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Abstract

Robust real-time hand detection and tracking in video sequences would enable many applications in areas as diverse as

human-computer interaction, robotics, security and surveillance, and sign language-based systems.  In this paper, we introduce

a new approach for detecting human hands that works on single, cluttered, low-resolution images. Our prototype system, which

is primarily intended for security applications in which the images are noisy and low-resolution, is able to detect hands as small

as 2424 pixels in cluttered scenes. The system uses grayscale appearance information to classify image sub-windows as either

containing or not containing a human hand very rapidly at the cost of a high false positive rate. To improve on the false positive

rate of the main classifier without affecting its detection rate, we introduce a post-processor system that utilizes the geometric

properties of skin color blobs. When we test our detector on a test image set containing 106 hands, 92 of those hands are

detected (86.8% detection rate), with an average false positive rate of 1.19 false positive detections per image. The rapid

detection speed, the high detection rate of 86.8%, and the low false positive rate together ensure that our system is useable as

the main detector in a diverse variety of applications requiring robust hand detection and tracking in low-resolution, cluttered

scenes.
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1. Introduction

If it were possible to detect and track human hands in

video sequences, a variety of useful applications would be

possible. These applications include human-computer inter-

action, human-robot interaction, gesture and sign-language

recognition, intelligent security systems and more. Over the

last 15 years, the problem of hand tracking has become an

attractive area for research in the field of computer vision.

Many early hand tracking systems relied on uncluttered static

backgrounds, high resolution imagery, and manual initializa-

tion. Most of the modern hand tracking systems are oriented

towards sign language recognition, human-computer inter-

action, and human-robot interaction.  In these applications,

it is possible to make the very useful assumption that only

hands are moving while the rest of the scene is stationary. The

problem can be further simplified by assuming that there will

be only two hands, since there should be only one person

performing sign language or gestures in the scene. Nowadays,

the systems are becoming more robust, but they generally

still require high resolution imagery.

We are primarily interested in hand detection because

monitoring person’s hand is a key to predict what that person

is doing. In security applications, it would be very useful to

detect and track hands of people in the scene and perform
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automated analysis of their actions, e.g., by determining if

they are walking, running, punching someone, or even identi-

fying any object they are holding. Detecting and tracking

hands in security applications is more challenging than in

human-computer  interaction  because  most  surveillance

cameras provide noisy images, with human figures quite far

away and therefore appearing at a fairly low resolution. The

resolution of hands in those images may be as small as 2424

pixels; detecting such small hands in static images is a very

challenging task. Another difficulty is that motion informa-

tion is less useful since there may be many people in the

scene, and their entire bodies may be moving from frame to

frame as they move in front of the security camera.

Some  early  hand  tracking  systems  like  Pfinder

proposed by Wren et al. (1997) attempt to follow the way

humans  look  for  the  hand  in  images.  Instead  of  directly

detecting hands in an image, Pfinder looks for human bodies

first and then easily segments out hands from the rest of the

body by using skin color. However, since detecting humans in

a cluttered video sequence is itself a very difficult problem,

and the human body could easily be partially occluded in the

scene, we try to bypass the human detection problem in our

work by finding hands directly, without any attempt to find

the entire human body first.

Most of the modern hand tracking systems fall into

one of two main categories. The first approach uses skin color

information to segment hands from the background and then

tracks  segmented  hands  between  frames  using  a  tracking

algorithm.  The  face  and  hand  tracking  system  for  sign

language recognition proposed by Soontranon et al. (2004)

first segments the image into skin and non-skin regions using

an elliptical model for skin pixels in CbCr space. Then face

detection is used to locate the face skin blob ideally leaving

only  the  skin  blobs  of  hands.  The  system  constructs  a

template for each hand then in subsequent frames, finds the

region best matching that template using a minimum mean-

squared error cost function. A similar approach is used by

Wachs  et  al.  (2005)  to  detect  and  track  hands  for  human-

robot  interaction.  The  system  proposed  by  Varona  et  al.

