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Abstract

For a multivariate normal population, Kudo (1963), Shorack (1967) and Perlman (1969) derived the likelihood ratio

tests of the null hypothesis that the mean vector is zero with a one-sided alternative for a known covariance matrix,  a partially

known covariance matrix and  a completely unknown covariance matrix, respectively.  Because these tests may be tedious to

use, Tang, Gnecco and Geller (1989) developed approximate likelihood ratio tests and Follmann (1996) proposed one-sided

modifications of the usual omnibus chi-squared test and Hotelling’s T

2

 test.  Also, we consider a modification of Follmann’s

test (the new test) to include information of off diagonal of covariance matrix , which adjusts for possibly unequal variances.

For the non-normal population, Boyett and Shuster (1977) proposed a nonparametric one-sided test and we use their tech-

nique to develop nonparametric versions of Perlman’s test, Follmann’s test, the new test and the Tang-Gnecco-Geller test.

Following Chongcharoen, Singh and Wright (2002), who considered known and partially known covariance matrices,

we study the powers of these one-sided tests for an unknown covariance matrix using Monte Carlo techniques and make

recommendations concerning their use.
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1. Introduction

Suppose one uses a matched-pair design to compare

the multivariate responses of two treatments.  If the responses

are p dimensional and 

1 2

( , ,..., )

p

   


  is the difference,

treatment one minus treatment two, of the mean responses,

then one may test the null hypothesis, H

0 

: 
1 2

,..., 0

p

     

1 2

,..., 0

p

      , to determine if there is a difference in the two treat-

ments.  Furthermore, if one believes that for each coordinate,

the mean responses for treatment one are at least as large as

those  for  treatment  two,  then  the  alternative  can  be

constrained by H

1

 : 0

i

 
 for i = 1, 2, …, p.

Based on a random sample from the normal distribu-

tion with mean   and covariance matrix V,  Kudo (1963),

Shorack (1967) and Perlman (1969) derived the likelihood

ratio test of H

0

 versus H

1

 - H

0

 for the cases in which V is

known, known up to a multiplicative constant  and completely

unknown, respectively.  Because the likelihood ratio tests

with restricted alternatives are complicated to use, Tang,

Gnecco and Geller (1989) proposed an approximate likeli-

hood ratio test, and Follmann (1996) proposed one-sided

modifications of the usual 

2

 and Hotelling’s T

2

 tests of H

0

versus ~ H

0

 that are easier to implement.  Using exact com-

putations and Monte Carlo methods, Chongcharoen, Singh

and Wright (1998) compared the performance of Kudo’s

test, Follmann’s test, a new test, which is a modification of

Follmann’s test, the permutation test of Boyett and Shuster

and the Tang-Gnecco-Geller test for a known covariance
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matrix, and for a partially known covariance matrix, they

compared the powers of these tests with Kudo’s test replaced

by Shorack’s test.

Because situations with a completely unknown co-

variance matrix occur frequently in practice, it is important to

study that case, too.  In his Ph.D. dissertation, Chongcharoen

studied the power of these one-sided tests for unknown co-

variance matrices with equal variances.  Those results are

summarized here, and unequal variances are considered,

as well as tests obtained by combining the Boyett-Shuster

technique with Follmann’s test, the new test, Perlman’s test

and the Tang-Gnecco-Geller test.

Throughout this paper, we suppose that 

1 2

, ,...,

n

X X X

is a random sample from a p-dimensional multivariate normal

distribution with unknown mean 

1 2

( , ,..., )

p

   


  and un-

known positive definite covariance matrix V.  We consider

testing the null hypothesis H

0 

:  = 0  versus H

1

 - H

0

 where

H

1 

:   

p

 and 

p

 = {x : x

i

  0 for i = 1,2, …, p} is the p-

dimensional nonnegative orthant. The sample mean and co-

variance are

X

X

n

and S =

(X X)(X X)

n

x

i

'



 

 

 

i

i

n

i

i

n

1 1

,

and it is well known that S

x

 is positive definite with probabil-

ity one.

The hypotheses H

0

 and H

1

 also arise in the one-way

analysis of variance when the means are known to satisfy an

order  restriction.  For  observations  which  come  from  k

normal populations whose means are known to satisfy a

simple ordering, i.e. H

S

: 

1 2

,...,

k

     , Bartholomew

(1959a, 1959b, 1961) derived the likelihood ratio test of

1 2

,...,

k

      with the alternative restricted by H

S

 for

the cases of known variances and variances known up to a

multiplicative constant.  Suppose the observations are Y

ij

 for

j =1, 2, …, n

i

, and i =1, 2, …, k, and the sample means are

Y Y Y

k1 2

, , , .  With known  variances, 

1

2

,

2

2

,  …., 

k

2

,

Kudo (1963) noted that for p = k-1, i+1

i  i

X Y Y   for i =

1, 2, …, p, 

1 2

( , ,..., )

p

X X X X 
  and  = E(X), the hypo-

theses on  are equivalent to H

0

 and H

1

 above, and Bartho-

lomew’s and Kudo’s tests are equivalent. With w

i

 = 

2

/

i i

n 

for i = 1, 2, …, k, the correlation matrix for X satisfies

 

2

for 1, 2, ..., 1

, 1

( ) ( )

1 1 2

and 0 for | | 2.

w w
i i

i p

i i

w w w w
i i i i

i j
ij







   



 

  

  

(1.1)

If the weights are equal, i.e. w

1 

= w

2 

= ... = w

k

, the correlation

matrix in (1.1) is denoted by R

S

.

