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A real-time system is a computer system that monitors or controls an external environment.  The

system must meet various timing and other constraints that are imposed on it by the real-time behaviour

of the external world. One of the differences between a real-time and a conventional software is that a

real-time program must be both logically and temporally correct. To successfully design and implement

a real-time system, some analysis is typically done to assure that requirements or designs are consistent and

that they satisfy certain desirable properties that may not be immediately obvious from specification. Exe-

cutable specifications, prototypes and simulation are particularly useful in real-time systems for debugging

specifications. In this paper, we propose the adaptations to the coloured Petri-net theory to ease the modeling,

simulation and code generation process of an embedded, microcontroller-based, real-time system. The ben-

efits of the proposed approach are demonstrated by use of our prototype software tool called ENVisAge
(an Extended Coloured Petri-Net Based Visual Application Generator Tool).
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A real-time embedded system is a small,
less powerful and less complex computer system
comparing to a general purpose computer system
(Shaw, 2001).  Normally, it is controlled by a
single  8/16 bits  microcontroller/microprocessor
and has been used in monitoring, responding to,
or controlling an external environment. This envi-
ronment is connected to the system through sen-
sors, actuators, and other input-output interfaces.
The system must meet various timing and other
constraints that are imposed on it by the real-time
behaviour of the external world to which it is
interfaced. Real-time software differs significant-
ly from conventional software in a number of
ways. First, a program must not only produce the
correct answer or output, but it must also compute
the answer “on time.” In other words, a program
must be both logically and temporally correct.

A second distinguishing feature of real-time
systems is concurrency. Real-time systems must
deal with the inherent physical concurrency that

is part of the external world to which they are
connected. Systems design becomes especially
difficult when one combines the problems of con-
currency with those related to time; i.e. deadliness.
A third major characteristic of real-time systems
is the emphasis on the significance of reliability
and fault tolerance, where reliability is a measure
of how often a system will fail. Similarly, real-time
computer hardware has different requirements
from general purpose computer systems. Its run-
time behaviour must be predictable, so that soft-
ware designers can predict applications behavi-
our. Hardware must be reliable and fault tolerant,
so that costly errors are prevented, when possible,
and handled predictably, otherwise.

The software “life cycle” of a real-time em-
bedded system, which is similar to a general pur-
pose computer software, defines the stages in the
life of a software system as it develops from its
initial specification through its final deployment
and use. It has been classified into five sequential
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stages which are: requirements, design, implemen-
tation, testing and maintenance. Typically, some
analysis is done to assure that requirements and
designs  are  consistent,  and  that  they satisfy cer-
tain desirable properties that may not be immedi-
ately obvious from the specifications. More often
analysis is performed through computer testing of
various executable forms of parts of the require-
ments or designs. Executable specifications, pro-
totypes and simulations are particularly useful in
real-time systems for debugging specifications.
They can illuminate problems at an early stage
for easy and inexpensive correction. In addition,
they provide some idea of the run-time behaviour
of the system, giving a basis for a designer to re-
fine or change specification.

In  an  early  stage  of  a  real-time  software
development, a designer has to deal with the prob-
lem to decribe the system’s behaviour to conform
with  its  requirements. This  is  iteratively  per-
formed by use of either a descriptive or imperative
language. Descriptive notations directly specify
properties that must be satisfied, rather than directly
generate behaviours with the desired properties.
They  are  based  on  conventional  mathematics.
Some of the principal descriptive methods include:
OBJ (Goquen et al., 1988) and Z-notation (Spivey,
1989).   In contrast, imperative methods specify
behaviours by giving algorithmic descriptions, that
is sequences of instructions or actions to be taken
by one or more agents, that generates the behav-
iours.  Specifications are directly executable in
that they translate easily into corresponding com-
puter procedures. Many of the imperative notations
are similar to or derived from programming lan-
guages. Examples are data flow diagram (DFD)
(Guezzi et al., 1991), state machine, statecharts
(Harel et al., 1990), modecharts (Jahanian et al.,
1994) and variations of the Petri-net (Murata, 1989).

