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Abstract

Robust real-time hand detection and tracking in video sequences would enable many applications in areas as diverse as
human-computer interaction, robotics, security and surveillance, and sign language-based systems. In this paper, we introduce
anew approach for detecting human hands that works on single, cluttered, low-resolution images. Our prototype system, which
is primarily intended for security applications in which the images are noisy and low-resolution, is able to detect hands as small
as 24x24 pixels in cluttered scenes. The system uses grayscale appearance information to classify image sub-windows as either
containing or not containing a human hand very rapidly at the cost of a high false positive rate. To improve on the false positive
rate of the main classifier without affecting its detection rate, we introduce a post-processor system that utilizes the geometric
properties of skin color blobs. When we test our detector on a test image set containing 106 hands, 92 of those hands are
detected (86.8% detection rate), with an average false positive rate of 1.19 false positive detections per image. The rapid
detection speed, the high detection rate of 86.8%, and the low false positive rate together ensure that our system is useable as
the main detector in a diverse variety of applications requiring robust hand detection and tracking in low-resolution, cluttered
scenes.

Keywords: hand detection and tracking, boosted classifier cascade, skin detection, Mahalanobis classifier,
artificial intelligence, computer vision and image processing

1. Introduction

If it were possible to detect and track human hands in
video sequences, a variety of useful applications would be
possible. These applications include human-computer inter-
action, human-robot interaction, gesture and sign-language
recognition, intelligent security systems and more. Over the
last 15 years, the problem of hand tracking has become an
attractive area for research in the field of computer vision.
Many early hand tracking systems relied on uncluttered static
backgrounds, high resolution imagery, and manual initializa-
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tion. Most of the modern hand tracking systems are oriented
towards sign language recognition, human-computer inter-
action, and human-robot interaction. In these applications,
it is possible to make the very useful assumption that only
hands are moving while the rest of the scene is stationary. The
problem can be further simplified by assuming that there will
be only two hands, since there should be only one person
performing sign language or gestures in the scene. Nowadays,
the systems are becoming more robust, but they generally
still require high resolution imagery.

We are primarily interested in hand detection because
monitoring person’s hand is a key to predict what that person
is doing. In security applications, it would be very useful to
detect and track hands of people in the scene and perform
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automated analysis of their actions, e.g., by determining if
they are walking, running, punching someone, or even identi-
fying any object they are holding. Detecting and tracking
hands in security applications is more challenging than in
human-computer interaction because most surveillance
cameras provide noisy images, with human figures quite far
away and therefore appearing at a fairly low resolution. The
resolution of hands in those images may be as small as 24x24
pixels; detecting such small hands in static images is a very
challenging task. Another difficulty is that motion informa-
tion is less useful since there may be many people in the
scene, and their entire bodies may be moving from frame to
frame as they move in front of the security camera.

Some early hand tracking systems like Pfinder
proposed by Wren et al. (1997) attempt to follow the way
humans look for the hand in images. Instead of directly
detecting hands in an image, Pfinder looks for human bodies
first and then easily segments out hands from the rest of the
body by using skin color. However, since detecting humans in
a cluttered video sequence is itself a very difficult problem,
and the human body could easily be partially occluded in the
scene, we try to bypass the human detection problem in our
work by finding hands directly, without any attempt to find
the entire human body first.

Most of the modern hand tracking systems fall into
one of two main categories. The first approach uses skin color
information to segment hands from the background and then
tracks segmented hands between frames using a tracking
algorithm. The face and hand tracking system for sign
language recognition proposed by Soontranon et al. (2004)
first segments the image into skin and non-skin regions using
an elliptical model for skin pixels in CbCr space. Then face
detection is used to locate the face skin blob ideally leaving
only the skin blobs of hands. The system constructs a
template for each hand then in subsequent frames, finds the
region best matching that template using a minimum mean-
squared error cost function. A similar approach is used by
Wachs et al. (2005) to detect and track hands for human-
robot interaction. The system proposed by Varona et al.
(2004) also takes this approach but their system is extended
to track hands and faces in 3D for a virtual reality applica-
tion. The hand tracker of Shamaie and Sutherland (2005)
does not use skin color information so it works on mono-
chrome video sequences. Hands are extracted from the back-
ground using a blob analysis algorithm then tracked using a
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dynamic model from control theory. Unfortunately, these
approaches relying on tracking are not suitable when the goal
is to extract hands from single images.