Also, Bartholomew considered an arbitrary partial

order restriction, which includes the simple tree order, i.e.

H

T

: 
1 j

   for j = 2, 3, …, k.  For this ordering, one takes

differences, i+1

i  i

X Y Y  Y Y Y

k1 2

, , , . for   i=1, 2, …, p, and with  p =

k-1  and w
i
 as above, the correlation matrix of X = (X

1

,X

2

,

1 2

( , ,..., )

p

X X X X 
  satisfies

1 1

,

1 1 1 1

for 1 .

( ) ( )

i j

i j

i j

w w

i j p

w w w w



 

 

   

 

(1.2)

If the weights are equal, i.e. w

1 

= w

2 

= ... = w

k

, the correlation

matrix in (1.2) is denoted by R

T

. We compare the powers of

the proposed tests for several correlation matrices including

R

S

 and R

T

.

2. Perlman’s Test

Perlman (1969) showed that the likelihood ratio test

(LRT) of H

0

 versus H

1

 - H

0

 rejects  for large value of

U

X S X

X X S X X

*

x

-1

*

x

-1





   

*

*

( ) ( )

,

1

 (2.1)

where 

*

X   is the restricted maximum likelihood estimate of  

under H

1

.  In particular, 

*

X  minimizes (X - )  S  (X - )

x

-1

 

subject to  

p

, and can be computed using a quadratic

programming routine such as QPROG in IMSL. The null

hypothesis distribution of U is given by the following: for

any real number t,

2 2

( ) ( , ; ) ( / ),

0

p

P U t Q j p V P t

n p
j

j

   






(2.2)

where 


q

2

 is a chi-squared random variable with q degrees of

freedom ( )

0

2

0  and 

j

2

 and 

n p

2

 are independent.  TheThe

weights Q(j, p; V), j  = 0,1, …, p, are called level probabili-

ties, are nonnegative, sum to one and can be computed using

the FORTRAN programs by Bohrer and Chow (1978) and

Sun (1988) for p<10. Perlman (1969) obtained the maximum

of (2.2) over all positive definite V.  However, using this

maximum makes the test too conservative.  Following Lei

et al. (1995), we approximate Q(j, p; V) by using S

x

 in place

of  V.

3. Follmann’s  Test

For V completely unknown, Follmann (1996) used the

unbiased sample covariance, 


S n S / (n -1),

x

 in place of V.

Then Follman’s statistics are

F n X S X and X

s

j

j

p

 








.

1

1

(3.1)

With F

p,n-p

 the F-distribution with degrees of freedom p and

n-p, under H

0

,

F n X S X

n p

n p

F

s

p n p











'


~

( )

,

,

1

1

cf. Anderson (1984).  Follmann’s test rejects H

0

 if

F

n p

n p

F and X

s

p n p j

j

p















( )

,

; ,

1

0

2

1


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where F

2;p,n-p

 is the 1-2

th

  quantile of the central F-distribu-

tion with p and n-p degrees  of freedom. After his Theorem

2.1, Follmann (1996) noted that the significance level of this

test is .

4. The New Test

For V  known, Chongcharoen, Singh and Wright (2002)

proposed a new test, which is Follmann’s test applied to

1/ 2

Z V X
i i



 . However, Chongcharoen and Wright (2002)

recommend Follmann’s test applied to

 where 1 /  and 0  for 1 .W BX B V B i j p
ii

i i ii ij

     

when V  is completely unknown, consider a known positive

definite pp matrix A and  = A.  Follmann’s test of  =  0

versus   0 is based on A X

i

 ~ N(, AVA). Now

( ) ( )


.

AX AX AX AX

ASA

i i

i

n

n

  



 





1
1

Follmann’s statistics based on AX  are

n AX ASA AX nX S X

n p

n p

F and AX

p n p j

j

p

( )' (


) ( ) '


~

( )

( ) .

,

 





 







1 1

1

1

If one replaces A with 

ˆ

B  where 

ˆˆ

1 /B S
ii

ii

  and 

ˆ

= 0B

ij

for 1 i j p   , then the new test in this setting is based

on

p

S -1
ˆ ˆ

G n X  S X and ( X) ,

j

j=1

B



(4.1)

and H

0

 is rejected with approximate significance level  if

G

S

  >  

( )n p

n p





1

 F

2;p,n-p

  and 

ˆ

( ) 0

1

p

B X

j

j






.

The significance level is approximate because this

choice of A depends on the data. We investigate the accuracy

of this approximation by Monte Carlo techniques in section

11.

5. An Approximate Likelihood Ratio Test

Tang, Gnecco and Geller (1989) proposed an approxi-

mate likelihood ratio test for V  known.  With

Z n V X N nV I and T Z

j

j

p

  

 





1 2 1 2 2

1

0

/ /

~ ( , ) ( ) ,

where Z

j

  0 denotes the maximum of Z

j

 and 0, H

0

 is rejected

if T is too large.  The null hypothesis distribution of this test

statistic is given for any real number  t  by

P T t C P t

j

p p

j

j

p

( ) ( / ) ( ),  





2

2

0



where C

j

p

 denotes the number of combinations of p things

taken j at a time. They gave the critical values of the test for  p

up to 10  in their paper.

When V is completely unknown, they suggested that

one could simply replace V by 

ˆ

S  in the covariance known

case.  However, in the Monte Carlo study it was found that

with their critical values, the significance levels of this test

can be quite large.  For instance, with p=3 and a target level

of   = .05, the estimated significance level for this test with

V = R

S

 is 0.242 for n=6 and 0.086 for n=20, and the

corresponding values for V = R

T

 are 0.259 for n=6 and 0.085

for n=20.