(2004) also takes this approach but their system is extended

to track hands and faces in 3D for a virtual reality applica-

tion. The hand tracker of Shamaie and Sutherland (2005)

does not use skin color information so it works on mono-

chrome video sequences. Hands are extracted from the back-

ground using a blob analysis algorithm then tracked using a

dynamic model from control theory. Unfortunately, these

approaches relying on tracking are not suitable when the goal

is to extract hands from single images.

However, in a second approach, a detection window

is scanned over the image and each of the scanned image

patches are classified as hand or non-hand. In contrast to the

first approach, this approach can be used to detect hands in

static images. Barreto et al. (2004) applied improved version

of  Viola  and  Jones  (2001)  face  detector  by  Lienhart  and

Maydt (2002), to detect hands for a human-robot interaction

application. Their hand detection system works quite well at

various scales and with different backgrounds under various

illumination conditions. The hand tracking system proposed

by Ong and Bowden (2004) uses a similar approach, but they

construct  a  tree-structured  classifier,  instead  of  a  linear

cascade, not only to detect hands but also to classify hand

posture.  Both  of  these  systems  require  high-resolution

imagery. The hand detector by Caglar and Lobo (2006) also

detects hands in high resolution static images, in this case

making use of the geometric properties of the hand without

the use of skin color or motion information. Their proposed

system is robust to the size and the orientation of hands with

the limitation that one or more fingers must be visible.

The  goal  of  our  proposed  system  is  to  detect  and

track multiple hands in arbitrary postures in relatively low-

resolution video sequences. Our approach uses grayscale

appearance information to reject most of the non-hand image

regions very rapidly and then uses the shape of skin color

regions  to  reject  most  of  the  remaining  non-hand  image

patches.  We  conducted  a  thorough  evaluation  on  our

proposed system and found that its detection rate was 86.8%

and that its false positive rate was 1.19 false detections per

image  on  average.  The  system’s  speed  and  accuracy  will

enable many useful applications that are based on hand de-

tection and tracking.

2. Materials and Methods

2.1  Hand detector

A block diagram of our hand detection system is shown

in Figure 1. A scan window is scanned over the input image

at different scales and each of the resulting image patches is

fed into a classifier cascade which rapidly determines whether

the image patch is a hand. Our classifier cascade eliminates

Figure 1.  Hand detection system architecture.



159
N. Bo Bo et al. / Songklanakarin J. Sci. Technol. 31 (2), 157-165, 2009

more than 95% of the non-hand regions in a given image.

However, due to the large number of candidate regions in

one image, to be practical, the false positive rate must be

further reduced. To serve this need, we add a postprocessor

to the system in order to further reduce false positive detec-

tions. The postprocessor takes advantage of a priori knowl-

edge of hand’s color and geometry. Skin detection, feature

extraction, and Mahalanobis classification are the essential

building blocks of our postprocessor.

2.2  Boosted classifier cascade

Viola and Jones (2001, 2004) originally proposed the

cascade of boosted classifiers as a real-time general object

detector and applied it to face detection. They showed that

the system can robustly detect faces in static images indepen-

dent of the background. The system runs in real-time since

the feature detector is limited to a class of Haar-like filters

that  can  be  computed  in  constant  time  with  the  help  of

integral images, regardless of the spatial extent of the filters.

The speed of the system is increased even further by arrang-

ing the classifiers in a cascaded fashion, so that the early

stages reject most of the image patches unlikely to contain

the  object  of  interest.  The  cascade  therefore  only  spends

significant compute time on the image patches most likely to

contain the object of interest.

Each stage in the cascade is constructed from a set of

simple Haar-like filters using Freund and Shapire’s (1997)

AdaBoost algorithm. AdaBoost builds a strong nonlinear

classifier from multiple weak threshold classifiers, in this

case each using a Haar-like filter, a threshold, and a weight,

all  of  which  are  selected  by  AdaBoost  to  minimize  the

weighted  error  for  the  whole  stage  over  the  training  set,

while maintaining the desired detection rate. Viola and Jones

(2001, 2004) used the four types of Haar-like filters shown in

Figure 2 (a). The filters can take on arbitrary positions and

sizes within an 2424 image patch. The output of each filter

is simply the difference between the average pixel value

within the clear rectangular regions and the shaded rectangu-

lar regions.