Within a group of imperative notations de-
scribed  earlier,  a  Petri-net  (or  Place/Transition
net) offers an attractive graphical way to portray
the required functions of a system.  In addition,
correct behaviours for many scenarios of interest
can frequently be demonstrated through simula-
tion because Petri-net, by itself, is an executable

graphical/visual modeling language. Unfortunate-
ly,  a  real-time  embedded  application  requires
more than the standard elements provided by a
Petri-net, or even its derivatives, in order to suc-
cessfully and easily model the correct behaviours
of the system.

The organization of this paper is as follows.
In section 2 we give a theoretical overview of a
Petri-net and its derivative: a coloured Petri-net.
The proposed adaptations to a coloured Petri-net
modeling language are explained in section 3. An
implementation  of  a  computer  tool  to  assist
modeling  and  automatic  code  generation  for
real-time embedded systems and conclusion are
given in section 4 and 5, respectively. Finally, in
section 6, we give a real-life example of utilizing
a proposed extension to model a simple real-time
embedded system.

An overview of a Petri-Net theory

In this section, we present an informal intro-
duction to a Petri-net and its derivatives which are
timed Petri-net, time Petri-net and coloured Petri-
net. This paper focuses only on a coloured Petri-
net which is mainly exploited in our modeling tool.

An informal introduction to a Petri-Net

Petri-nets are a graphical and mathemati-
cal modeling tool applicable to many systems
(Murata, 1989).  They are a promising tool for
describing and studying information processing
systems that are characterized as being concur-
rent, asynchronous, distributed, parallel, non-deter-
ministic, and/or stochastic. As a graphical tool,
Petri-net can be used as a visual–communication
aid similar to flow charts, block diagrams, and net-
works. In addition, tokens are used in these nets
to simulate dynamic and concurrent activities of
systems.

A Petri-net, or PN for short, is a particular
kind of directed graph, together with an initial
state called the initial marking, M

0
. The underlying

graph N of PN is a directed, weighted, bipartite
graph consisting of two kinds of nodes, called
places and transitions, where arcs are either from
a place to a transition or from a transition to a
place.   In graphical representation, places are
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drawn as circles, transitions as bars of boxes as
illustrated in Figure 1(a).  Arcs are labeled with
their  weights  (positive  integers),  where  a  k-
weighted arc can be interpreted as the set of k
parallel arcs. Labels for unity weight are usually
omitted. A marking (state) assigns to each place a
nonnegative integer. If a marking assigns to place
p  a  nonnegative  integer  k,  we  say  that  p  is
marked with k-tokens. Pictorially, we place k black
dots (tokens) in place p.

In modeling, using the concept of condi-
tions and events, places represent conditions, and
transitions represent events. A transition (an event)
has a certain number of input and output places
representing the pre-conditions and post-conditions
of the event, respectively. The presence of a token
in a place is interpreted as holding the truth of
the condition associated with the place. In another
interpretation, k tokens are put in a place to indi-
cate that k data items or resources are available.
Some  applications  may  interpret  input  places,
transition and output places as input data, com-
putation step and output data, respectively. Figure
1a depicts an application of PN to model a prod-
uct’s assembly line with 3 raw materials. The
number of black dots within each place is equal
to the number of raw material of that type. In this

case, each product needs to use 1, 2 and 3 of the
first, second and third raw material, respectively.

The behaviour of many systems can be de-
scribed in terms of system states and their changes.
In order to simulate the dynamic behaviour of a
system, a state or marking in PN is changed ac-
cording to the following transition (firing) rule:

1. A transition t is said to be enabled if each
input place p is marked with at least
w(p, t), where w(p, t) is the weight of
the arc from p to t.

2. An enabled transition may or may not
fire (depending on whether or not the
event actually takes place).

3. A  firing  of  an  enabled  transition  t  re-
moves w(p, t) tokens from each input p
to t,  and  adds  w(p, t)  tokens  to  each
output place p of t, where w(p, t) is the
weight of the arc from t to p.