Thus we adjusted by letting

Z n S X

 /1 2

            and

T Z
j

j

p

*

max( , )




0
2

1

. (5.1)

Under the null hypothesis,

 









Z Z nX S X

n p

n p

F

p n p

'


~

( )

,

,

1

1

and combining this result with the null hypothesis distribu-

tion  given  in  Tang  et  al.  (1989),  suggests  the  following

approximation: under H

0

 for any real number t,

*

( )

( ) ( / 2 )

,

( 1)
0

p

n p
p p

P T t C P F t
j n p

j

j n
j

 



  


 




 

.

(5.2)

The  accuracy  of  this  approximation  is  studied  in

subsection 11.

6. Nonparametric One-Sided Tests in Multivariate Analysis

Boyett and Shuster (1977) proposed a nonparametric

multivariate one-sided test.  For a matched pair design, X

i

 is

the difference, treatment minus placebo, for i = 1, 2, …, n.

We consider the null hypothesis that the responses for the

treatment and placebo are interchangeable, which means that

  = 0, where   = E(X

i

),  provided this mean exists. If the

treatment is believed to have mean responses at least as large

as the placebo, one may want to test H

0

 versus H

1

 - H

0

, where

these hypotheses are defined as in section 1.   Let

E

1

 = {E c X c X c or

n n i1 1 1

1 1     ( ,..., ) :l q1}.

Under the null hypothesis that treatment and placebo are

equivalent, conditionally on the set E

1

, X

d 

= ( , , , )   X X X

n1 2



has a uniform distribution over E

1

.  Let

X X X X and

p

 ( , ,..., )

1 2

( )
*

S

X

n

j

ij

i

n

2

2

1
1









  j  =  1, 2, …, p,

then the t statistic corresponding to the j

th

 component is given

by

t

n X

S

n X

n

j

j

j

j







( )

* 2

2

1

(6.1)
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and t

max

 (X

d

)

 

= max {t

1

, t

2

, …, t

p

}. For y  E

1

, let t

max

 (y) be

calculated as above and

max max d

max max d

1 if t (y) t (X )

J(y)

0 if t (y) t (X ),












then the significance level for this randomized test is

 




J y

n

y E

( )

2
1

. (6.2)

7. Boyett–Shuster–Perlman Test

This test is a combination of the Boyett-Shuster tech-

nique and Perlman’s test obtained by simply replacing the t

statistic with Perlman’s statistic. Let 

1 2

, ,...,

n

X X X , 

d

X  and

E

1

 be defined as in section 6.  Thus, Perlman’s statistic is

1

(P)
X

d

1

X

X* S X*

BS (X )

1 (X X*) S (X X*)










  

(7.1)

where X
*

 is the restricted maximum likelihood estimate of

  under  H

1

.  For y   E

1

,  let  BS

(P)

 (y)  be calculated as BS

(P)

(X

d

), and let

(P) (P)

d

P

(P) (P)

d

1 if BS (y) BS (X )

J (y)

0if BS (y) BS (X ).

















The significance level for this randomized test is

1

P

n

y E

J (y)

.

2

 


(7.2)

8. Boyett–Shuster–Follmann Test

With 

1 2

, ,...,

n

X X X ,

d

X  and E

1

 be defined as in

sections 6 and 7, Follmann’s statistic may be written as

p

j

J 1

(F) 1

d

X 0

ˆ

BS (X ) nX S XI ,





 


 

 

 






where I denotes the indicator function.  For y  E

1

, let BS

(F)

(y)  be calculated as  BS

(F)

(X

d

)

 

above, and let

(F) (F)

d

F

(F) (F)

d

1 if BS (y) BS (X )

J (y)

0 if BS (y) BS (X ).

















Therefore, the significance level for this randomized test is

1

F

n

y E

J (y)

.

2

 


9. Boyett–Shuster–New Test

With 

1 2

, ,...,

n

X X X ,

d

X  and E

1

 defined as in the last

three sections, the statistic for the new test may be written

(N) 1
ˆ

p
BS (X ) nX S XI

d

ˆ

(BX) 0

j

j 1



 


 

 




 



 

For y  E

1

, let BS

(N)

(y) be calculated as BS

(N)

(X

d

) and

(N) (N)

d

N

(N) (N)

d

1 if BS (y) BS (X )

J (y)

0 if BS (y) BS (X ).

















The significance level  can be computed as in the last three

tests.

10. Boyett-Shuster-Tang-Gnecco-Geller Test

We use the T* statistic from the Tang-Gnecco-Geller

test  in  place  of  the  t  statistic  in  the  Boyett-Shuster  test.

Hence, the test statistic for this test is

p

(T) 2

d j

j 1

BS (X ) max(Z , 0)






where Z n S X


.

/1 2

  With y  E

1  

and

(T) (T)

d

T

(T) (T)

d

1 if BS (y) BS (X )

J (y)

0 if BS (y) BS (X ) ,

















the significance level  can be computed as for the four tests

above.

11. Power Comparisons

For p=3 and 6, the performances of these nine tests

are  studied  by  Monte  Carlo  techniques  for  multivariate

normal distributions and R

S

 and R

T

, that is for the simple

order  and  the  simple  tree  order  correlations  with  equal

weights and k=4 and 7 (p = k-1) as well as some other forms

of correlation structures. Recall, R

S

 and R

T

 are given in (1.1)

and (1.2), respectively. Also, we consider several variance

patterns including increasing variances, decreasing variances,

V-shaped variances and inverted V-shaped variances. We

discuss the relationship between symmetry properties of the

power functions and variance patterns below.

