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Confidence intervals using contrasts for regression model
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Abstract

A graph of confidence intervals can be used to report results from a regression model with explanatory variables as

factors. In this paper we describe a method for computing and displaying confidence intervals using weighted sum contrasts

to compare population means in unbalanced designs. We extend this method to models with covariates and logistic regress-

ion models.
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1. Introduction

One of the most widely used graphs in statistical data

analysis shows confidence intervals for population means of

two or more groups. Conventional plots provided by statisti-

cal packages show separate confidence intervals containing

the  corresponding  population  mean  for  each  group  with

specified  probability,  usually  95%.  These  intervals  are

referred to as “between-subject” confidence intervals (see,

for example, Masson and Loftus, 2003). If the objective is to

compare the means - in which case the null hypothesis is that

the population means are all the same - this conventional

plot  can  be  misleading.  When  comparing  two  means,  for

example, individual 95% confidence intervals can overlap

even though the difference is statistically significant at the

5% level. In this case it is more appropriate to graph a confi-

dence interval for the difference between the means, possibly

by treating one of the groups as a reference and plotting a

confidence interval for the difference centred at the other

mean,  giving  a  “between-treatment”  confidence  interval.

However, when comparing more than two groups, this method

gives different graphs depending on which group is selected

as the reference, and gives wider confidence intervals when

the reference group has smaller sample size.

In this paper we suggest a way of constructing confi-

dence intervals for comparing means that does not involve

selecting a reference group and thus gives an informative

confidence interval for comparing each mean with the overall

mean.  The  method  simply  involves  the  application  of

appropriate contrasts in a regression model, and extends to

generalised linear models including other factors.

2. Method

2.1  Contrast matrices

The  method  involves  the  choice  of  a  particular

contrast matrix from those described by Venables and Ripley

(2002) as follows. Suppose that f is a factor with k classes

used as an explanatory variable in a linear regression model

being fitted to n observations. The equations expressing k-1

of the k contrasts in terms of the individual class means take

the form a* = D

1

a , where a is the column vector containing

the k class means. Solving these equations gives a = C

1

a*
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where C

1

 is the inverse of the matrix D

1

. We omit the first

column of C

1

 to obtain the desired contrast matrix C, which

is then specified when fitting the regression model.

Let 

j

y

j

 denote the mean and n

j

 the sample size for

class j, so that the overall sample mean is 
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 where r

j

 = n

j

/n is the proportion of cases in class

j. Then the equations we use are as follows.
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The matrix D

1

 comprises equation (1) and any k-1 of

the set (2). The matrix C then takes the form 
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 where I

is the (k-1) × (k-1) identity matrix and r* is the row vector

having length k-1 with elements -r

1

/ r

k

, -r
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. The

standard errors that result when a regression model is fitted

using C as the contrast matrix are used to obtain confidence

intervals for the means used in the contrasts. Finally, we

obtain  the  confidence  interval  for  the  omitted  mean  by

repeating the procedure with this mean included and another

omitted.

When the classes are all of the same size, the contrasts

resulting from the method described above are known as

deviation contrasts (see, for example, Wendorf, 2004) or sum

contrasts (Venables and Ripley, 2002) and are available using

standard software including SPSS and R. However, when the

classes are not all of the same size these standard contrasts

do not give valid standard deviations for comparing the class

means with the overall mean. For clarity we call these general

contrasts weighted sum contrasts to distinguish them from

the unweighted sum contrasts that are valid only for balanced

designs.

3. Simple illustrations

To illustrate the various confidence intervals, consider

some data from a study comparing blood lead levels among

children attending primary schools along the Pattani River in

Southern Thailand (Geater et al., 2000). Figure 1 shows 95%

confidence intervals for mean blood lead level by gender for

27 boys and 19 girls at Thamthalu Primary School, located

in an area where the environment had been contaminated by

smelting from tin mines. For these data (listed in the Appen-

dix) the linear regression model gives the p-value 0.030 for

testing the null hypothesis that the population mean is the

same for each sex. The bottom right-hand panel shows in-

dividual (“within-treatment”) confidence intervals. These

confidence intervals are useful for showing that both the boys

and the girls had average blood lead levels greater than 10

micrograms per decilitre, the safety threshold recommended

by WHO, but given that the confidence intervals overlap, they

do not enable the viewer to easily conclude that the means

are statistically significantly different. The top left-hand panel

shows a 95% confidence interval for the difference between

the means, based on the standard error for this difference

that results when the linear model is fitted using the standard

treatment contrast, that is, when the model is fitted with an

intercept and an indicator variable taking values 1 for girls

and  0  for  boys.  The  fact  that  this  (“between-treatment”)

confidence interval is entirely below the line corresponding

to the mean for the boys indicates that the means are statisti-

cally different at the 5% significance level.