A transition without any input place is called
a source transition, and one without any output
place is called a sink transition.  A source transi-
tion is unconditionally enabled, and the firing of a
sink transition consumes token but does not pro-
duce any.

An overview of a coloured Petri-Net

A  Coloured  Petri  net  (CPN)  proposed  by
Jensen (1992) is a system modeling language
which is an extension of a classical PN. It is de-
signed by combining the strength of a standard  PN
with the strength of programming languages. A
PN provides the primitive for describing synchro-
nization of concurrent processes, while program-
ming languages provide the primitives for the
definition of data types and manipulation of their
data values which are called model inscriptions.
A CPN when used to model a system leads to
models which are much more compact than the
models drawn using elementary PN.  The com-
pactness of a CPN model for the same produc-
tion line as in section 2 is demonstrated in Figure
1b. It is noted that only one input place is needed
in this case. The place contains 1, 3 and 4 instances
of raw material a, b and c, respectively. The arc’s
inscription tells us that the transition requires 1 of
a, 2 of b and 3 of c raw materials in order to fire.

Figure 1. The CPN model in (b) is more compact

than the PN model in (a) with similar

behaviour
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Informally,  CPN is similar to PN which is
state and action oriented at the same time – pro-
viding an explicit description of both the states
and the actions. This means that the modeler can
determine freely whether, at a given moment of
time, he wants to concentrate on states or actions.
The states of a CPN are represented by means of
places. Each place has associated data type de-
termining the kind of data which the place may
contain. For CPN, the terms: type, value, opera-
tion, expression, variable, binding and evaluation
are used in exactly the same way as these concepts
are used on high level programming languages.

A state of a CPN is called a marking.  It
consists of a number of tokens positioned on the
individual places. Each token carries a data value
which belongs to the type of the corresponding
place. The token values are referred to as token
colours and the data types are referred to as colour
sets. This is the difference between CPN and PN,
the “coloured” tokens of a CPN are considered to
be distinguishable from each other. This is in con-
trast to ordinary PN which have “black” indistin-
guishable tokens.

The actions of a CPN are represented by
means of transitions. An incoming arc indicates
that the transition may remove tokens from the
corresponding place while an outgoing arc indi-
cates that the transition may add tokens. The exact
number of tokens and their data values are deter-
mined by the arc expressions.

As the definition of tokens within a CPN
place is modified from the ordinary PN, the ena-
bling  rule  of  a  transition  is,  therefore,  slightly
adapted as follows:

1. A transition t is said to be enabled if all
incoming  arc  expressions  of  t  can  be
evaluated.

2. An enabled transition may or may not
fire (depending on whether or not the
event  actually  takes  place).

3. A firing of an enabled transition t removes
token of type and number specified by
the arc expression of an arc connecting
p to t for each input place p of t. Addi-
tionally, A firing of an enabled transition

t adds token of type and number which
are also specified by the arc expression
of an arc connecting t to p for each output
place p of t.

These CPN firing rules are preserved in our
proposed extensions to the CPN theory which is
presented in the next section.

The proposed adaptations to a coloured Petri-

Net theory

In the previous section, we briefly described
a PN and its derivative, CPN. Both of these mo-
deling languages have been successfully exploited
in many applications. For modeling real-time and
real-time embedded systems, however, only a few
literatures have been cited. As the objective of our
research is to construct a software tool to automa-
tically generate a computer source code from visual
models, a classical PN is far from being useful in
practice. A CPN, by contrast, provides a set of
primitives  and  inscriptions  that  could  ease  the
task of designers in system modeling. In addition,
its inscription can possibly be used in both model
execution and high level source code generation
(Jensen, 1991). Unfortunately, a CPN’s primitives
and inscriptions in a standard form cannot be em-
ployed to successfully model real-time systems.

In this section, we propose an adaptation to
a CPN theory, called ertCPN (embedded real time
coloured Petri-net) theory for short (Kurdthong-
mee, 2001), for use in modeling real-time embed-
ded systems.  First of all, we give the rigorous de-
finitions of all primitives which are elements of
ertCPN. Then, we describe new primitives which
are introduced specifically for real-time system
modeling and automatic code generation.