Recently, Lienhart and Maydt (2002) modified Viola

and Jones (2001, 2004) detector.  Their system adds addi-

tional rotated Haar-like filter types, as shown in Figure 2 (b).

On a particular test set, they found that their modified system

gave 10% fewer false positives than the original system for

certain detection rates. The empirical analysis of detection

cascade  of  boosted  classifier  by  Lienhart  et  al.  (2002)

compared DiscreteBoost (the algorithm used by Viola and

Jones [2001]), RealBoost, and GentleBoost and found that

classifiers trained with GentleBoost performed the best.

We  apply  Lienhart  and  colleagues’  methods,  as

implemented in the OpenCV, Open Computer Vision Library

(2006), to the hand detection problem, using all the filter

types  in  Figure 2 (b),  2424  image  patches,  and  the

GentleBoost learning algorithm.

Since boosting algorithms are supervised learning

algorithms, a large number of labeled positive and negative

examples must be input to the training process. Besides the

examples, some learning parameters must be specified. The

most important parameter is the desired true positive and

false positive rate for each stage of the cascade. We train one

stage  at  a  time  until  that  stage  achieves  the  specified  true

positive and false positive rates. Then a new stage is begun,

and the process continues until some stopping criterion is

reached. Only the positive examples that are correctly classi-

fied by the previous stages and the negative examples that

are incorrectly classified by the previous stages are used to

train each new stage.

2.3  Skin detector

There are many approaches to segmenting regions

with similar color and texture from other regions. To extract

skin  color  blobs  from  images,  color  information  is  the

obvious choice. The skin detector for our system need not be

extremely robust but it should be fast.

The Bayesian maximum likelihood classifier based on

color histograms, as presented by Zarit et al. (1999), meets

all of these needs. Based on their results and our own follow-

up  study,  we  selected  the  HS  (hue  and  saturation)  color

model. Histograms used in the skin detector have two dimen-

sions, namely hue and saturation. Each axis of the plane is

quantized into 16 bins, so that each histogram will have 16

2

= 256 bins. We selected 16-bin quantization based on com-

parison experiments with different bins counts of 8, 16, 32,

and 64. We found that 16 bins along each axis gave the best

performance. The reasons for excluding the intensity compo-

nent from the histogram are to eliminate the effect of non-

uniform illumination and to save computational cost. We

construct histograms for skin and non-skin pixels from a

large training set. The histogram counts are used to construct

a discrete class-conditional likelihood for a Bayesian maxi-

mum likelihood classifier which we then use to determine

(b)

Figure 2. Haar-like features used to construct weak classifies in the

boosted classifier cascade. (a) Features used by Viola and

Jones. (b) Features used by Lienhart and colleagues.

(a)
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whether a given pixel is most likely skin or not skin.

Each image patch which is classified as a hand by the

cascade is scaled to a standard size 2424 pixels and then

fed to the skin detector, which produces a binary image, in

which the value 1 represents a putative skin pixel and the

value 0 represents a non-skin pixel.

2.4  Features extractor and Mahalanobis classifier

The shape and relative size of the skin blob within the

detection window give useful information for discriminating

image patches containing hand from those not containing

hand. We extract four simple features from the binary skin

image that are surprisingly useful for accurate classification:

1. The area of the largest connected component of

skin pixels.

2. The length of the perimeter of the largest connected

component of skin pixels.

3. The eccentricity of the largest connected compo-

nent of skin pixels.

4. The  number  of  pixels  on  the  boundary  of  the

largest connected component of skin pixels that intersect the

detection window boundary.

The area feature is simply the number of pixels in the

largest connected skin component; it is normalized by the

total number of skin pixels (2424 = 576) in the image patch.

It is very obvious that the given image patch is unlikely to

contain a hand if the area feature is very large or very small.

The perimeter feature is the total number of pixels on the

perimeter of the largest connected skin component; it is

normalized in the same way as the area feature. The eccen-

tricity feature is the eccentricity of the ellipse having the

same second moments as the largest connected skin compo-

nent, i.e., the ratio of the distance between the foci of the

ellipse and its major axis length. The eccentricity is between

0 and 1, with 0 indicating a circle and 1 indicating a line

segment. This feature helps to discriminate face skin regions,

which tend to be quite round, from true hand skin regions,

which  tend  to  be  more  eccentric.  Finally,  the  boundary

feature helps to discriminate between arm skin regions,

which tend to intersect the boundary of the detection window

in two places, from true hand skin regions, which only inter-

sect the detection window at the wrist. The boundary feature

provides information about how wrist-like the boundary is.