The graphs in the top right and bottom left panels of

Figure  1  show  the  confidence  intervals  based  on  the

unweighted and weighted sum contrasts, respectively. The

confidence intervals for the unweighted sum contrasts are

necessarily of equal width because they take no account of

the difference in the sample sizes, and thus give the confus-

ing  impression  that  the  mean  blood  level  for  the  boys  is

statistically no different from the overall mean whereas that

for the girls is below the overall mean. In contrast, the con-

fidence intervals for the weighted sum contrasts correctly

show that the means are evidently different.

Figure 2  shows  individual  and  comparative  95%

confidence intervals for the blood lead levels of the same 46

children by four age groups.

Again the individual 95% confidence intervals in the

right-hand panel enable the viewer to compare the mean for

each age group with a standard value, and the confidence

Figure 1. Various  confidence  intervals  for  blood  lead  levels  by

gender
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intervals for the treatment contrasts shown in the left panel

are appropriate when a natural reference group exists, but

the weighted sum contrasts in the middle panel may still be

the most appropriate way of graphing confidence intervals.

Note that the confidence intervals based on the weighted sum

contrasts are all smaller than the corresponding individual

confidence intervals. It can be shown that this shrinkage

factor for class j is
j

r1 .

4. Adjusting for other factors

When the model contains more than one explanatory

factor its interpretation becomes more complex due to the

possibility of confounding when these factors are correlated,

and  it  is  thus  instructive  to  show  appropriate  confidence

intervals in a graph. For example, the graph can show aligned

confidence intervals for each factor, both before and after

adjusting for the other factors. The unadjusted plots show

how the sample means differ between the various classes for

each factor, whereas the adjusted plots show the correspond-

ing comparisons in the conceptual population, and compar-

ing the two sets of plots shows the extent of distortions due

to confounding.

Common sense dictates that the overall mean for a

factor, obtained as the average of class means weighted by

their sample sizes, must be the same before and after adjust-

ing for other factors. For linear models this can be achieved

simply by adding an appropriate constant to the coefficients

obtained from the model.

Figure 3 compares 95% confidence intervals of blood

lead levels by school and by age-gender class (comprising

seven age groups in this case) for all five schools considered

in the study by Geater et al. (2000). The unadjusted means

appear in the left panels whereas those adjusted for the other

factor appear on the right. For comparing the mean blood

levels  with  respect  to  school,  it  is  clear  that  adjusting  for

age-gender class makes very little difference to the result.

However, when comparing the mean blood lead levels for

different age-gender classes, adjusting for school makes a

substantial difference to the pattern, where it can be seen that

the confidence interval for 4-6 year-old boys increased by

nearly 4 micrograms/decilitre when an adjustment was made

for the school.  In this case the confounding was due to the

fact that the children attending Tachi School were older than

those attending the other schools.

5. Logistic model

For a binary outcome, a graph of confidence intervals

of population proportions is appropriate for comparing the

difference of two or more groups. The proportions of adverse

outcomes  and  their  corresponding  standard  errors  may  be

estimated by fitting a logistic regression model, and again it

is appropriate to use weighted sum contrasts to obtain the

standard  errors  underlying  the  confidence  intervals  for

comparing these proportions.

If there are two categorical determinants, and p

ij

denotes the probability of the adverse outcome in categories i

and j of these determinants, respectively, the simplest such

model takes the additive form ln(p

ij

/(1-p

ij

) = c+a

i

+b

j

 and the

prevalence itself is thus expressed as p

ij

 =1/(1+exp(-c-a

i

-b

j

).