The definitions of the ertCPN primitives

We have extended the definitions of CPN’s
primitives, which are places, transitions, arcs and
inscription languages, to be more flexible for
modeling embedded real-time systems. The follow-
ing are the definitions:

Definifion 1: “A place is similar to the
variable of a high-level programming language.
The attributes of a place consist of (place name,
data type, (optional)initial value). The place name
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will be automatically used to name a variable of
type data type with the initial value equal to initial
value. A place with only outgoing arcs (see defi-
nition 2) is called a source place. In addition, a place
with only incoming arcs is called a sink place.”

Definifion 2: “An arc is a vector connect-
ing any two different types of primitives, a place to
a transition or a transition to a place. It indicates
the value of data flowing between the primitives
under control of the arc’s arc expression. The arc
expression in ertCPN is a subset of the ANSI-C.
It is normally located next to the arc in order to
make the model more readable.  There are four
types of arc expression, namely data flow, condi-
tion, assignment and control flow.”

Definition 3: “A transition is a piece/block
of codes or action that operates on places con-
necting to it. A transition is ready to fire or exe-
cute if all of its incoming arcs can be evaluated;
i.e. all variables within an arc’s inscription are
previously defined and initialised. The result of a
transition is evaluated by its outgoing arcs and
sent out to the place connecting to it. The type and
value of data are also controlled by the arcs’ arc
expression. Only two attributes, both optional, of
a transition are allowed;  there are (transition
name, guard). A transition name will be automa-
tically used to name a piece/block of codes.  A

guard is a condition prohibiting a transition from
firing/executing even it has already received all
required data flows.”

Figure 2(a) demonstrates terms and their
existence with respect to the primitives of ertCPN
which are used for modeling a look-up table proc-
ess in Figure 2(b).

Typically, a successful concurrent software
design methodology views a system in two levels
of abstraction, which are architectural and behav-
ioural levels.  The architectural level defines a
system structure while the behavioural level de-
fines what a system does.  Both a standard PN
and a CPN model a system, as a whole, as a set of
places and transitions which can be concurrently
executed. They have no definition of architecture
which is very important for modeling real-time
systems. We propose an additional primitive called
a task primitive under the following definitions.

Definition 4: “A task primitive is used to
group places, transitions and arcs which altoge-
ther describe the behaviour of a specific task/proc-
ess of the system.  A connection between places
and transitions of any two tasks or between a task’
s member and an isolated place (definition 5)
can be made by use of an arc. This represents data
flowing between a pair of primitives connecting
to the arc.  A task is equivalent to a function or

Figure 2. (a) Terms and their existence with respect to the primitives and

(b) Example of applying the proposed primitives
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routine in a high-level programming language and
can be used to model the common function/rou-
tine of a system”

Definition 5: “An isolated place is a place
which does not belong to any task within a whole
model. Conceptually, an isolated place is similar
to a global variable in high level language. This
is used to represent shared resources of a system.
It is noted that there is no definition of an isolated
transition.”

In real-time systems, there are mainly two
kinds of task primitive, which are periodic and
sporadic tasks. Periodic tasks are activated on a
regular basis between fixed time intervals. They
are typically used for systematically monitoring,
polling, or sampling information from sensors
over a long time interval.  In contrast, sporadic task
are event driven; they are activated by an external
signal or a change of some relationships. A peri-
odic task must have triple predefined attributes,
which are period or released time,  worse-case
execution time and deadline. These parameters
inform that the task is normally activated or re-
leased at the beginning of each period or releases
time, must be finished before its deadline and the
amount of work it is to do is equal to its worse-case
execution time. In practice, the second attribute of
a task is optional as it can be automatically calcu-
lated by the tool once the task’s code has already
been generated.

While a periodic task has three attributes,
a sporadic task has only two attributes which
are deadline and worse-case execution time with
similar definitions to the periodic task given pre-
viously. The attributes provided by all tasks in the
system are used for schedulability analysis.

