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Abstract

For a multivariate normal population, Kudo (1963), Shorack (1967) and Perlman (1969) derived the likelihood ratio
tests of the null hypothesis that the mean vector is zero with a one-sided alternative for a known covariance matrix, a partially
known covariance matrix and a completely unknown covariance matrix, respectively. Because these tests may be tedious to
use, Tang, Gnecco and Geller (1989) developed approximate likelihood ratio tests and Follmann (1996) proposed one-sided
modifications of the usual omnibus chi-squared test and Hotelling’s T test. Also, we consider a modification of Follmann’s
test (the new test) to include information of off diagonal of covariance matrix , which adjusts for possibly unequal variances.
For the non-normal population, Boyett and Shuster (1977) proposed a nonparametric one-sided test and we use their tech-
nique to develop nonparametric versions of Perlman’s test, Follmann’s test, the new test and the Tang-Gnecco-Geller test.
Following Chongcharoen, Singh and Wright (2002), who considered known and partially known covariance matrices,
we study the powers of these one-sided tests for an unknown covariance matrix using Monte Carlo techniques and make

recommendations concerning their use.

Keywords: Follmann’s test,Kudo’s test, Perlman’s test, Simple order, Simple tree order, Tang-Gnecco-Geller test and

Boyett and Shuster test

1. Introduction

Suppose one uses a matched-pair design to compare
the multivariate responses of two treatments. If the responses
are p dimensional and 0 = (0,,0,,...,0,)" is the difference,
treatment one minus treatment two, of the mean responses,
then one may test the null hypothesis, H : 6, =6, =,...,.=
0, =0, to determine if there is a difference in the two treat-
ments. Furthermore, if one believes that for each coordinate,
the mean responses for treatment one are at least as large as
those for treatment two, then the alternative can be
constrained by H, : 6, >0 fori=1,2, ..., p.
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Based on a random sample from the normal distribu-
tion with mean 6 and covariance matrix V, Kudo (1963),
Shorack (1967) and Perlman (1969) derived the likelihood
ratio test of H versus H, - H for the cases in which V is
known, known up to a multiplicative constant and completely
unknown, respectively. Because the likelihood ratio tests
with restricted alternatives are complicated to use, Tang,
Gnecco and Geller (1989) proposed an approximate likeli-
hood ratio test, and Follmann (1996) proposed one-sided
modifications of the usual x* and Hotelling’s T tests of H,
versus ~ H, that are easier to implement. Using exact com-
putations and Monte Carlo methods, Chongcharoen, Singh
and Wright (1998) compared the performance of Kudo’s
test, Follmann’s test, a new test, which is a modification of
Follmann’s test, the permutation test of Boyett and Shuster
and the Tang-Gnecco-Geller test for a known covariance
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matrix, and for a partially known covariance matrix, they
compared the powers of these tests with Kudo’s test replaced
by Shorack’s test.

Because situations with a completely unknown co-
variance matrix occur frequently in practice, it is important to
study that case, too. In his Ph.D. dissertation, Chongcharoen
studied the power of these one-sided tests for unknown co-
variance matrices with equal variances. Those results are
summarized here, and unequal variances are considered,
as well as tests obtained by combining the Boyett-Shuster
technique with Follmann’s test, the new test, Perlman’s test
and the Tang-Gnecco-Geller test.

Throughout this paper, we suppose that X,, X,,..., X,,
is a random sample from a p-dimensional multivariate normal
distribution with unknown mean 0 = (6,,0,,...,0,)" and un-
known positive definite covariance matrix V. We consider
testing the null hypothesis H;: 6 = 0 versus H, - H, where
H,:0e Qpand Qp={x :x,20fori=1.2, ..., p}isthe p-
dimensional nonnegative orthant. The sample mean and co-
variance are

X = zﬁand S, = Z—(X‘ “X=X)
i-1 i-1 n
and itis well known that S_is positive definite with probabil-
ity one.

The hypotheses H, and H, also arise in the one-way
analysis of variance when the means are known to satisfy an
order restriction. For observations which come from k
normal populations whose means are known to satisfy a
simple ordering, i.e. H: w, <y, <,..,<p,, Bartholomew
(1959a, 1959h, 1961) derived the likelihood ratio test of
W = U, =,...,= W, with the alternative restricted by H, for
the cases of known variances and variances known up to a
multiplicative constant. Suppose the observations are Y, for
j=1,2,...,n,andi=1,2, ..,k andthe sample means are
Y, Y,,.. Y With known varlances 01_62 \ e OO,
Kudo (1963) noted that for p=k-1, X; = Y=Y, fori=
1,2, .., p, X=(X}, X, X)) and 9 = E(X), the hypo-
theses on p are equivalent to H and H, above, and Bartho-
lomew’s and Kudo’s tests are equwalent With w, = n, /c

fori=1,2, ..., k, the correlation matrix for X satisfles
WiWi+2 ;
pi = - fori=12,..p-1
Li+l \/(Wi +Wit1) (Wig1 + Wi42)
andpij =0forl|i— j|>2.
(1.1)

If the weights are equal, i.e. w, = w,= ...
matrix in (1.1) is denoted by R..