Logistic regression provides a straightforward method

for adjusting a prevalence that varies with a determinant of

interest for the effect of a covariate determinant. To calculate

the adjusted prevalence for category i of the determinant of

interest, the term b

j

 is replaced by a constant b, that is, p

ij

*

 =

1/(1+exp(-c-b-a

i

).The value of b is chosen to ensure that sum

of the expected number of adverse outcomes is equal to the

sum of the observed number, that is, p

i

*

n

i

 = p

i

n

i,

 where n

i

 is

the sample size in category i of the determinant of interest.

This method extends straightforwardly to additional covar-

iates.

As  an  illustration  of  the  method,  we  consider  the

adverse outcome to be discontinuation for students who were

admitted to study 4-year bachelor degrees at Pattani Campus

of Prince of Songkla University from 1999 to 2002 (Sitichai

et al., 2008). The explanatory variables are year of admis-

sion, faculty, and gender-religion group. These data are listed

in the Appendix. Figure 4 shows 95% confidence interval

graphs of the discontinuation rates for each factor based on

an additive logistic model using both weighted sum contrasts

Figure 2.  Confidence intervals for children’s blood lead levels by age group.
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Figure 4.  Confidence intervals for discontinuation rates by gender-religion, faculty and admitted year

Figure 3.  Confidence intervals for children’s blood lead levels by school and by gender-age class

and treatment contrasts.

The shorter (left-most) intervals containing the points

are based on the weighted sum contrasts. To minimise the

widths  of  confidence  intervals  based  on  the  treatment

contrasts, each referent group is taken as the class with the

largest sample size.  However, no such choice is necessary

when plotting the confidence intervals based on the weighted

sum contrasts.

6. Conclusions

We have described the use of weighted sum contrasts

for  graphing  confidence  intervals  with  the  objective  to

compare  population  means  in  unbalanced  designs.  The

method extends the widely used sum contrasts by setting an

appropriate contrast matrix for a factor in the regression

model. This method can also be used in fitting a model with

covariates and a logistic regression model. In a future paper

we plan to extend this method to the situation when there is

an ordinal explanatory variable in the model.
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Appendix

Blood lead level data

ID bloodLead age gender ID bloodLead age gender

1 28.1 12+ boy 24 15.1 12+ boy

2 15.5 12+ boy 25 24.8 12+ boy

3 14.4 11 boy 26 23.2 11 boy

4 10.6 12+ girl 27 15.3 11 girl

5 20.6 12+ boy 28 13.7 11 boy

6 21.4 12+ boy 29 12.7 11 boy

7 12.0 11 girl 30 16.6 11 boy

8 15.9 11 girl 31 11.0 12+ girl

9 19.0 11 boy 32 21.0 11 girl

10 18.3 11 boy 33 24.0 11 boy

11 12.1 9-10 girl 34 17.3 9-10 boy

12 12.5 7-8 boy 35 19.4 9-10 girl

13 18.8 7-8 boy 36 13.3 7-8 boy

14 15.7 7-8 girl 37 18.6 7-8 boy

15 17.3 7-8 girl 38 8.1 7-8 boy

16 15.1 9-10 girl 39 16.7 7-8 boy

17 21.3 12+ boy 40 13.2 7-8 boy

18 14.9 12+ girl 41 9.9 7-8 girl

19 20.4 12+ boy 42 21.1 7-8 boy

20 13.5 12+ girl 43 14.9 7-8 girl

21 12.3 11 girl 44 15.1 7-8 girl

22 21.3 11 girl 45 10.5 7-8 boy

23 14.5 12+ girl 46 16.4 9-10 boy

Student discontinuation data

MI FI MO FO

Faculty Year admitted

Total Disc. Total Disc. Total Disc. Total Disc.

Edu 1999 10 0 41 0 47 5 148 13

2000 16 2 68 2 48 8 137 7

2001 12 0 60 6 61 7 227 24

2002 28 3 94 5 83 15 352 36

Hum 1999 15 0 32 2 98 17 267 21

2000 20 1 57 3 62 9 208 18

2001 20 1 61 2 93 13 360 42

2002 56 3 128 9 118 14 399 60

ST 1999 11 4 15 7 70 29 79 9

2000 14 3 7 0 64 17 86 7

2001 14 2 18 2 85 16 106 14

2002 22 2 26 4 82 14 136 20

IC 1999 22 0 63 3 0 0 0 0

2000 34 0 86 2 0 0 0 0

2001 71 7 124 8 1 0 3 0

2002 78 8 181 12 4 1 1 1