However, in a second approach, a detection window
is scanned over the image and each of the scanned image
patches are classified as hand or non-hand. In contrast to the
first approach, this approach can be used to detect hands in
static images. Barreto et al. (2004) applied improved version
of Viola and Jones (2001) face detector by Lienhart and
Maydt (2002), to detect hands for a human-robot interaction
application. Their hand detection system works quite well at
various scales and with different backgrounds under various
illumination conditions. The hand tracking system proposed
by Ong and Bowden (2004) uses a similar approach, but they
construct a tree-structured classifier, instead of a linear
cascade, not only to detect hands but also to classify hand
posture. Both of these systems require high-resolution
imagery. The hand detector by Caglar and Lobo (2006) also
detects hands in high resolution static images, in this case
making use of the geometric properties of the hand without
the use of skin color or motion information. Their proposed
system is robust to the size and the orientation of hands with
the limitation that one or more fingers must be visible.

The goal of our proposed system is to detect and
track multiple hands in arbitrary postures in relatively low-
resolution video sequences. Our approach uses grayscale
appearance information to reject most of the non-hand image
regions very rapidly and then uses the shape of skin color
regions to reject most of the remaining non-hand image
patches. We conducted a thorough evaluation on our
proposed system and found that its detection rate was 86.8%
and that its false positive rate was 1.19 false detections per
image on average. The system’s speed and accuracy will
enable many useful applications that are based on hand de-
tection and tracking.

2. Materials and Methods
2.1 Hand detector

A block diagram of our hand detection system is shown
in Figure 1. A scan window is scanned over the input image
at different scales and each of the resulting image patches is
fed into a classifier cascade which rapidly determines whether
the image patch is a hand. Our classifier cascade eliminates
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Figure 1. Hand detection system architecture.
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more than 95% of the non-hand regions in a given image.
However, due to the large number of candidate regions in
one image, to be practical, the false positive rate must be
further reduced. To serve this need, we add a postprocessor
to the system in order to further reduce false positive detec-
tions. The postprocessor takes advantage of a priori knowl-
edge of hand’s color and geometry. Skin detection, feature
extraction, and Mahalanobis classification are the essential
building blocks of our postprocessor.

2.2 Boosted classifier cascade

Viola and Jones (2001, 2004) originally proposed the
cascade of boosted classifiers as a real-time general object
detector and applied it to face detection. They showed that
the system can robustly detect faces in static images indepen-
dent of the background. The system runs in real-time since
the feature detector is limited to a class of Haar-like filters
that can be computed in constant time with the help of
integral images, regardless of the spatial extent of the filters.
The speed of the system is increased even further by arrang-
ing the classifiers in a cascaded fashion, so that the early
stages reject most of the image patches unlikely to contain
the object of interest. The cascade therefore only spends
significant compute time on the image patches most likely to
contain the object of interest.

Each stage in the cascade is constructed from a set of
simple Haar-like filters using Freund and Shapire’s (1997)
AdaBoost algorithm. AdaBoost builds a strong nonlinear
classifier from multiple weak threshold classifiers, in this
case each using a Haar-like filter, a threshold, and a weight,
all of which are selected by AdaBoost to minimize the
weighted error for the whole stage over the training set,
while maintaining the desired detection rate. Viola and Jones
(2001, 2004) used the four types of Haar-like filters shown in
Figure 2 (a). The filters can take on arbitrary positions and
sizes within an 24x24 image patch. The output of each filter
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Figure 2. Haar-like features used to construct weak classifies in the
boosted classifier cascade. (a) Features used by Viola and
Jones. (b) Features used by Lienhart and colleagues.

is simply the difference between the average pixel value
within the clear rectangular regions and the shaded rectangu-
lar regions.