Also, Bartholomew considered an arbitrary partial
order restriction, which includes the simple tree order, i.e.
H.: w<p;forj=2,3, ..., k. For this ordering, one takes
differences, X; = Y-V, for i=1,2, ..., p, and with p=
k-1 and W; as above, the correlation matrix of X = (X,,X,
- X,)" satisfies

=w,, the correlation
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Wit Wj+1

Pi,j = forl<i=j<p.
" \/(Wi+1+W1)(Wj+1+W1)

(1.2)
If the weights are equal, i.e. w, = w,=... =w,, the correlation
matrix in (1.2) is denoted by R,. We compare the powers of
the proposed tests for several correlation matrices including
R.andR..

2. Perlman’s Test

Perlman (1969) showed that the likelihood ratio test
(LRT) of H, versus H, - H_ rejects for large value of

B X'SEX

1+(X=X")'SHX-X)'
where X" is the restricted maximum likelihood estimate of 0
under H,. In particular, X~ minimizes (X-6)'S; (X-6)
subject to 6 € Q, and can be computed using a quadratic
programming routine such as QPROG in IMSL. The null
hypothesis distribution of U is given by the following: for
any real number t,

2.1)

P(U >1) = _EOQ(j,p;w P(x§/uf-p = 1),
J =

22)
where Xq isachi- squared random varlable with g degrees of
freedom (Xo = () and xl and Xn_p are independent. The
weights Q(j, p; V), j =0,1, ..., p, are called level probabili-
ties, are nonnegative, sum to one and can be computed using
the FORTRAN programs by Bohrer and Chow (1978) and
Sun (1988) for p<10. Perlman (1969) obtained the maximum
of (2.2) over all positive definite V. However, using this
maximum makes the test too conservative. Following Lei
et al. (1995), we approximate Q(j, p; V) by using S_in place
of V.

3. Follmann’s Test

For V completely unknown, Follmann (1996) used the
unbiased sample covariance, S =n'S, /(n-1), in place of V.
Then Follman’s statistics are

P

F=nX'$'X and ) X (3.1)
j=1

With Fonp the F-distribution with degrees of freedom p and
n-p, under H,
n-1
(-Dpp
n-p
cf. Anderson (1984). Follmann’s test rejects H if

P
s e ad 3K 50,

n-p j=1

FF = nX'StX ~
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where F, is the 1-20™ quantile of the central F-distribu-
20;p,n-p

tion with p and n-p degrees of freedom. After his Theorem

2.1, Follmann (1996) noted that the significance level of this

test is a..
4. The New Test

ForV known, Chongcharoen, Singh and Wright (2002)
proposed a new test, which is Follmann’s test applied to
Zj=V" Xj . However, Chongcharoen and Wright (2002)
recommend Follmann’s test applied to

W; =BX; where B;; =1/~Nii andB,; =0forl1<i= j<p.

]
when V is completely unknown, consider a known positive
definite pxp matrix A and n = A6. Follmann’s test of n = 0
versus n > 0 is based on A X, ~ N(n, AVA"). Now
z (AX; —AX) (AX; —AX)’
n-1

Follmann’s statistics based on AX are

=ASA’.

SV (ARAN LAY - ngrdisg - (N=1)p " AT
n(AX)'(ASA") ™ (AX) =nX'S XNTpr p and D" (AX),.
_ =
If one replaces Awith B where éii =1/ j and BIJ

forl<i=# j<
on

p, then the new test in this setting is based

eSonx &1xkand & (BX);,
j=1

and H, is rejected with approximate significance level o if

(4.1)

s> M=Dpp g D (é)?)
a;p.N-p
n-p j=
The significance level is approximate because this
choice of A depends on the data. We investigate the accuracy
of this approximation by Monte Carlo techniques in section
11.

> 0.

5. An Approximate Likelihood Ratio Test

Tang, Gnecco and Geller (1989) proposed an approxi-
mate likelihood ratio test for V known. With

o p
Z =Jn VX~ NV, )and T=>(Z,v0)?,
=1
where Z. v 0 denotes the maximum of Z and 0, H, is rejected
if T is too large. The null hypothesis distribution of this test
statistic is given for any real number t by

P(T>t) = Zp:(cg’/zp)P(xf > t),

j=0
where C? denotes the number of combinations of p things
taken j at atime. They gave the critical values of the test for p

up to 10 in their paper.
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When V is completely unknown, they suggested that
one could simply replace V by S in the covariance known
case. However, in the Monte Carlo study it was found that
with their critical values, the significance levels of this test
can be quite large. For instance, with p=3 and a target level
of « =.05, the estimated significance level for this test with
V = R, is 0.242 for n=6 and 0.086 for n=20, and the
corresponding values for V = R_ are 0.259 for n=6 and 0.085
for n=20.