No matter how good those four features are, they will

not be efficiently utilized for classification without a suitable

classifier. We prefer classifiers that are simple with few

parameters to tune. We find that a simple classifier based on

Mahalanobis distance is a reasonable choice. Each image

patch can be represented by a feature vector consisting of

the area, perimeter, eccentricity, and boundary features. To

classify a given feature vector  as a true hand or not a hand,

we calculate the Mahalanobis distance
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between the feature vector  and the mean feature vector x,

then we classify  as a hand if d(x) is less than some threshold

.  Here  the  mean  hand  feature  vector  ,  the  covariance

matrix , and the distance threshold  are estimated from the

training set.

Once  classification  for  each  possible  detection

windows is done, the positively detected hands are fed to the

final module, the grouping, filtering, and averaging module.

Further reduction of false positives is done there.

2.5  Grouping, filtering, and averaging module

Our  Mahalanobis  classifier  produces  a  few  very

sparsely distributed false positives and densely distributed

true detections around the actual targets. Since it produces

several true detections around each of the actual detections,

grouping  and  averaging  is  necessary  to  ensure  only  one

detection for each target. A group which contains less than

some number of detections can be disposed of on the assump-

tion it is a false positive. We use the existing implementation

of this technique in the OpenCV. The positively detected

hands output from this module could then be forwarded to

another component in an integrated application, for example

a gesture recognition module. But, in this article we simply

evaluate the performance and efficiency of the proposed

algorithm on a series of video sequences. We now describe

our experiments in detail.

2.6  Data acquisition

For the purpose of training, testing and evaluation of

the proposed hand detection system, we captured 12 video

sequences in a moderately cluttered laboratory environment.

Four people volunteered to be models, and we captured three

video sequences for each person. In the first sequence, each

model walked away from the camera then came back to the

starting position, in a direction parallel to the camera angle.

In the second sequence, each model walked back and forth

across the field of view in a direction perpendicular to the

camera angle, at three different distances from the camera.  In

the last sequence, each model walked diagonally across the

field of view, starting from a position to the right or left of

the camera then returned to the start position, and repeated

the procedure beginning from the other side of the camera.

We captured the video sequences at 15 frames per sec-

ond with an inexpensive IEEE1394 Web camera at a resolu-

tion of 640480 pixels. Each sequence lasted approximately

30 seconds. After video capture, all visible hands not smaller

than the standard size of 2424 pixels in every image of all

12 sequences were manually located. A total of 2246 hand

locations were obtained. Our criteria for locating the selec-

tion window on the hand was that the hand should be roughly

at the center of the window while taking up about 50% of

the pixel area of the selection window. Some examples are

shown in Figure 3.
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Of the 12 video sequences, 11 were used to train the

system and the remaining sequence was reserved for testing

and evaluating the complete hand detection system. To train

the boosted classifier cascade, we used 2000 hands as posi-

tive examples, and negative examples were automatically

extracted from a set of background images. As background

images, we used four randomly selected images from the

video sequences that did not contain any human. We created

an additional set of background images using six randomly

selected images containing humans. From each image, we

cut out two large regions that did not contain hands but did

contain other body parts such as faces and arms. From the

test image sequence, we selected 99 images, each containing

at least one hand not smaller than 2424 pixels. These 99

images contained a total of 106 proper hands. All of our test

evaluation calculations are based on those 106 proper hands.

We also prepared a holdout set by randomly selecting

100 images from the 11 training video sequences. This hold-

out set was used to monitor system performance as well as

to tune system parameters.

2.7  Boosted classifier training

To train the classifier cascade, we used Lienhart and

colleagues’ approach, implemented in OpenCV. We used the

previously-described 2000 manually located hands from the

eleven training video sequences as positive examples and

the 16 previously-described background images.