Figures 4 and 5 demonstrate two tasks of
type periodic and sporadic, respectively. The be-
haviour of the task in Figure 4 is to periodically
sample  temperature,  determine  if  it  is  greater
than a set point and signal the temperature indi-
cator appropriately. The task is also responsible
for storing the temperature into a globally defined
array of integers. The task reads data from the in-
put place of type port8bit every 20mS with op-
tional  worse-case  execution  and  with  relative

deadline 50mS.
In contrast, the latter task depicted in Figure

5 is activated once there exists an external event
occurring on the transition. Behaviourally, this task
only  samples  a  temperature  data  once  the
pushSwitch is pressed and stored it to a globally
defined array of bytes.

The elements of ertCPN to support model

execution and code generation

The application of an ordinary PN, or even
its derivative CPN, to the software engineering
community is only for model simulation. Jensen
(1991)  concluded  that  the  inscriptions  of  CPN
can  only  be  used  for  guiding  programmers  in
order to manually generate target code.  As far as
the automatic code generation is concerned, there
is no literature on PN and CPN reporting the
success in integrating code generation to the mo-
deling tool.

For ertCPN, we have designed the arc’s
inscription and other additional primitives to sup-
port code generation which is targeted to be an
embedded system. It is obvious that the attributes
of a place under definition 1 are enough to be used
for variable’s memory allocation or constant dec-
laration. Additionally, a transition is mapped to a
piece of codes called “basic block” which is oper-
ated on data from its incoming places to produce
output to its outgoing places. The operation to be
performed on the input variables (input places)
with respect to the basic block (the transition)
depends on the transition’s arc expression.

According  to  definition  2  given  in  the
previous subsection, there are only four types of
arc expression, which are data flow, condition,
assignment and control flow. The data flow ex-
pression is mainly used to specify the type of
data, variable name, flowing between a pair of place
and transition. From Figure 2(b), the Segment-vari-
able of type data flow is a result of LookupTable-
transition execution. During compilation process,
the data flow type of inscription is used to produce
data flow graph  (DFG) and control flow graph
(CFG) which describe the connections between
basic blocks in the task. This type of inscription
does not produce any target code.
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The condition type of inscription is used for
selectively executing its left or right statements
as a result of the evaluation of its Boolean expres-
sion.  During model execution, the condition’s
Boolean expression is executed in order to select
the statement to be performed later. During compi-
lation/code generation processes, all elements of
the condition type of inscription are transformed
into the target architecture’s assembly codes. Ac-
cording to Figure 2(b), the LookupTable-transition
is connected to the Digit-place via the arc with in-
scription: (Digit>3)?(Digit=0):(Digit++). This
inscription is used to control the Digit-variable to
have its value between 0 and 3.

The assignment type of inscription is inte-
grated into the ertCPN in order to open an op-
portunity for designers to assign a model’s vari-
able to a new variable which could be the local
variable of a task or process. This could also be
used to trace a variable’s value during model ex-
ecution. The assignment inscription in Figure 2(b)
is Data=DisplayBuffer[cDigit] which assigns the
Data-variable to an element index specified by
cDigit of the DisplayBuffer-array.

The last inscription type is the control flow
which is responsible for directing flow of pro-
gram during model execution. During compilation
process, the control flow type of inscription is
used to produce control flow graph (CFG) which
describes the connections between basic blocks
of the task. This type of inscription is transformed
into branch-statement in the target code which is
in contrast to the data flow type of inscription that
does not occur as any instruction in the target code.

It is obvious that only four types of inscrip-
tion as described above, together with the clear
declaration  of  places,  are  sufficient  to  make
ertCPN models successfully describe the system’s
behaviour and architecture. Additionally, the data
within ertCPN models provides appropriate in-
formation  for  model  execution  and  automatic
code generation.  Above all, the structure of ertCPN
models can be used to semi-automatically evaluate
the most important parameter of a task in real-
time system which is its worst case execution
time (T

WCET
) (Kurdthongmee, 2002). That is to

say, if a task is in the form of a sequential ar-
rangement of basic blocks (transitions), the T

WCET

of the task is exactly the sum of execution time
of all basic blocks. In contrast, if a task partially
consists of a conditional arrangement of basic
blocks, the T

WCET 
 of the task could be the sum of

execution time of some basic blocks together
with other basic blocks which are the target of the
conditional statement. The latter group of basic
blocks must be decided by designers.