Thus we adjusted by letting

Z =J/n§¥? X and

T = _ilmax(zj,O)z' (5.1)
j=

Under the null hypothesis,

77 = nxgtx - 0700
n-p

and combining this result with the null hypothesis distribu-

tion given in Tang et al. (1989), suggests the following

approximation: under H; for any real number t,

* p B
P(T 2t)= X (CJP/Zp)P{Fj,n_p L0 p)]
1=0 j(n-1)
(5.2)
The accuracy of this approximation is studied in
subsection 11.

6. Nonparametric One-Sided Tests in Multivariate Analysis

Boyett and Shuster (1977) proposed a nonparametric
multivariate one-sided test. For a matched pair design, X, is
the difference, treatment minus placebo, fori=1, 2, ..., n
We consider the null hypothesis that the responses for the
treatment and placebo are interchangeable, which means that
0 =0, where 6 = E(X), provided this mean exists. If the
treatment is believed to have mean responses at least as large
as the placebo, one may want to test H  versus H, - H , where
these hypotheses are defined as in section 1. Let

E, ={(c.X],...,

Under the null hypothesis that treatment and placebo are
equivalent, conditionally on the set E , X = (X}, X},---, X})’
has a uniform distribution over E,. Let

2

i
— =12 ..p
Eln—l J P

then the t statistic corresponding to the j" component is given
by

c,X!):c, =1lor -1}

X=X, Xy, X)) and ()% =

_ X 6.1)
S
) -
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andt_ (X,)=max {t,

calculated as above and
Iy) = {1 if tmax (¥) 2 tmax (Xq)
0if tmax (¥) < tmax (Xa),
then the significance level for this randomized test is
J
wex 0 62)
y By 2

ty ..t} Fory eE, lett  (y)be

7. Boyett-Shuster—PerIman Test

This test is a combination of the Boyett-Shuster tech-
nique and Perlman’s test obtained by simply replacing the t

statistic with Perlman’s statistic. Let X,, X,,..., X, X, and
E, be defined as in section 6. Thus, Perlman’s statistic is

Y * Q137 %
BS®) (Xg) = —— = X 1X_ = (7.1)
1+ (X = X*)'Sy" (X = X*)
where X" is the restricted maximum likelihood estimate of

0 under H,. Fory € E,, let BS® (y) be calculated as BS®
(X,), and let

1if BSP(y) = BS®(X,)
W)= ) (°)
0if BSY"/(y) < BSY/(Xy).
The significance level for this randomized test is

5 %)

ye El 2n

(7.2)

8. Boyett-Shuster—Follmann Test

With X, X,,.., X, Xy and E, be defined as in
sections 6 and 7, Follmann’s statistic may be written as

BS(P (X4) = nX'S7IXI ,
[ZXJ>O]
J=1

where | denotes the indicator function. Fory € E,, let BS®
(y) be calculated as BS®(X_)above, and let

0 if BS(® (y)<BSP (Xy).
Therefore, the significance level for this randomized test is

s W)

yEEl 2I"I

NG (F
JF()Z{llf BS® (y) =Bs( (X,)

9. Boyett-Shuster—New Test

With X, X,,..., X, X and E, defined as in the last
three sections, the statistic for the new test may be written
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Bs(N) (xq) = nX’§_1XI[ p ]
> (BX)j>0
=1

Fory € E,, let BS™(y) be calculated as BS™(X ) and

1if BS™ (y)=Bs™N) ()
In(y)= ) N N
0 if BS™N) (y)<BS™ (Xy).

The significance level a can be computed as in the last three
tests.

10. Boyett-Shuster-Tang-Gnecco-Geller Test

We use the T* statistic from the Tang-Gnecco-Geller
test in place of the t statistic in the Boyett-Shuster test.
Hence, the test statistic for this test is

p
BS(M (X4) = X max(Z;, 0)2
j=1

where Z = n §$Y2X. Withy € E, and

1if BS™ (y)=Bs(M (X,)
O =0 e M
0if BS( (y)<BS™ (Xy) ,

the significance level o can be computed as for the four tests
above.

11. Power Comparisons

For p=3 and 6, the performances of these nine tests
are studied by Monte Carlo techniques for multivariate
normal distributions and R, and R, that is for the simple
order and the simple tree order correlations with equal
weights and k=4 and 7 (p = k-1) as well as some other forms
of correlation structures. Recall, R, and R are given in (1.1)
and (1.2), respectively. Also, we consider several variance
patterns including increasing variances, decreasing variances,
V-shaped variances and inverted V-shaped variances. We
discuss the relationship between symmetry properties of the
power functions and variance patterns below.

In addition to the correlation matrices in (1.1) and
(1.2), which we denote by R .and R ,, we also consider the
followmg correlation matrlces R=[p, ]p

5 (R, )Wlthp —-O4(01)forl<| j<p,

R3:4 Wlth Py, = p23 =-0.4andp,, =04,

R,,withp,,=p,,=0.4and p,, =-0.4, and

R,, with p, = P14=P55=P2=P3s=Pss=Ps=Pys="0-4 and
the other p;=0.4 for i = j.