In addition to the correlation matrices in (1.1) and

(1.2), which we denote by R

p,1

and R

p,2

, we also consider the

following correlation matrices R = [

ij

]

-pxp-

:

R

3,3

 (R

6,3

) with 

ij

 = -0.4 (-0.1) for 1 i ¹ j  p,

R

3,4

 with 

12

 = 

23

 = -0.4 and 

13

 = 0.4,

R

3,5

 with 

12

 = 

23

 = 0.4 and 

13

 = -0.4, and

R

6,4

 with 

12

=

14

=

25

=

26

=

35

=

36

=

45

=

46

=-0.4 and

the other 

ij

=0.4 for i  j.

Let a be a positive constant, [x] the largest integer less

than and equal to x and 

j

  the standard deviation of the jth

component of X, i.e. ( )

jj

V  for j = 1, 2,…, p.  The form for

increasing variances is

j

  = 1 + a(j - 1)
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with a=p for p=3 and 6, the form for V-shaped variances is

1

1

1 a ( ) for 

2

2

p
p

j j

j



 




    

 

 and

1

1

1 a ( 1) for 

2

2

p

p

j p j

j



 




      

 

with a=3 for p=3 and a=5 for p=6, and the form for inverted

V-shaped variances is

1

1 a( 1) for 

2

j

p

j j



   

  and

1

1 a( ) for 

2

j

p

p j j



   

with  a=4  for  p=3  and  a=5  for  p=6.  We  obtain  the  co

variances from the relation

=  for 1 i,j p.

ij i j ij

V     

The power functions of the tests considered here have

the following symmetry property: the power at ( , )V  is the

same  as  at  ( , )P PVP
  where  P  is  a  p p   permutation

matrix. Thus, the variance patterns considered here provide

information about other patterns. Even if one pattern is a

permutation of another pattern, such as the V-shaped and

inverted V-shaped patterns with p=6, which are described

above, considering the second pattern may give information

about correlation structures or mean vectors that were not

considered  with  the  first.  However,  to  save  some  space,

decreasing variance patterns are not discussed.

Also, all of the tests except Follmann’s test and the

Tang-Gnecco-Geller test are scale invariant in the following

sense: if 

1 2

( , ,..., )

p

A diag a a a  with 0

i

a   for 1 i p  ,

then  the  power  function  at ( , )V  is  the  same  as  at ( ,A

)AVA . Thus, considering unequal variances, provides infor--

mation about the power of these tests for equal variances at

the new alternatives, A , by taking 1/

i i

a  .

For fixed dimension p, we constrained the ratio of

maximum variance to minimum variance to be the same for

each  pattern  of  variances  considered.  We  consider  mean

vectors of the form, = c with c a constant and  a vector.

We refer to the vector  as a direction and choose c so that

the usual F test has power equal to 0.70 provided   0. For

example, for p=3 we consider directions (0,0,0), (0,0,1),

(0,1,0), (1,0,0) (0,1,1), (1,0,1), (1,1,0) and (1,1,1). We used

10,000 iterations and recorded the proportion of rejections

for these tests. All of these tests are conducted using the level

of significance = .05.The proportion of rejections for

Perlman’s  test,  Follmann’s  test,  the  new  test,  the  Tang-

Gnecco-Geller  test,  the  Boyett  Shuster  test,  the  Boyett-

Shuster-Perlman test, the Boyett-Shuster-Follmann test, the

Boyett-Shuster-New  test  and  the  Boyett-Shuster-Tang-

Gnecco-Geller test are denoted by

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,

P F N T BS BSP

      ˆ ˆ, ,

BSF BSN

 

     and ˆ ,

BST

 respectively

Some of 108 tables, which are the results from the

power computations, are given here. For all nine tests, every

V and n considered with both p=3 and p=6, the Monte Carlo

power  estimates  at  the  null  hypothesis  are  close  to  0.05.

The  maximum  difference  is  0.005  and  the  Monte  Carlo

power estimates of the non-null powers of Hotelling’s T

2

were between 0.6901 and 0.7183. Before considering the

four variance patterns, we note the following:

 With n20, for both p=3 and 6, every variance

pattern and every correlation matrix considered, the power

of the Boyett-Shuster test was less than 0.7 (the power of

Hotelling’s T

2

, which is an omnibus test) for some alterna-

tive considered here. There are some apparent exceptions.

For instance, with inverted V-shaped variances, p=6, R

6,2

,

and n=20, the minimum power of the Boyett-Shuster test

given  in  the  table  is  0.738.  However,  because  this  test  is

scale invariant, alternatives considered for the case of equal

variances, p=6, R

6,2

 and n=20 also provide alternatives for

inverted V-shaped variances, and some of those alternatives

had power as low as 0.662. The same is true of the other

apparent exceptions.  Thus, we do not consider the Boyett-

Shuster test further for n20.