The important parameters of the training process are

the minimum hit rate (true positive rate) and maximum false

alarm rate (false positive rate). Every stage in the cascade

must satisfy these criteria on the training set. We used 100%

for the hit rate and 60% for the false alarm rate. This means

when adding a new stage to the classifier, the training system

keeps adding additional weak classifiers to that stage until it

correctly classifies all of the positive training examples with

at most a 60% false alarm rate. Lienhart and colleagues’

training  system  extracts  the  desired  number  of  negative

examples, 4000 for our experiment, by scanning a window

with  different  scales  over  the  background  images.  After

training one stage of the classifier, the negative examples

which are correctly classified are disposed of and the system

extracts a sufficient number of new negative examples. We

use the GentleBoost variant of AdaBoost and the full Haar-

like feature set of Lienhart and Maydt (2002).

The performance of the cascade is tested on the hold-

out set every time a new stage is constructed and added to

the  cascade.  The  results  of  the  training  process  will  be

discussed  in  more  detail  in  the  Results  and  Discussion

section.

2.8  Scanning window

When an image is presented to our hand detection

system (Figure 1), a detection window is scanned over the

image at multiple scales, and each resulting image patch is

passed  to  the  boosted  classifier  cascade.  The  scanning

process is to begin with a 2424 detection at the image’s

original scale. After every possible image patch at that scale

has run through the classifier cascade, the image is scaled

Figure 3.  Example training images Scaled to 2424.
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down by 90% and the process is repeated until a minimum

image size (maximum detection window size) is reached.

2.9  Skin detector training

To train our skin detector, we selected 10 images con-

taining one or more humans from a set of independent video

sequences captured under various lighting conditions at

several  different  locations.  Skin  pixels  on  those  images

were manually marked and the resulting 70,475 skin and

1,203,094 non-skin pixels were fed to the skin detector train-

ing process. The training process computes the hue (H) and

saturation (S) for each pixel and quantizes each value into

one of 16 bins. From the quantized values of skin pixels, one

2D histogram is constructed, and another is constructed from

the quantized values of the non-skin pixels. Both histograms

are constructed by simply counting the number of pixels

which belong to same bin, and they are normalized by the

total number of pixels used to construct the histogram.

2.10  Mahalanobis classifier training

The purpose of the Mahalanobis classifier is to elimi-

nate  the  false  detections  made  by  the  boosted  classifier

cascade while still maintaining a high detection rate. As the

detection window is scanned over every image in the training

set, the boosted classifier outputs both true positive and false

positive image patches. We found 78,658 true positives on

our training set then randomly selected 6,000 true positives

for  computing  the  mean  feature  vector    and  covariance

matrix  for the Mahalanobis classifier.

After we obtain  and  for the Mahalanobis classi-

fier, we need to find the optimum threshold. To do so, we

scanned a detection window over every image in the holdout

set and separated the detected image patches into false posi-

tives and true positives using the known hand locations for

the holdout set. We extracted the Mahalanobis classifier’s

four features from each detected image patches and calcu-

lated the Mahalanobis distance between the feature vector of

each image patch and the mean feature vector . As the class

for each image patch is known, we plotted the ROC curve as

shown in Figure 4. At this point, a detection rate of less than

100% is acceptable because the classifier cascade typically

produces multiple true detections around each hand. Examin-

ing the ROC curve, we found that a Mahalanobis distance of

2.9 is a reasonable threshold since this threshold gives a

very low false positive rate (6%) while giving an acceptable

true positive rate (60%) on the image patches output by the

classifier cascade.

2.11  Parameter tuning for the system

Once all the required building blocks for hand detec-

tion are in place, we need to specify one last parameter, i.e.,

the  minimum  number  of  nearby  positive  image  patches

required for the Group, Filter, and Average block. In practice,

this parameter must be tuned to achieve a good detection

rate. To tune this parameter, we assembled all of the building

blocks into a complete system then tested it on the holdout

set with various values for each parameter. We found that

rejecting detection with less than 4 neighboring patches per

group produced the optimal result: 81.8% of the hands in

the holdout set were detected and the false positive rate was

also  relatively  low,  an  average  of  1.55  false  positives  per

image.

2.12  Testing the complete system

We tested the complete hand detection system on the

test set that was never used in any part of the training process.