Recently, Lienhart and Maydt (2002) modified Viola
and Jones (2001, 2004) detector. Their system adds addi-
tional rotated Haar-like filter types, as shown in Figure 2 (b).
On a particular test set, they found that their modified system
gave 10% fewer false positives than the original system for
certain detection rates. The empirical analysis of detection
cascade of boosted classifier by Lienhart et al. (2002)
compared DiscreteBoost (the algorithm used by Viola and
Jones [2001]), RealBoost, and GentleBoost and found that
classifiers trained with GentleBoost performed the best.

We apply Lienhart and colleagues’ methods, as
implemented in the OpenCV, Open Computer Vision Library
(2006), to the hand detection problem, using all the filter
types in Figure 2 (b), 24x24 image patches, and the
GentleBoost learning algorithm.

Since boosting algorithms are supervised learning
algorithms, a large number of labeled positive and negative
examples must be input to the training process. Besides the
examples, some learning parameters must be specified. The
most important parameter is the desired true positive and
false positive rate for each stage of the cascade. We train one
stage at a time until that stage achieves the specified true
positive and false positive rates. Then a new stage is begun,
and the process continues until some stopping criterion is
reached. Only the positive examples that are correctly classi-
fied by the previous stages and the negative examples that
are incorrectly classified by the previous stages are used to
train each new stage.

2.3 Skin detector

There are many approaches to segmenting regions
with similar color and texture from other regions. To extract
skin color blobs from images, color information is the
obvious choice. The skin detector for our system need not be
extremely robust but it should be fast.

The Bayesian maximum likelihood classifier based on
color histograms, as presented by Zarit et al. (1999), meets
all of these needs. Based on their results and our own follow-
up study, we selected the HS (hue and saturation) color
model. Histograms used in the skin detector have two dimen-
sions, namely hue and saturation. Each axis of the plane is
quantized into 16 bins, so that each histogram will have 16°
= 256 bins. We selected 16-bin quantization based on com-
parison experiments with different bins counts of 8, 16, 32,
and 64. We found that 16 bins along each axis gave the best
performance. The reasons for excluding the intensity compo-
nent from the histogram are to eliminate the effect of non-
uniform illumination and to save computational cost. We
construct histograms for skin and non-skin pixels from a
large training set. The histogram counts are used to construct
a discrete class-conditional likelihood for a Bayesian maxi-
mum likelihood classifier which we then use to determine
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whether a given pixel is most likely skin or not skin.

Each image patch which is classified as a hand by the
cascade is scaled to a standard size 24x24 pixels and then
fed to the skin detector, which produces a binary image, in
which the value 1 represents a putative skin pixel and the
value 0 represents a non-skin pixel.

2.4 Features extractor and Mahalanobis classifier

The shape and relative size of the skin blob within the
detection window give useful information for discriminating
image patches containing hand from those not containing
hand. We extract four simple features from the binary skin
image that are surprisingly useful for accurate classification:

1. The area of the largest connected component of
skin pixels.

2. The length of the perimeter of the largest connected
component of skin pixels.

3. The eccentricity of the largest connected compo-
nent of skin pixels.

4. The number of pixels on the boundary of the
largest connected component of skin pixels that intersect the
detection window boundary.

The area feature is simply the number of pixels in the
largest connected skin component; it is normalized by the
total number of skin pixels (24x24 = 576) in the image patch.
It is very obvious that the given image patch is unlikely to
contain a hand if the area feature is very large or very small.
The perimeter feature is the total number of pixels on the
perimeter of the largest connected skin component; it is
normalized in the same way as the area feature. The eccen-
tricity feature is the eccentricity of the ellipse having the
same second moments as the largest connected skin compo-
nent, i.e., the ratio of the distance between the foci of the
ellipse and its major axis length. The eccentricity is between
0 and 1, with 0 indicating a circle and 1 indicating a line
segment. This feature helps to discriminate face skin regions,
which tend to be quite round, from true hand skin regions,
which tend to be more eccentric. Finally, the boundary
feature helps to discriminate between arm skin regions,
which tend to intersect the boundary of the detection window
in two places, from true hand skin regions, which only inter-
sect the detection window at the wrist. The boundary feature
provides information about how wrist-like the boundary is.