 For the case of equal variances, Follmann’s test

tends to have slightly larger powers than the new test. In par-

ticular, the differences, ˆ ˆ ,

F N
  , for p=3 and p=6, each

correlation matrix and each sample size, range from -0.003

to 0.016, their median is 0 and their mean is 0.0014. Thus, if

the variances are equal, then the loss in power due to using

the new test in place of Follmann’s test is not large. On the

other hand, the same difference for all the cases considered

here ranges from -0.313 to 0.117, has median -0.047 and

mean -0.074. One might like to determine when Follmann’s

test is preferred over the new test. However, the largest differ-

ence in these powers, 0.117, occurs for p=6, R

6,2

, increasing

variances, n=20 and  = c(0,0,0,0,0,1), but for the same p, V,

n and  = c(1,1,1,1,1, 1), the difference is -0.130. So, in this

case, the choice between these two tests depends on the mean

vector. Hence, if one is concerned that the variances may be

unequal, we recommend the new test.  We do not consider

Follmann’s test further.

 For every p, V and alternative considered with n

20, Perlman’s test and its Boyett-Shuster version, i.e. the

Boyett-Shuster-Perlman  test,  have  essentially  the  same

powers. The same is true of Follmann’s test, the new test,

and the Tang-Gnecco-Geller test. In particular, for all such

cases,

ˆ ˆ ˆ ˆ ˆ ˆ0.02 , , ,

P F N

BSP BSF BSN

         

ˆ ˆ 0.012

T
BST

  

and these differences have median and mean about -0.001.

While the Boyett-Shuster versions are more complicated to

use, they should be considered if the normality assumption

were in question. For p=3 and n=6, using the Boyett-Shuster

version  of  these  tests  could  result  in  a  significant  loss  in

power  for  some  directions.  The  loss  is  more  severe  for
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Perlman’s test and the Tang-Gnecco-Geller test and ranges

from 0.003 to 0.129 with median and mean about 0.065. For

Follmann’s test and the new test, the loss ranges from 0.003

to 0.058 with median and mean about 0.05. For p=6 and

n=10, these losses are not as severe, possibly because n is

larger. For p=6 and n=10, the typical loss if one uses the

Boyett-Shuster-Perlman test in place of the Perlman test is

about 0.02, and in the cases of Follmann’s test, the new test

and the Tang-Gnecco-Geller test, the typical loss is less than

0.01.

Equal variances: With p=3 and 6 and the various

correlation matrices considered, Tables 1-3 give the power

estimates for the nine tests in the case of equal variances. In

comparing two tests, we are looking for one that performs

well over the entire alternative region.  So we consider the

minimum of the powers over the alternatives considered. If

Table 1. Numerical comparisons for power of the tests for simple order with equal weights, p=3, n=6

Direct c Perl Foll ONew New Tang BS BSP BSF OBSN BSN BST

(0,0,0) 0.000 0.053 0.051 0.049 0.050 0.050 0.046 0.050 0.047 0.047 0.047 0.048

(1,1,1) 0.747 0.930 0.890 0.890 0.890 0.905 0.577 0.817 0.838 0.838 0.837 0.850

(1,0,1) 1.182 0.900 0.889 0.888 0.889 0.902 0.775 0.801 0.836 0.836 0.836 0.846

(0,1,1) 1.008 0.904 0.890 0.889 0.889 0.903 0.662 0.808 0.843 0.842 0.842 0.847

(1,1,0) 1.008 0.900 0.881 0.880 0.880 0.895 0.667 0.803 0.830 0.829 0.829 0.843

(1,0,0) 1.930 0.856 0.880 0.869 0.878 0.886 0.894 0.792 0.830 0.819 0.828 0.830

(0,1,0) 1.671 0.872 0.888 0.884 0.884 0.898 0.819 0.791 0.836 0.832 0.832 0.840

(0,0,1) 1.930 0.864 0.892 0.881 0.890 0.896 0.898 0.805 0.836 0.826 0.834 0.840

Min. 0.856 0.880 0.869 0.878 0.886 0.577 0.791 0.830 0.819 0.828 0.830

Average 0.889 0.887 0.883 0.886 0.898 0.756 0.802 0.836 0.832 0.834 0.842

Table 2. Numerical comparisons for power of the tests for simple tree order with equal weights, p=3, n=6

Direct c Perl Foll ONew New Tang BS BSP BSF OBSN BSN BST

(0,0,0) 0.000 0.048 0.050 0.050 0.050 0.049 0.048 0.045 0.045 0.045 0.450 0.046

(1,1,1) 1.930 0.826 0.880 0.880 0.880 0.895 0.995 0.723 0.830 0.830 0.830 0.840

(1,0,1) 1.671 0.797 0.886 0.873 0.885 0.849 0.938 0.732 0.838 0.825 0.837 0.784

(0,1,1) 1.671 0.800 0.887 0.873 0.886 0.850 0.935 0.732 0.836 0.822 0.835 0.789

(1,1,0) 1.671 0.797 0.884 0.868 0.883 0.848 0.940 0.728 0.829 0.814 0.828 0.783

(1,0,0) 1.930 0.763 0.858 0.784 0.847 0.835 0.898 0.726 0.814 0.741 0.803 0.772

(0,1,0) 1.930 0.768 0.867 0.792 0.856 0.842 0.901 0.725 0.815 0.742 0.804 0.771

(0,0,1) 1.930 0.774 0.868 0.793 0.855 0.844 0.904 0.735 0.814 0.741 0.802 0.786

Min. 0.763 0.858 0.784 0.847 0.835 0.898 0.723 0.814 0.741 0.802 0.771

Average 0.789 0.876 0.838 0.870 0.852 0.930 0.729 0.825 0.788 0.820 0.789

Table 3. Numerical comparisons for power of the tests for simple order with equal weights when  p=6  and  n=10

      Direct c Perl Foll ONew New Tang BS BSP BSF OBSN BSN BST

(0,0,0,0,0,0) 0.000 0.051 0.049 0.049 0.050 0.052 0.053 0.049 0.052 0.052 0.050 0.053