Sample ertCPN models and their -

behaviour

At this point, it could be easier to under-
stand the strength of ertCPN by re-considering
the model in Figure 2(b) as a whole. First of all,
we have to check which transition is ready to fire.
As this sample model consists of only 1 transition,
LookUpTable, it is considered at this point. With
respect to the LookUpTable-transition, there are
3 places supplying token to the transition and ac-
cording to the arc’s expression the Digit-place
and its arc expression cDigit=Digit must be eva-
luated first (followed by DisplayBuffer and, finally,
DataToSegment-place).  The first occurrence of
LookUpTable-transition, cDigit is bound to Digit
which is currently equal to 0. With a current value
of <cDigit=0>, the ready-to-be-evaluated arc ex-
pression is then from the DisplayBuffer-place
which is evaluated to be Data=DisplayBuffer[0].
As a result of the previous evaluation <Data=0>,
the DataToSegment’s connecting arc can now be
evaluated by assigning the Segment to
DataToSegment[0] which is equal to 3Fh. Finally,
the LookUpTable-transition sends out a <Segment=
3Fh> to SegmentPort and follows by evaluating
the (Digit>=3)?(Digit=0):(Digit++)-inscription,
which results in a modification of Digit-place’s
value.

If the model is passed through the compila-
tion process, the following sequence of inscriptions
must be generated:

cDigit = Digit;
Data = DisplayBuffer[cDigit];
Segment = DataToSegment[Data];
SegmentPort = Segment;
(Digit>=3)?(Digit=0):(Digit++)
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The screenshot of the modeler’s code gen-
eration pane for this model is shown in Figure 3.
The format of a list of an intermediate code is as
follows: {From_primitive Arc_name To_primitive
{Inscription_detail} (optional)Special_tag} where
Arc_name is the arc’s name within the model. The
Arc_name is originated from From_primitive and
pointed to To_primitive. The Inscription_detail is
the Arc_name’s inscription in postfix form. Finally,
the Special_tag (TERMINATE or RELATIVE) is
an optional field used to specify the flow of control
within a block. All of the intermediate codes pro-
duced by our modeler which are ANSI-C subset
can be used as an input for a standard ANSI-C
compiler. However, we have found that most com-
mercially available compilers modify the structure
of source codes and make them difficult to evalu-
ate the correct worst case execution time. In our
prototype tool, a supplementary tool is, therefore,
specially implemented in order to compile an in-

termediate code directly into the target architec-
ture’s specific assembly codes.

Let’s re-consider the ertCPN model illus-
trated in Figure 4 which consists of two transitions
within the task. Having checked the ready-to-fire
condition of both transitions, it is obvious that
T0-transition is ready to fire while T1-transition is
still waiting for the value of T. Consider T0-tran-
sition, the binding sequence that causes T0-tran-
sition to fire is:

aIndex=Index;
Temp=TempSensor
ArrayOfData[aIndex]=Temp
(Index>=9)?(Index=0):(Index++)
P7=Temp

Notice that at the end of T0-transition’s ex-
ecution seqeunce, it assigns P7-place to the value
of Temp. This opens an opportunity to T1-transi-
tion to be ready to fire with the following sequence
of inscriptions:

Figure 3. A sequence of inscriptions after compiling the model in Figure 2(b)

Figure 4. A sample periodic task modeled by use of ertCPN
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Setpoint=50
(Temp<=Setpoint)?(NormalLED=1):
(NormalLED=0)

The  last  inscription  is  of  type  condition
which is used to set/clear status of the NormalLED.
The sporadic counterpart of this model illustrated
in Figure 5 has the same behaviour as described
above with only one more condition to be con-
sidered before the task can be activated. Such a
condition is defined by V9-arc, (PushSwitch==1)?,
which is of type control flow.  The Boolean ex-
pression within the inscription must be evaluated
to be true in order for the task to execute.