Let a be a positive constant, [x] the largest integer less
than and equal to x and o ; the standard deviation of the jth

component of X, i.e. 1/(\/”-) forj=1,2,...
increasing variances is

, p. The form for

cj:1+a(j-1)



S. Chongcharoen / Songklanakarin J. Sci. Technol. 31 (3), 351-359, 2009

with a=p for p=3 and 6, the form for V-shaped variances is

~ p+1| .., . p+l
S _1+a({7}— j)forj < Tand

~ p+l| . . ptl
o _l+a({7}+1— p — 1)forj > —5—

with a=3 for p=3 and a=5 for p=6, and the form for inverted
V-shaped variances is

5| :1+a(j-1)forjs'°7+1 and

o =1+a(p—j)f0rj>pT+1
with a=4 for p=3 and a=5 for p=6. We obtain the co
variances from the relation

Vij = ojo jpjj for 1<i,j<p.

The power functions of the tests considered here have
the following symmetry property: the power at (u,V) is the
same as at (Pp,PVP') where P is a px p permutation
matrix. Thus, the variance patterns considered here provide
information about other patterns. Even if one pattern is a
permutation of another pattern, such as the V-shaped and
inverted V-shaped patterns with p=6, which are described
above, considering the second pattern may give information
about correlation structures or mean vectors that were not
considered with the first. However, to save some space,
decreasing variance patterns are not discussed.

Also, all of the tests except Follmann’s test and the
Tang-Gnecco-Geller test are scale invariant in the following
sense: if A=diag(a,,a,,...,a,) with >0 for 1<i<p,
then the power function at (u,V) is the same as at (Ap,
AVA). Thus, considering unequal variances, provides infor-
mation about the power of these tests for equal variances at
the new alternatives, Au, by taking a, =1/c; .

For fixed dimension p, we constrained the ratio of
maximum variance to minimum variance to be the same for
each pattern of variances considered. We consider mean
vectors of the form, 6 = cu with ¢ a constant and v a vector.
We refer to the vector v as a direction and choose ¢ so that
the usual F test has power equal to 0.70 provided v = 0. For
example, for p=3 we consider directions (0,0,0), (0,0,1),
(0,1,0), (1,0,0) (0,1,1), (1,0,1), (1,1,0) and (1,1,1). We used
10,000 iterations and recorded the proportion of rejections
for these tests. All of these tests are conducted using the level
of significance a = .05. The proportion of rejections for
Perlman’s test, Follmann’s test, the new test, the Tang-
Gnecco-Geller test, the Boyett Shuster test, the Boyett-
Shuster-Perlman test, the Boyett-Shuster-Follmann test, the
Boyett-Shuster-New test and the Boyett-Shuster-Tang-
Gnecco-Geller test are denoted by

Tp T TN TT TRs TRSP ' TRBSF ' BSN °
and 7t BST , respectively
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Some of 108 tables, which are the results from the
power computations, are given here. For all nine tests, every
V and n considered with both p=3 and p=6, the Monte Carlo
power estimates at the null hypothesis are close to 0.05.
The maximum difference is 0.005 and the Monte Carlo
power estimates of the non-null powers of Hotelling’s T?
were between 0.6901 and 0.7183. Before considering the
four variance patterns, we note the following:

e With n>20, for both p=3 and 6, every variance
pattern and every correlation matrix considered, the power
of the Boyett-Shuster test was less than 0.7 (the power of
Hotelling’s T, which is an omnibus test) for some alterna-
tive considered here. There are some apparent exceptions.
For instance, with inverted V-shaped variances, p=6, R,
and n=20, the minimum power of the Boyett-Shuster test
given in the table is 0.738. However, because this test is
scale invariant, alternatives considered for the case of equal
variances, p=6, R;, and n=20 also provide alternatives for
inverted V-shaped variances, and some of those alternatives
had power as low as 0.662. The same is true of the other
apparent exceptions. Thus, we do not consider the Boyett-
Shuster test further for n>20.

e For the case of equal variances, Follmann’s test
tends to have slightly larger powers than the new test. In par-
ticular, the differences, 1 -, for p=3 and p=6, each
correlation matrix and each sample size, range from -0.003
to 0.016, their median is 0 and their mean is 0.0014. Thus, if
the variances are equal, then the loss in power due to using
the new test in place of Follmann’s test is not large. On the
other hand, the same difference for all the cases considered
here ranges from -0.313 to 0.117, has median -0.047 and
mean -0.074. One might like to determine when Follmann’s
test is preferred over the new test. However, the largest differ-
ence in these powers, 0.117, occurs for p=6, R ,, increasing
variances, n=20 and p = ¢(0,0,0,0,0,1), but for the same p, V,
nand p=c(1,1,1,1,1, 1), the difference is -0.130. So, in this
case, the choice between these two tests depends on the mean
vector. Hence, if one is concerned that the variances may be
unequal, we recommend the new test. We do not consider
Follmann’s test further.

e Forevery p, V and alternative considered with n>
20, Perlman’s test and its Boyett-Shuster version, i.e. the
Boyett-Shuster-Perlman test, have essentially the same
powers. The same is true of Follmann’s test, the new test,
and the Tang-Gnecco-Geller test. In particular, for all such
cases,