(1,1,1,1,1,1) 0.273 0.954 0.866 0.866 0.866 0.910 0.268 0.912 0.864 0.870 0.859 0.910

(0,1,1,1,1,1) 0.302 0.948 0.866 0.866 0.866 0.907 0.270 0.904 0.865 0.871 0.861 0.908

0,0,1,1,1,1) 0.364 0.936 0.865 0.865 0.865 0.905 0.308 0.892 0.862 0.869 0.860 0.901

(0,0,0,1,1,1) 0.485 0.916 0.865 0.864 0.865 0.903 0.398 0.879 0.865 0.872 0.863 0.899

(0,0,0,0,1,1) 0.750 0.890 0.873 0.866 0.873 0.902 0.622 0.864 0.872 0.868 0.869 0.898

(0,0,0,0,0,1) 1.560 0.849 0.869 0.842 0.869 0.893 0.959 0.840 0.868 0.846 0.864 0.885

Min. 0.849 0.865 0.842 0.865 0.893 0.268 0.840 0.862 0.846 0.859 0.885

Average 0.916 0.867 0.862 0.867 0.903 0.471 0.882 0.866 0.866 0.863 0.900
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the minimum powers for two tests are close, then we consider

their average powers. The tables give minimum and average

powers. The results are summarized below.

 Only  Perlman’s  test  has  power  greater  than

Hotelling’s T

2

 for every p, V, n and every direction consid-

ered.

 For small n, i.e. n=6 if p=3 and n=10 if p=6, the

Boyett-Shuster test is preferred for the simple tree correla-

tion matrix (R

3,2

 and R

6,2

), and in fact this is true for all

variance  patterns.  Thus,  for  small  n,  we  recommend  the

Boyett-Shuster test if all of the correlations seem to be posi-

tive. For R

3,1

, R

6,1

,R

3,3

 and R

6,3

, the Tang-Gnecco-Geller test

is preferred. Hence, for small n, we recommend the Tang-

Gnecco-Geller  test  if  none  of  the  correlations  seem  to  be

positive.  For  R

3,4

,  R

3,5

  and  R

6,4

,  the  new  test  is  preferred.

Therefore, for small n and a mixture of positive and negative

correlations, we recommend the new test.

 For moderate n (n=20) and p=3, we recommend

Perlman’s test.  Perlman test and the Tang-Gnecco-Geller test

have similar powers for R

3,2

 and R

3,4

 and Perlman’s test is pre-

ferred for R

3,1

,R

3,3

 and R

3,5

.  In fact, for R

3,5

, the power of the

Tang-Gnecco-Geller test is less than Hotelling’s T

2

 for some

alternatives considered. For n=20 and p=6, Perlman test and

the Tang-Gnecco-Geller test have similar powers for R

6,1

,

The Tang-Gnecco-Geller test is preferred for R

6,2

 and R

6,3

,

and Perlman’s test is preferred for R

6,4

. As with p=3, for R

6,4

,

the  power  of  the  Tang-Gnecco-Geller  test  is  less  than

Hotelling’s T

2

 for some alternatives considered. Thus, for

p=6 and n=20, we recommend the Tang-Gnecco-Geller test if

the non-zero correlations are of the same sign and Perlman’s

test if their signs are mixed. For p=6, n=30 and equal vari-

ances, the power estimates for these tests were obtained. For

n=30, Perlman’s test is preferred except for R

6,3

, and in that

case, the Tang-Gnecco-Geller test has slightly larger mini-

mum power, but Perlman’s test has slighly larger average

power. Hence, for p=6 and n=30, we recommend Perlman’s

test.

 For large n, we recommend Perlman’s test. It is

the preferred test except for for R

6,3

, and as with n=30, the

Tang-Gnecco-Geller test has slightly larger minimum power,

but Perlman’s test has slighly larger average power.

Unequal variances: For p=3 and 6 and the various

correlation matrices and variance patterns considered, Tables

4-6  give  the  power  estimates  for  the  nine  tests.  We  now

attempt to summarize these results for the cases with unequal

variances.

 For small n (n=6 for p=3 and n=10 for p=6), as

with equal variances, the Boyett Shuster test is preferred for

the simple tree correlation matrices (R

3,2

 and R

6,2

). For the

cases with no positive correlations (R

3,1

, R

3.3

, R

6,1

 and R

6,3

),

the Tang-Gnecco-Geller test is preferred.  Actually, for R

6,3

 it

appears from the tables for increasing variances, V-shaped

variances and inverted V-shaped variances that the Boyett-

Shuster  test  has  larger  minimum  power  than  the  Tang-

Gnecco-Geller  test.  However,  because  the  powers  of  the

Boyett-Shuster test and the new test are scale invariant, the

alternatives  for  the  case  of  equal  variances  can  be  trans-

formed to alternatives for these variance patterns. Thus, when

these alternatives are included, the minimum powers for the

Boyett-Shuster test and the new test are 0.798 and 0.864,

respectively. So the new test would be preferred over the

Boyett-Shuster test for this correlation matrix. Furthermore,

for this correlation matrix and all four variance patterns, the

Tang-Gnecco-Geller test has slightly better powers than the

new test. For R

3,4

, R

3,5

 and R

6,4

, we recommend the new test.