No matter how good those four features are, they will
not be efficiently utilized for classification without a suitable
classifier. We prefer classifiers that are simple with few
parameters to tune. We find that a simple classifier based on
Mahalanobis distance is a reasonable choice. Each image
patch can be represented by a feature vector consisting of
the area, perimeter, eccentricity, and boundary features. To
classify a given feature vector as a true hand or not a hand,
we calculate the Mahalanobis distance

d(x)=(x—p)" =7 (x—u)
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between the feature vector and the mean feature vector x,
then we classify as a hand if d(x) is less than some threshold
0. Here the mean hand feature vector p, the covariance
matrix X, and the distance threshold 6 are estimated from the
training set.

Once classification for each possible detection
windows is done, the positively detected hands are fed to the
final module, the grouping, filtering, and averaging module.
Further reduction of false positives is done there.

2.5 Grouping, filtering, and averaging module

Our Mahalanobis classifier produces a few very
sparsely distributed false positives and densely distributed
true detections around the actual targets. Since it produces
several true detections around each of the actual detections,
grouping and averaging is necessary to ensure only one
detection for each target. A group which contains less than
some number of detections can be disposed of on the assump-
tion it is a false positive. We use the existing implementation
of this technique in the OpenCV. The positively detected
hands output from this module could then be forwarded to
another component in an integrated application, for example
a gesture recognition module. But, in this article we simply
evaluate the performance and efficiency of the proposed
algorithm on a series of video sequences. We now describe
our experiments in detail.

2.6 Data acquisition

For the purpose of training, testing and evaluation of
the proposed hand detection system, we captured 12 video
sequences in a moderately cluttered laboratory environment.
Four people volunteered to be models, and we captured three
video sequences for each person. In the first sequence, each
model walked away from the camera then came back to the
starting position, in a direction parallel to the camera angle.
In the second sequence, each model walked back and forth
across the field of view in a direction perpendicular to the
camera angle, at three different distances from the camera. In
the last sequence, each model walked diagonally across the
field of view, starting from a position to the right or left of
the camera then returned to the start position, and repeated
the procedure beginning from the other side of the camera.

We captured the video sequences at 15 frames per sec-
ond with an inexpensive IEEE1394 Web camera at a resolu-
tion of 640x480 pixels. Each sequence lasted approximately
30 seconds. After video capture, all visible hands not smaller
than the standard size of 24x24 pixels in every image of all
12 sequences were manually located. A total of 2246 hand
locations were obtained. Our criteria for locating the selec-
tion window on the hand was that the hand should be roughly
at the center of the window while taking up about 50% of
the pixel area of the selection window. Some examples are
shown in Figure 3.
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Figure 3. Example training images Scaled to 24x24.

Of the 12 video sequences, 11 were used to train the
system and the remaining sequence was reserved for testing
and evaluating the complete hand detection system. To train
the boosted classifier cascade, we used 2000 hands as posi-
tive examples, and negative examples were automatically
extracted from a set of background images. As background
images, we used four randomly selected images from the
video sequences that did not contain any human. We created
an additional set of background images using six randomly
selected images containing humans. From each image, we
cut out two large regions that did not contain hands but did
contain other body parts such as faces and arms. From the
test image sequence, we selected 99 images, each containing
at least one hand not smaller than 24x24 pixels. These 99
images contained a total of 106 proper hands. All of our test
evaluation calculations are based on those 106 proper hands.

We also prepared a holdout set by randomly selecting
100 images from the 11 training video sequences. This hold-
out set was used to monitor system performance as well as
to tune system parameters.

2.7 Boosted classifier training

To train the classifier cascade, we used Lienhart and
colleagues’ approach, implemented in OpenCV. We used the
previously-described 2000 manually located hands from the
eleven training video sequences as positive examples and
the 16 previously-described background images.