-0.02 < Tp — T BSP e
T - T < 0.012
BST

and these differences have median and mean about -0.001.
While the Boyett-Shuster versions are more complicated to
use, they should be considered if the normality assumption
were in question. For p=3 and n=6, using the Boyett-Shuster
version of these tests could result in a significant loss in
power for some directions. The loss is more severe for
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Perlman’s test and the Tang-Gnecco-Geller test and ranges
from 0.003 to 0.129 with median and mean about 0.065. For
Follmann’s test and the new test, the loss ranges from 0.003
to 0.058 with median and mean about 0.05. For p=6 and
n=10, these losses are not as severe, possibly because n is
larger. For p=6 and n=10, the typical loss if one uses the
Boyett-Shuster-Perlman test in place of the Perlman test is
about 0.02, and in the cases of Follmann’s test, the new test
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and the Tang-Gnecco-Geller test, the typical loss is less than
0.01.

Equal variances: With p=3 and 6 and the various
correlation matrices considered, Tables 1-3 give the power
estimates for the nine tests in the case of equal variances. In
comparing two tests, we are looking for one that performs
well over the entire alternative region. So we consider the
minimum of the powers over the alternatives considered. If

Table 1. Numerical comparisons for power of the tests for simple order with equal weights, p=3, n=6

Direct c Perl Foll ONew New

Tang

BS BSP BSF OBSN BSN BST

(0,0,0)
1,1,1)
(1,0,1)
0,1,1)
(1,1,0)
(1,0,0)
(0,1,0)
(0,0,1)

0.000
0.747
1.182
1.008
1.008
1.930
1.671
1.930

0.053
0.930
0.900
0.904
0.900
0.856
0.872
0.864

0.051
0.890
0.889
0.890
0.881
0.880
0.888
0.892

0.049
0.890
0.888
0.889
0.880
0.869
0.884
0.881

0.050
0.890
0.889
0.889
0.880
0.878
0.884
0.890

0.050
0.905
0.902
0.903
0.895
0.886
0.898
0.896

0.046
0.577
0.775
0.662
0.667
0.894
0.819
0.898

0.050
0.817
0.801
0.808
0.803
0.792
0.791
0.805

0.047
0.838
0.836
0.843
0.830
0.830
0.836
0.836

0.047
0.838
0.836
0.842
0.829
0.819
0.832
0.826

0.047
0.837
0.836
0.842
0.829
0.828
0.832
0.834

0.048
0.850
0.846
0.847
0.843
0.830
0.840
0.840

Min. 0.856 0.880 0.869 0.878

0.886

0.577 0.791 0.830 0.819 0.828 0.830

Average 0.889 0.887 0.883 0.886

0.898

0.756 0.802 0.836 0.832 0.834 0.842

Table 2. Numerical comparisons for power of the tests for simple tree order with equal weights, p=3, n=6

Direct c Perl Foll ONew New

Tang

BS BSP BSF OBSN BSN BST

(0,0,0)
(1,1,1)
(1,0,1)
(0,1,1)
(1,1,0)
(1,0,0)
(0,1,0)
(0,0,1)

0.000
1.930
1.671
1.671
1.671
1.930
1.930
1.930

0.048
0.826
0.797
0.800
0.797
0.763
0.768
0.774

0.050
0.880
0.886
0.887
0.884
0.858
0.867
0.868

0.050
0.880
0.873
0.873
0.868
0.784
0.792
0.793

0.050
0.880
0.885
0.886
0.883
0.847
0.856
0.855

0.049
0.895
0.849
0.850
0.848
0.835
0.842
0.844

0.048
0.995
0.938
0.935
0.940
0.898
0.901
0.904

0.045
0.723
0.732
0.732
0.728
0.726
0.725
0.735

0.045
0.830
0.838
0.836
0.829
0.814
0.815
0.814

0.045
0.830
0.825
0.822
0.814
0.741
0.742
0.741

0.450
0.830
0.837
0.835
0.828
0.803
0.804
0.802

0.046
0.840
0.784
0.789
0.783
0.772
0.771
0.786

Min. 0.763 0.858 0.784 0.847

0.835

0.898 0.723 0.814 0.741 0.802 0.771

Average 0.789 0.876 0.838 0.870

0.852

0.930 0.729 0.825 0.788 0.820 0.789

Table 3. Numerical comparisons for power of the tests for simple order with equal weights when p=6 and n=10

Direct c Perl Foll ONew New

Tang BS BSP BSF OBSN BSN BST

(0,0,0,0,0,0)
(1,1,1,1,1,1)
0,1,1,1,1,1)
0,0,1,1,1,1)

(0,0,0,1,1,1)
(0,0,0,0,1,1)
(0,0,0,0,0,1)