As previously described we used 99 images containing 106

hands in known locations. The detailed results of the test are

discussed in the next section.

3. Results and Discussion

During the training process, we monitored the perfor-

mance of the cascade and found that 12 stages of strong

classifiers  gave  the  optimum  performance.  The  12-stage

classifier had a 97.5% detection rate on the holdout set, while

having a reasonably low false positive rate of about 0.3% on

the holdout set. A false positive rate of 0.3% may seem quite

low but in fact this means we had an average of 1,000 false

positive detections per image because one image contains

more than 300,000 possible image patches. Clearly, these

results indicate that a post processor is necessary to further

eliminate  false  positives  if  the  system  is  to  be  usable  in

practical applications.

When we tested our system on the test set, we found

that the boosted classifier cascade frequently detected in-

correct body parts such as arms, as shown in the left half of

Figure 5 (b). However, the skin detection images shown in

the right halves of Figures 5 (a) and 5 (b) show that the

Mahalanobis classifier’s boundary feature can distinguish

Figure 4. ROC curve between true positive and false positive for

different thresholds of Mahalanobis distance. True posi-

tive  and  false  positive  rate  are  calculated  based  on

number of true detection and false detection input to the

Mahalanobis Classifier.
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between these cases. We found that most of the remaining

false  positives  contained  either  too  few  skin  pixels  or

sparsely distributed skin pixels. These cases are easily elimi-

nated by the Mahalanobis classifier’s area feature since it

operates on the largest connected skin component.

Our final hand detector detects 92 hands (86.8%) of

the 106 hands in the test set, with an acceptable false positive

rate of 1.19 false detections per image on average. Table 1

compares the performance of the original boosted classifier

cascade of Lienhart and Maydt (2002) to that of our hand

detector system on six consecutive frames from the test set.

The average false positive rate drops from about 1,000 per

image to 1.19 per image at the cost of a drop in true positive

rate  from  99.1%  to  86.8%.  Post-processing  by  the

Mahalanobis  classifier  transforms  a  completely  unusable

classifier into a high-precision hand detector. A detection rate

of 86.8% will enable many applications based on hand detec-

(b)  Non-hand body part detected as hand.

Figure 5. Original (left) image patches detected as hand by boosted

hand  classifier  and  binary  images  patches  (right)  after

skin detection.

(a)  Properly detected hand.

(b)

Figure 6. Example detection results of our proposed hand detection

system.

(a)

tion, such as human action recognition systems for security.

Images (a)  and  (b)  in  Figure  6  illustrate  example

detections by our complete system, and all detected hands in

the test set are shown in Figure 7. In the example, all hands

were detected in both images, and only one false detection

occurred in each image. The false detection of the desktop

computer in the middle of the image is present in almost

every image because the computer’s color and texture are

in fact similar to that of a hand. This kind of false positive

Table 1. Performance comparison between a system with only the boosted classi-

fier cascade and our complete hand detector system in terms of the

number of false positive detections per image. Six consecutive frames

from the test set were selected for the comparison.

Image name Number of false positive from Number of false positive from

system with only boosted our system (boosted classifier

classifier cascade cascade + post processor)

   Image 1 749 1

   Image 2 762 3

   Image 3 811 1

   Image 4 933 1

   Image 5 1047 1

   Image 6 978 1
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detection on a stationary object will be eliminated if we add

motion information between two consecutive frames in the

video sequence.

4. Conclusion

From the literature, we know that hand detectors in-

corporating AdaBoost and Haar-like features perform quite

well in applications like sign-language recognition, in which

images are relatively high resolution with less cluttered back-

ground  and  constrained  hand  gesture.  These  approaches

suffer from high false positive rates and low detection rates

when applied to detect less constrained hands in low resolu-

tion and cluttered images. However, we find that these limita-

tions can be overcome with the help of a simple but efficient

post processing system – in our experiments, the prototype

hand detection system achieved excellent performance on

its test set. One important limitation of this work is that both

the training and testing image sequences were captured in

the same environment. This means that the performance of

our current system is likely background dependent; if so, the

reported performance is optimistic. However, the current

results are encouraging, and in future work we plan to explore

integrating our system with gesture recognition and human

action recognition systems.
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