The important parameters of the training process are
the minimum hit rate (true positive rate) and maximum false

alarm rate (false positive rate). Every stage in the cascade
must satisfy these criteria on the training set. We used 100%
for the hit rate and 60% for the false alarm rate. This means
when adding a new stage to the classifier, the training system
keeps adding additional weak classifiers to that stage until it
correctly classifies all of the positive training examples with
at most a 60% false alarm rate. Lienhart and colleagues’
training system extracts the desired number of negative
examples, 4000 for our experiment, by scanning a window
with different scales over the background images. After
training one stage of the classifier, the negative examples
which are correctly classified are disposed of and the system
extracts a sufficient number of new negative examples. We
use the GentleBoost variant of AdaBoost and the full Haar-
like feature set of Lienhart and Maydt (2002).

The performance of the cascade is tested on the hold-
out set every time a new stage is constructed and added to
the cascade. The results of the training process will be
discussed in more detail in the Results and Discussion
section.

2.8 Scanning window

When an image is presented to our hand detection
system (Figure 1), a detection window is scanned over the
image at multiple scales, and each resulting image patch is
passed to the boosted classifier cascade. The scanning
process is to begin with a 24x24 detection at the image’s
original scale. After every possible image patch at that scale
has run through the classifier cascade, the image is scaled
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down by 90% and the process is repeated until a minimum
image size (maximum detection window size) is reached.

2.9 Skin detector training

To train our skin detector, we selected 10 images con-
taining one or more humans from a set of independent video
sequences captured under various lighting conditions at
several different locations. Skin pixels on those images
were manually marked and the resulting 70,475 skin and
1,203,094 non-skin pixels were fed to the skin detector train-
ing process. The training process computes the hue (H) and
saturation (S) for each pixel and quantizes each value into
one of 16 bins. From the quantized values of skin pixels, one
2D histogram is constructed, and another is constructed from
the quantized values of the non-skin pixels. Both histograms
are constructed by simply counting the number of pixels
which belong to same bin, and they are normalized by the
total number of pixels used to construct the histogram.

2.10 Mahalanobis classifier training

The purpose of the Mahalanobis classifier is to elimi-
nate the false detections made by the boosted classifier
cascade while still maintaining a high detection rate. As the
detection window is scanned over every image in the training
set, the boosted classifier outputs both true positive and false
positive image patches. We found 78,658 true positives on
our training set then randomly selected 6,000 true positives
for computing the mean feature vector p and covariance
matrix X for the Mahalanobis classifier.

After we obtain p and X for the Mahalanobis classi-
fier, we need to find the optimum threshold. To do so, we
scanned a detection window over every image in the holdout
set and separated the detected image patches into false posi-
tives and true positives using the known hand locations for
the holdout set. We extracted the Mahalanobis classifier’s
four features from each detected image patches and calcu-
lated the Mahalanobis distance between the feature vector of
each image patch and the mean feature vector p. As the class
for each image patch is known, we plotted the ROC curve as
shown in Figure 4. At this point, a detection rate of less than
100% is acceptable because the classifier cascade typically
produces multiple true detections around each hand. Examin-
ing the ROC curve, we found that a Mahalanobis distance of
2.9 is a reasonable threshold since this threshold gives a
very low false positive rate (6%) while giving an acceptable
true positive rate (60%) on the image patches output by the
classifier cascade.

2.11 Parameter tuning for the system

Once all the required building blocks for hand detec-
tion are in place, we need to specify one last parameter, i.e.,
the minimum number of nearby positive image patches
required for the Group, Filter, and Average block. In practice,
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Figure 4. ROC curve between true positive and false positive for
different thresholds of Mahalanobis distance. True posi-
tive and false positive rate are calculated based on
number of true detection and false detection input to the
Mahalanobis Classifier.

this parameter must be tuned to achieve a good detection
rate. To tune this parameter, we assembled all of the building
blocks into a complete system then tested it on the holdout
set with various values for each parameter. We found that
rejecting detection with less than 4 neighboring patches per
group produced the optimal result: 81.8% of the hands in
the holdout set were detected and the false positive rate was
also relatively low, an average of 1.55 false positives per
image.