0.000
0.273
0.302
0.364
0.485
0.750
1.560

0.051
0.954
0.948
0.936
0.916
0.890
0.849

0.049
0.866
0.866
0.865
0.865
0.873
0.869

0.049
0.866
0.866
0.865
0.864
0.866
0.842

0.050
0.866
0.866
0.865
0.865
0.873
0.869

0.052
0.910
0.907
0.905
0.903
0.902
0.893

0.053
0.268
0.270
0.308
0.398
0.622
0.959

0.049
0.912
0.904
0.892
0.879
0.864
0.840

0.052
0.864
0.865
0.862
0.865
0.872
0.868

0.052
0.870
0.871
0.869
0.872
0.868
0.846

0.050
0.859
0.861
0.860
0.863
0.869
0.864

0.053
0.910
0.908
0.901
0.899
0.898
0.885

Min. 0.849 0.865 0.842 0.865

0.893 0.268 0.840 0.862 0.846 0.859 0.885

Average 0.916 0.867 0.862 0.867

0.903 0.471 0.882 0.866 0.866 0.863 0.900
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the minimum powers for two tests are close, then we consider
their average powers. The tables give minimum and average
powers. The results are summarized below.

e Only Perlman’s test has power greater than
Hotelling’s T for every p, V, n and every direction consid-
ered.

e For small n, i.e. n=6 if p=3 and n=10 if p=6, the
Boyett-Shuster test is preferred for the simple tree correla-
tion matrix (R,, and R ,), and in fact this is true for all
variance patterns Thus for small n, we recommend the
Boyett-Shuster test if all of the correlations seem to be posi-
tive. For R, , R ,R,; and R, ., the Tang-Gnecco-Geller test
is preferred. Hence, for small n, we recommend the Tang-
Gnecco-Geller test if none of the correlations seem to be
positive. For R,,, R, and R_,, the new test is preferred.
Therefore, for small n and a mixture of positive and negative
correlations, we recommend the new test.

e For moderate n (n=20) and p=3, we recommend
Perlman’s test. Perlman test and the Tang-Gnecco-Geller test
have similar powers for R, ,and R, , and Perlman’s test is pre-
ferred for R, ,R, andR,.. In fact for R, , the power of the
Tang-Gnecco- GeIIer test |s less than Hotelling’s T for some
alternatives considered. For n=20 and p=6, Perlman test and
the Tang-Gnecco-Geller test have similar powers for R
The Tang-Gnecco-Geller test is preferred for R., and R
and Perlman’s test is preferred for R ,. As with p= 3 forR,,,
the power of the Tang-Gnecco- GeIIer test is less than
Hotelling’s T* for some alternatives considered. Thus, for
p=6 and n=20, we recommend the Tang-Gnecco-Geller test if
the non-zero correlations are of the same sign and Perlman’s
test if their signs are mixed. For p=6, n=30 and equal vari-
ances, the power estimates for these tests were obtained. For
n=30, Perlman’s test is preferred except for R, and in that
case, the Tang-Gnecco-Geller test has slightly larger mini-
mum power, but Perlman’s test has slighly larger average
power. Hence, for p=6 and n=30, we recommend Perlman’s
test.

6,1’
6,3’

e For large n, we recommend Perlman’s test. It is
the preferred test except for for R, and as with n=30, the
Tang-Gnecco-Geller test has slightly larger minimum power,
but Perlman’s test has slighly larger average power.

Unequal variances: For p=3 and 6 and the various
correlation matrices and variance patterns considered, Tables
4-6 give the power estimates for the nine tests. We now
attempt to summarize these results for the cases with unequal
variances.

e For small n (n=6 for p=3 and n=10 for p=6), as
with equal variances, the Boyett Shuster test is preferred for
the simple tree correlation matrices (R,, and R ,). For the
cases with no positive correlations (Rsl, a3 Rg; and R ),
the Tang-Gnecco-Geller test is preferred. Actually, forR,, it
appears from the tables for increasing variances, V- shaped
variances and inverted V-shaped variances that the Boyett-
Shuster test has larger minimum power than the Tang-
Gnecco-Geller test. However, because the powers of the
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Boyett-Shuster test and the new test are scale invariant, the
alternatives for the case of equal variances can be trans-
formed to alternatives for these variance patterns. Thus, when
these alternatives are included, the minimum powers for the
Boyett-Shuster test and the new test are 0.798 and 0.864,
respectively. So the new test would be preferred over the
Boyett-Shuster test for this correlation matrix. Furthermore,
for this correlation matrix and all four variance patterns, the
Tang-Gnecco-Geller test has slightly better powers than the
new test. For R, ,, R, and R;,, we recommend the new test.
For R, ,, Perlman’s test has similar powers, but it is more
complicated to use. Also, for R, ,, it appears in the tables for
increasing, V-shaped and inverted V-shaped variances that
the Boyett-Shuster test would be preferred. But, as above,
when the alternatives derived from the case of equal variances
are included, the minimum powers for the Boyett-Shuster
test and the new test are 0.854 and 0.876. For that reason,
we also have recommended the new test for R, ,. Thus, as in
the case of equal variances and small sample S|zes we re-
commend the Boyett-Shuster test if all the correlations are
positive, the Tang-Gnecco-Geller test if there are no positive
correlations and the new test if the are both positive and
negative correlations.