For R

6,4

, Perlman’s test has similar powers, but it is more

complicated to use. Also, for R

3,4

, it appears in the tables for

increasing, V-shaped and inverted V-shaped variances that

the Boyett-Shuster test would be preferred. But, as above,

when the alternatives derived from the case of equal variances

are included, the minimum powers for the Boyett-Shuster

test and the new test are 0.854 and 0.876. For that reason,

we also have recommended the new test for R

3,4

. Thus, as in

the case of equal variances and small sample sizes, we re-

commend the Boyett-Shuster test if all the correlations are

positive, the Tang-Gnecco-Geller test if there are no positive

correlations and the new test if the are both positive and

negative correlations.

 For moderate n (n=20) and p=3, we recommend

Perlman’s test. One could use the Tang-Gnecco-Geller test

for R

3,1

 and R

3,4

, but it is desirable to be able to recommend

one test for all covariance matrices. For p=6, Perlman’s test

is preferred for R

6,1

, R

6,2

 and R

6,4

, and in fact, Perlman’s test

is the only one with minimum power greater than that of

Hotelling’s T

2

 for R

6,4

. For R

6,2

, it appears from the table for

inverted V-shaped variances that the Tang-Gnecco-Geller

test is preferred. However, all of these tests are permutation

invariant, and including the alternatives for V-shaped vari-

ances, the minimum powers for the Tang-Gnecco-Geller test

and Perlman’s test are 0.663 and 0.736, respectively.  For

R

6,3

, the Tang-Gnecco-Geller test is preferred for all of the

variance patterns considered. Thus, for moderate n and possi-

bly unequal variances, we recommend Perlman’s test except

for larger p (p=6) and all correlations negative, and in the

latter case, we recommend the Tang-Gnecco-Geller test. It

should be noted that for equal variances, the Tang-Gnecco-

Geller test performed at least as well as Perlman’s test for

R

6,1

  and  R

6,2

,  but  for  unequal  variances,  Perlman’s  test  is

preferred for these two correlation matrices. Also, based on

the power estimates for p=6 with equal variances, we con-

jecture that Perlman’s test could be used for all covariance

matrices with n=30.

 As in the case of equal variances, for large n, we

recommend Perlman’s test. For R

6,3

, the Tang-Gnecco-Geller

test has powers like Perlman’s test and could be used with no

loss in power. For R

6,2

 and inverted V-shaped variances, it

appears that the Tang-Gnecco-Geller test would be preferred

to Perlman’s test. However, if one includes the alternatives

derived from V-shaped variances, the minimum powers of

the Tang-Gnecco-Geller test and Perlman’s test are 0.627 and

0.735, respectively.
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Table 6. Numerical comparisons for power of the tests for the simple order correlation and increasing covariance

structure at a=2 with p=6 and n=10

      Direct c Perl Foll ONew New Tang BS BSP BSF OBSN BSN BST

(0,0,0,0,0,0) 0.000 0.051 0.049 0.051 0.050 0.053 0.053 0.049 0.050 0.051 0.050 0.050

(1,1,1,1,1,1) 0.905 0.939 0.853 0.870 0.870 0.907 0.588 0.905 0.849 0.866 0.866 0.901

(0,1,1,1,1,1) 1.643 0.945 0.870 0.870 0.870 0.909 0.315 0.902 0.867 0.867 0.867 0.904

(0,0,1,1,1,1) 2.550 0.934 0.862 0.861 0.862 0.903 0.317 0.892 0.858 0.857 0.857 0.896

(0,0,0,1,1,1) 4.082 0.914 0.865 0.864 0.864 0.899 0.393 0.876 0.859 0.856 0.859 0.89

(0,0,0,0,1,1) 7.301 0.889 0.871 0.859 0.870 0.894 0.607 0.863 0.868 0.856 0.868 0.884

(0,0,0,0,0,1) 17.170 0.849 0.869 0.833 0.869 0.881 0.959 0.840 0.864 0.828 0.864 0.869

Min. 0.849 0.853 0.833 0.862 0.881 0.315 0.840 0.849 0.828 0.857 0.869

Average 0.912 0.865 0.860 0.868 0.899 0.530 0.880 0.861 0.855 0.864 0.891

Table 4. Numerical comparisons for power of the tests for the simple order correlation and increasing covari-

ance structure at a=2 with p=3 and n=6

Direct c Perl Foll ONew New Tang BS BSP BSF OBSN BSN BST

(0,0,0) 0.000 0.053 0.054 0.050 0.050 0.050 0.046 0.050 0.051 0.047 0.047 0.048

(1,1,1) 1.417 0.921 0.882 0.885 0.886 0.899 0.733 0.820 0.831 0.834 0.834 0.842

(1,0,1) 1.782 0.892 0.870 0.882 0.883 0.894 0.860 0.807 0.818 0.829 0.830 0.837

(0,1,1) 3.666 0.903 0.892 0.890 0.891 0.905 0.670 0.809 0.839 0.837 0.838 0.848

(1,1,0) 1.529 0.898 0.855 0.881 0.881 0.896 0.774 0.810 0.803 0.828 0.828 0.836

(1,0,0) 1.930 0.856 0.771 0.876 0.878 0.886 0.894 0.792 0.726 0.826 0.828 0.833

(0,1,0) 5.014 0.872 0.887 0.882 0.884 0.897 0.819 0.791 0.835 0.830 0.832 0.843

(0,0,1) 9.649 0.864 0.892 0.870 0.890 0.892 0.898 0.805 0.836 0.815 0.834 0.836

Min. 0.856 0.771 0.870 0.878 0.886 0.670 0.791 0.726 0.815 0.828 0.833

Average 0.887 0.864 0.881 0.885 0.896 0.807 0.805 0.813 0.828 0.832 0.839

Table 5. Numerical comparisons for power of the tests for the simple tree order correlation and increasing

