

K

k
ik

p
 =1,  i =1, …, n.
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The alternative model:

1

1 2 2 2 12 1 2

1

D

ik k i i i i ir

r

L x x x x I    





    



,  k=1, …, K-1

The null model:

ik

L  =  

k

 + 

1 2 2 2i i

x x   +

12 1 2i i

x x ,

which  is  corresponding  to  the  above  alternative  model

parameters,

1,1 1,1 1,2 1,2 1, 1 1, 1

... ... ... 0

D D K D K

     

    

        

= 0, D=10, K=3.

The power of the test is the percentage correspond-

ing to the rejection of H

0

 when H

0

 is false in 1,000 simula-

tions. Whereas, n is the sample size, LO is the likelihood

function for the model containing only the main effects. LM

is the likelihood function for the model containing the inter-

action  effects.  L

ik  

is  for  each  of  the  three  choices  of  link

functions relating the elements of the probabilities of Y to

the explanatory variables.

4. Results

In this section the results of the comparisons in terms

of power plots between the power of the tests and the para-

meter 

12

 are evaluated for each test statistic, likelihood ratio

statistic, Wald statistic, and the score statistic from the alter-

native model using indicators and the partition of the deciles

(D=10)  data.  Four  sample  sizes  that  are  simulated  and

compared for each of the three cumulative link models for

ordered response categories have been performed. Firstly,

the results from the first link function, the cumulative logit

link models show that the power 1, using the likelihood ratio

statistic, the power 2, using the Wald statistic, both of them

perform well and improve the models fitted when the sample

sizes and 

12

 are increased; however, results from the power

3, using the score statistic under the alternative model with

indicators,  are  probably  more  stable  and  the  power  plots

remain around in the diagonal line (Figure 1). Secondly, the

results from the cumulative probit link models, show that all

the power plots are probably giving very much improved the

model fits as the power plots approach 1 quite rapidly for

the power 1, power 2, and the power 3, the last one, respec-

tively, as the 

12

 and sample sizes are large. In these plots it

is found that the power 3 in Figure 2 can give more power

than that of power 3 in Figure 1. The final results, from the

cumulative complementary log-log link models show that all

power plots are approaching 1 slowly (Figure 3). Therefore,

overall, the power 1 and 2 perform better than the power 3

does. In addition, the power 3 does vary less dependently

upon the three link functions and all sample sizes (Figure 1-

3).

Figure 1.  Power Plots of Cumulative Logit Models Classified by Statistics in each Sample size of 600, 800, 1000, and 1200
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Figure 2.  Power Plots of Cumulative Probit Models Classified by Statistics in each Sample size of 600, 800, 1000, and 1200

Figure 3.  Power Plots of Cumulative Complementary-log-log Models Classified by Statistics in each Sample size of 600, 800, 1000,

and 1200
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5.  Conclusion and Discussion

The results are concluded for the use of the three link

functions applied to the cumulative GLMs for the ordinal

response variable. All the power plots increase as the 

12

 and

sample sizes are increased. The results also reveal in general,

that the cumulative probit link models give the best power of

the tests for every test statistic. The likelihood ratio statistic

and the Wald statistic perform better than the score statistic

does. For results when the samples are large, the score test of

the indicator variable do still confirm those results in Lipsitz

et al. (1996), where samples are much smaller. This probably

dues to the same strategy grouping effects. However, in stead

of partitioning the subjects in to 10 groups, as we and the

Lipsitz et al. (1996) did, we find in Xie et al. (2008) that

they proposed new method of partitioning the subjects using

differing number of groups by clustering in the continuous

covariates’ space and the power of the tests were improved.

Although, all power plots show that the power 3, the score

statistic,  gives  the  minimum  power  among  the  three  test

statistics. It still performs quite stably for every link function

and sample size. Thus, this statistic may not have high power,

but it is probably able to be used safely and has statistically

significant results against the minimal null hypothesis.
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