e For moderate n (n=20) and p=3, we recommend
Perlman’s test. One could use the Tang-Gnecco-Geller test
for R, and R, ,, but it is desirable to be able to recommend
one test for all covariance matrices. For p=6, Perlman’s test
is preferred for R |, R, and R, ,, and in fact, Perlman’s test
is the only one with minimum power greater than that of
Hotelling’s T? for R;, For R;,, it appears from the table for
inverted V-shaped variances that the Tang-Gnecco-Geller
test is preferred. However, all of these tests are permutation
invariant, and including the alternatives for V-shaped vari-
ances, the minimum powers for the Tang-Gnecco-Geller test
and Perlman’s test are 0.663 and 0.736, respectively. For

63, the Tang-Gnecco-Geller test is preferred for all of the
variance patterns considered. Thus, for moderate n and possi-
bly unequal variances, we recommend Perlman’s test except
for larger p (p=6) and all correlations negative, and in the
latter case, we recommend the Tang-Gnecco-Geller test. It
should be noted that for equal variances, the Tang-Gnecco-
GeIIer test performed at least as well as Perlman’s test for

, and R, but for unequal variances, Perlman’s test is
preferred for these two correlation matrices. Also, based on
the power estimates for p=6 with equal variances, we con-
jecture that Perlman’s test could be used for all covariance
matrices with n=30.

e As in the case of equal variances, for large n, we
recommend Perlman’s test. For R_ ,, the Tang-Gnecco-Geller
test has powers like Perlman’s test and could be used with no
loss in power. For R, and inverted V-shaped variances, it
appears that the Tang- Gnecco Geller test would be preferred
to Perlman’s test. However, if one includes the alternatives
derived from V-shaped variances, the minimum powers of
the Tang-Gnecco-Geller test and Perlman’s test are 0.627 and
0.735, respectively.
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Table 4. Numerical comparisons for power of the tests for the simple order correlation and increasing covari-

ance structure at a=2 with p=3 and n=6

Direct c Perl Foll ONew New Tang BS BSP BSF OBSN BSN BST

(0,0,0) 0.000 0.053 0.054 0.050 0.050 0.050 0.046 0.050 0.051 0.047 0.047 0.048
(1,1,1) 1417 0921 0.882 0.885 0.886 0.899 0.733 0.820 0.831 0.834 0.834 0.842
(1,0,1) 1.782 0.892 0.870 0.882 0.883 0.894 0.860 0.807 0.818 0.829 0.830 0.837
(0,1,1) 3666 0903 0.892 0.890 0.891 0905 0.670 0.809 0.839 0.837 0.838 0.848
(1,1,0) 1529 0.898 0.855 0.881 0.881 0.896 0.774 0.810 0.803 0.828 0.828 0.836
(1,0,0) 1930 0.856 0.771 0876 0.878 0.886 0.894 0.792 0.726 0.826 0.828 0.833
(0,1,0) 5014 0872 0.887 0.882 0.884 0.897 0819 0.791 0.835 0.830 0.832 0.843
(0,0,1) 9649 0.864 0.892 0870 0.890 0.892 0.898 0.805 0.836 0.815 0.834 0.836

Min. 0.856 0.771 0.870 0.878 0.886 0.670 0.791 0.726 0.815 0.828 0.833

Average 0.887 0.864 0.881 0.885 0.896 0.807 0.805 0.813 0.828 0.832 0.839

Table 5. Numerical comparisons for power of the tests for the simple tree order correlation and increasing

covariance structure at a=2 with p=3 and n=6

Direct c Perl Foll ONew New Tang BS BSP BSF OBSN BSN BST

(0,0,0) 0.000 0.048 0.050 0.050 0.050 0.049 0.048 0.045 0.046 0.046 0.045 0.048
(1,1,1) 2227 0.831 0.871 0.883 0.883 0.895 0.969 0.754 0.821 0.832 0.832 0.838
(1,0,1) 2027 0.797 0.797 0.876 0.870 0.873 0.925 0.744 0.756 0.830 0.825 0.821
(0,1,1) 5909 0.800 0.883 0.735 0.882 0.779 0.938 0.733 0.834 0.689 0.832 0.694
(1,1,0) 2.047 0.795 0.796 0.877 0.874 0.878 0.934 0.736 0.752 0.828 0.825 0.820
(1,0,0) 1930 0.763 0.649 0.869 0.847 0.872 0.898 0.726 0.616 0.825 0.803 0.819
(0,1,0) 5789 0.768 0.862 0.701 0.856 0.824 0.901 0.725 0.810 0.653 0.804 0.747
(0,0,1) 9.649 0.774 0891 0.550 0.855 0.767 0.904 0.735 0.835 0.509 0.802 0.681