covariance structure at a=2 with p=3 and n=6

Direct c Perl Foll ONew New Tang BS BSP BSF OBSN BSN BST

(0,0,0) 0.000 0.048 0.050 0.050 0.050 0.049 0.048 0.045 0.046 0.046 0.045 0.048

(1,1,1) 2.227 0.831 0.871 0.883 0.883 0.895 0.969 0.754 0.821 0.832 0.832 0.838

(1,0,1) 2.027 0.797 0.797 0.876 0.870 0.873 0.925 0.744 0.756 0.830 0.825 0.821

(0,1,1) 5.909 0.800 0.883 0.735 0.882 0.779 0.938 0.733 0.834 0.689 0.832 0.694

(1,1,0) 2.047 0.795 0.796 0.877 0.874 0.878 0.934 0.736 0.752 0.828 0.825 0.820

(1,0,0) 1.930 0.763 0.649 0.869 0.847 0.872 0.898 0.726 0.616 0.825 0.803 0.819

(0,1,0) 5.789 0.768 0.862 0.701 0.856 0.824 0.901 0.725 0.810 0.653 0.804 0.747

(0,0,1) 9.649 0.774 0.891 0.550 0.855 0.767 0.904 0.735 0.835 0.509 0.802 0.681

Min. 0.763 0.649 0.550 0.847 0.767 0.898 0.725 0.616 0.509 0.802 0.681

Average 0.790 0.821 0.784 0.867 0.841 0.924 0.736 0.775 0.738 0.818 0.774

In  summary,  Perlman’s  test  has  the  best  overall

powers of the nine tests.  If n is large (n =100), we recom-

mend Perlman’s test. If n is moderate (n=20), we recommend

Perlman’s test except for p=6 with all non-zero correlations

of the same sign. For moderate n, p=6 and all correlations

negative, we recommend the Tang-Gnecco-Geller test. For

moderate n, p=6 and all other covariance matrices, we re-

commend the Tang-Gnecco-Geller test if the variances are

nearly equal and Perlman’s test if the variances are not equal.

If n is small, we recommend the Boyett-Shuster test when V
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has all correlations positive, the Tang-Gnecco-Geller test

when V  has no positive correlations and the new test when

V  has negative and positive correlations.

Acknowledgment

Professor Dr., F.T. Wright, Department of Statistics,

University of Missouri-Columbia, for his great suggestions

and  writing corrections in this paper. This paper is supported

by the Thailand Research Fund.

References

Bartholomew, D.J. 1959a. A test of homogeneity for ordered

alternatives.  Biometrika, 46, 46-48.

Bartholomew, D.J. 1959a. A test of homogeneity for ordered

alternatives II.  Biometrika, 46, 328-335.

Bartholomew, D.J. 1961. A test of homogeneity of means

under restricted alternatives (with discussion). Journal

of the Royal Statistical Society, Series B, 23, 239-281.

Bohrer, R. and Chow, W. 1978. Weights for one-sided multi-

variate inferences.  Applied Statistics, 24, 380-384.

Boyett, J.M. and Shuster, J.J. 1977. Nonparametric one-sided

tests in multivariate analysis with medical applica-

tions.  Journal of the American Statistics Association,

72, 665-668.

Chongcharoen, S. 1998. One-sided Multivariate Tests.  Ph.D.

dissertation, University of Missouri-Columbia.

Chongcharoen, S., Singh, B. and Wright, F.T. 2002.Powers

of some one-sided multivariate tests with the popula-

tion covariance matrix known up to multiplicative

constant. Journal of Statistical Planning and Inference,

107, 103-121.

Conaway, M., Pillers, C., Robertson, T., and Sconing, J. 1991.

A circular cone test for testing homogeneity against a

simple tree order.  Canadian Journal of Statistics, 19,

283-296.

Follmann, D. 1996. A simple multivariate test for one-sided

alternatives. Journal of the American Statistics Asso-

ciation, 91, 854-861.

Johnson, R.A. and D.W. Wichern. 1992. Applied Multivari-

ate Statistical Analysis, 3rd Edition. Simon & Schuster.

Kudo, A. 1963. A multivariate analogue of the one-sided test.

Biometrika, 50, 403-418.

Rao, C.R. 1973. Linear Statistical Inferences and Its Applica-

tions, Second Edition. John Wiley & Sons, New York.

Robertson, T., F.T. Wright, and R.L. Dykstra. 1988. Order

Restricted Statistical Inference. John Wiley & Sons,

New York.

Sen,  P.K.  1984.  Sub  hypotheses  testing  against  restricted

alternatives for the Cox regression model. Journal of

Statistical Planning Inference, 10, 31-42.

Shorack, G.R. 1967. Testing against ordered alternatives in

model I analysis of variance: Normal theory and non-

parametric.  Annals of Mathematical Statistics, 38,

1740-1753.

Sun,  H.J.  1988.  A  FORTRAN  subroutine  for  computing

normal orthant probability. Communications in Statis-

tics-Simulation and Computation, 17, 1097-1111.

Tang, D., C. Gnecco and N.L. Geller. 1989. An approximate

likelihood ratio test for a Normal mean vector with

nonnegative components with application to clinical

trials.  Biometrika, 76, 577-83.

Tang, D. and Lin, S.P. 1997. An approximate likelihood ratio

test for comparing several treatments to a control.

Journal  of  the  American  Statistics  Association,  92,

1155-1162.