2.12 Testing the complete system

We tested the complete hand detection system on the
test set that was never used in any part of the training process.
As previously described we used 99 images containing 106
hands in known locations. The detailed results of the test are
discussed in the next section.

3. Results and Discussion

During the training process, we monitored the perfor-
mance of the cascade and found that 12 stages of strong
classifiers gave the optimum performance. The 12-stage
classifier had a 97.5% detection rate on the holdout set, while
having a reasonably low false positive rate of about 0.3% on
the holdout set. A false positive rate of 0.3% may seem quite
low but in fact this means we had an average of 1,000 false
positive detections per image because one image contains
more than 300,000 possible image patches. Clearly, these
results indicate that a post processor is necessary to further
eliminate false positives if the system is to be usable in
practical applications.

When we tested our system on the test set, we found
that the boosted classifier cascade frequently detected in-
correct body parts such as arms, as shown in the left half of
Figure 5 (b). However, the skin detection images shown in
the right halves of Figures 5 (a) and 5 (b) show that the
Mahalanobis classifier’s boundary feature can distinguish
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(a) Properly detected hand.

(b) Non-hand body part detected as hand.

Figure 5. Original (left) image patches detected as hand by boosted
hand classifier and binary images patches (right) after
skin detection.

between these cases. We found that most of the remaining
false positives contained either too few skin pixels or
sparsely distributed skin pixels. These cases are easily elimi-
nated by the Mahalanobis classifier’s area feature since it
operates on the largest connected skin component.

Our final hand detector detects 92 hands (86.8%) of
the 106 hands in the test set, with an acceptable false positive
rate of 1.19 false detections per image on average. Table 1
compares the performance of the original boosted classifier
cascade of Lienhart and Maydt (2002) to that of our hand
detector system on six consecutive frames from the test set.
The average false positive rate drops from about 1,000 per
image to 1.19 per image at the cost of a drop in true positive
rate from 99.1% to 86.8%. Post-processing by the
Mahalanobis classifier transforms a completely unusable
classifier into a high-precision hand detector. A detection rate
of 86.8% will enable many applications based on hand detec-

(b)

Figure 6. Example detection results of our proposed hand detection
system.

tion, such as human action recognition systems for security.
Images (a) and (b) in Figure 6 illustrate example
detections by our complete system, and all detected hands in
the test set are shown in Figure 7. In the example, all hands
were detected in both images, and only one false detection
occurred in each image. The false detection of the desktop
computer in the middle of the image is present in almost
every image because the computer’s color and texture are
in fact similar to that of a hand. This kind of false positive

Table 1. Performance comparison between a system with only the boosted classi-
fier cascade and our complete hand detector system in terms of the
number of false positive detections per image. Six consecutive frames
from the test set were selected for the comparison.

Image name  Number of false positive from  Number of false positive from
system with only boosted our system (boosted classifier
classifier cascade cascade + post processor)

Image 1 749 1
Image 2 762 3
Image 3 811 1
Image 4 933 1
Image 5 1047 1
Image 6 978 1
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Figure 7. Hands detected by our complete hand detector system. All detections are scaled down to standard size 24x24 pixels

for easy visualization.

detection on a stationary object will be eliminated if we add
motion information between two consecutive frames in the
video sequence.

4, Conclusion

From the literature, we know that hand detectors in-
corporating AdaBoost and Haar-like features perform quite
well in applications like sign-language recognition, in which
images are relatively high resolution with less cluttered back-
ground and constrained hand gesture. These approaches
suffer from high false positive rates and low detection rates
when applied to detect less constrained hands in low resolu-
tion and cluttered images. However, we find that these limita-
tions can be overcome with the help of a simple but efficient
post processing system — in our experiments, the prototype
hand detection system achieved excellent performance on
its test set. One important limitation of this work is that both
the training and testing image sequences were captured in
the same environment. This means that the performance of
our current system is likely background dependent; if so, the
reported performance is optimistic. However, the current
results are encouraging, and in future work we plan to explore
integrating our system with gesture recognition and human
action recognition systems.
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