Min. 0.763 0.649 0.550 0.847 0.767 0.898 0.725 0.616 0.509 0.802 0.681

Average 0.790 0.821 0.784 0.867 0.841 0.924 0.736 0.775 0.738 0.818 0.774

Table 6. Numerical comparisons for power of the tests for the simple order correlation and increasing covariance

structure at a=2 with p=6 and n=10

Direct c Perl Foll ONew New

Tang BS BSP BSF OBSN BSN BST

(0,0,0,0,0,0) 0.000 0.051 0.049 0.051 0.050
(1,1,1,1,1,1) 0905 0.939 0.853 0.870 0.870
(0,1,1,1,1,1) 1643 0.945 0.870 0.870 0.870
(0,0,1,1,1,1) 2550 0.934 0.862 0.861 0.862
(0,0,0,1,1,1) 4.082 0.914 0.865 0.864 0.864
(0,0,0,0,1,1) 7.301 0.889 0.871 0.859 0.870
(0,0,0,0,0,1) 17.170 0.849 0.869 0.833 0.869

0.053 0.053 0.049 0.050 0.051 0.050 0.050
0.907 0.588 0.905 0.849 0.866 0.866 0.901
0.909 0.315 0.902 0.867 0.867 0.867 0.904
0.903 0.317 0.892 0.858 0.857 0.857 0.896
0899 0.393 0.876 0.859 0.856 0.859 0.89
0.894 0.607 0.863 0.868 0.856 0.868 0.884
0.881 0.959 0.840 0.864 0.828 0.864 0.869

Min. 0.849 0.853 0.833 0.862

0.881 0.315 0.840 0.849 0.828 0.857 0.869

Average 0.912 0.865 0.860 0.868

0.899 0.530 0.880 0.861 0.855 0.864 0.891

In summary, Perlman’s test has the best overall
powers of the nine tests. If n is large (n =100), we recom-
mend Perlman’s test. If n is moderate (n=20), we recommend
Perlman’s test except for p=6 with all non-zero correlations
of the same sign. For moderate n, p=6 and all correlations

negative, we recommend the Tang-Gnecco-Geller test. For
moderate n, p=6 and all other covariance matrices, we re-
commend the Tang-Gnecco-Geller test if the variances are
nearly equal and Perlman’s test if the variances are not equal.
If n is small, we recommend the Boyett-Shuster test when V
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has all correlations positive, the Tang-Gnecco-Geller test
when V has no positive correlations and the new test when
V has negative and positive correlations.

Acknowledgment

Professor Dr., F.T. Wright, Department of Statistics,
University of Missouri-Columbia, for his great suggestions
and writing corrections in this paper. This paper is supported
by the Thailand Research Fund.

References

Bartholomew, D.J. 1959a. A test of homogeneity for ordered
alternatives. Biometrika, 46, 46-48.

Bartholomew, D.J. 1959a. A test of homogeneity for ordered
alternatives 1. Biometrika, 46, 328-335.

Bartholomew, D.J. 1961. A test of homogeneity of means
under restricted alternatives (with discussion). Journal
of the Royal Statistical Society, Series B, 23, 239-281.

Bohrer, R. and Chow, W. 1978. Weights for one-sided multi-
variate inferences. Applied Statistics, 24, 380-384.

Boyett, J.M. and Shuster, J.J. 1977. Nonparametric one-sided
tests in multivariate analysis with medical applica-
tions. Journal of the American Statistics Association,
72, 665-668.

Chongcharoen, S. 1998. One-sided Multivariate Tests. Ph.D.
dissertation, University of Missouri-Columbia.
Chongcharoen, S., Singh, B. and Wright, F.T. 2002.Powers
of some one-sided multivariate tests with the popula-
tion covariance matrix known up to multiplicative
constant. Journal of Statistical Planning and Inference,

107, 103-121.

Conaway, M., Pillers, C., Robertson, T., and Sconing, J. 1991.
A circular cone test for testing homogeneity against a
simple tree order. Canadian Journal of Statistics, 19,
283-296.

Follmann, D. 1996. A simple multivariate test for one-sided
alternatives. Journal of the American Statistics Asso-
ciation, 91, 854-861.

Johnson, R.A. and D.W. Wichern. 1992. Applied Multivari-
ate Statistical Analysis, 3rd Edition. Simon & Schuster.

Kudo, A. 1963. A multivariate analogue of the one-sided test.
Biometrika, 50, 403-418.

Rao, C.R. 1973. Linear Statistical Inferences and Its Applica-
tions, Second Edition. John Wiley & Sons, New York.

Robertson, T., F.T. Wright, and R.L. Dykstra. 1988. Order
Restricted Statistical Inference. John Wiley & Sons,
New York.

Sen, P.K. 1984. Sub hypotheses testing against restricted
alternatives for the Cox regression model. Journal of
Statistical Planning Inference, 10, 31-42.

Shorack, G.R. 1967. Testing against ordered alternatives in
model | analysis of variance: Normal theory and non-
parametric. Annals of Mathematical Statistics, 38,
1740-1753.

Sun, H.J. 1988. A FORTRAN subroutine for computing
normal orthant probability. Communications in Statis-
tics-Simulation and Computation, 17, 1097-1111.

Tang, D., C. Gnecco and N.L. Geller. 1989. An approximate
likelihood ratio test for a Normal mean vector with
nonnegative components with application to clinical
trials. Biometrika, 76, 577-83.

Tang, D. and Lin, S.P. 1997. An approximate likelihood ratio
test for comparing several treatments to a control.
Journal of the American Statistics Association, 92,
1155-1162.