The sequences of inscriptions after compil-
ing the models in Figures 4 and 5 by use of our
modeler are shown in Figures 6(a) and (b), re-
spectively.

Implementation and Discussion

In order to ensure that the proposed adapta-
tions of CPN are viable in practice (both exe-
cutable and able to generate code automatically)
and easy to use, we have implemented a software
tool called ENVisAGe: Extended Coloured Petri-
Net Based Visual Application Generator Tool by
use of a Tcl/Tk scripting language. Nearly all of
the ertCPN models illustrated in this paper are
produced by ENVisAGe.

The core module of ENVisAGe is written
in iTcl/iTk which is an object oriented counterpart

of the original Tcl/Tk. Currently, the tool’s target
architecture is a single processor MCS-51 family
of microcontrollers.  Although, using these pow-
erful languages requires a steep learning curve
since it lacks a supporting document, it eases the
graphical user interface design and development.
In addition, the resulting script can be executed
on many platforms which have the open-source
Tcl/Tk interpreter installed.  Figure 6 is a screen-
shot of the model for a case study “a Temperature
Monitoring and Control System” detailed in Sec-
tion 6: Case study.

EnVisAGe provides many capabilities to
assist users in order to create a model with mini-
mum effort. It supports standard features of lan-
guage’s primitives: instantiation, manipulation and
destruction of primitives and insertion/correction
of primitives’ inscriptions. In addition, it supports
knowledge-based modeling by allowing designers
to add the previous constructed modules of ertCPN
into a current design and store a current design to
be used as a module for later use.

Also, a current version of EnVisAGe supports
task’s execution analysis to easily verify the task’s
behaviour. In addition, an automatic code genera-
tion for MCS-51 architecture has currently been
integrated into the tool. This also makes it capable
to semi-automatically calculate T

WCET
 of tasks

(Kurdthongmee, 2002). A schedulability analysis
will be incorporated in the coming version of the
tool.

Figure 5. A sample sporadic task modeled by use of ertCPN
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The drawback of EnVisAGe is similar to the
drawback of CPN, itself. That is to say for a com-
plex  system  the  resulting  model  has  a  huge
amount of primitives. This makes the model more
difficult to read and interpret. This could partially
be solved by utilizing a concept of hierarchical
CPN to selectively hide/show detail of some tasks
of  models.  This  capability  has  not  been  inte-
grated into our modeler yet.

Conclusions and Future Work

The  paper  has  described  the  modeling
framework for an embedded real-time system that
has been adapted from a coloured Petri-net theory.
Integrating more primitive, a task-primitive, into
a set of standard CPN primitives; places, transi-
tions and arcs, and redefining inscriptions makes
the resulting modeling framework more suitable
for real-time embedded systems. A resulting model
obviously shows both architecture and behaviour
of the system within the same model. The informa-
tion provided by the primitive’s attribute of a model
can be used for schedulability analysis which is

the heart of real-time system design. In addition,
an  inscription  language  can  also  be  used  for
system analysis by means of a standard CPN; i.e.
state-space analysis.

A current version of the EnVisAGe modeler
supports model execution analysis on a task by
task basis. We plan to integrate a state-space ana-
lysis tool into the next version of our modeler.
Also, a schedulability analysis, an extended CPN
simulation, a worst case execution analysis and
automatic code generation tool will be included in
the coming version of the tool.

Case Study: ertCPN model of a temperature

monitoring and control system

In this section, we present a simple example
of an embedded real-time system modelled by
means of the ertCPN theory. Consider a tempera-
ture controlled system with capabilities to display
a current temperature, allow users to adjust its
set point and manually shut down the system.
There are three input devices to the system which
are a temperature sensor, a push button switch

Figure 6. Sequences of inscriptions (a) and (b) are from the models in Figure 3 and 4, respectively.
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and a 4×4 matrix keyboard. In addition, there are
two  output  devices  of  the  system  which  are  a
4-digit multiplexing LED and a relay connecting
to an external heating element. According to the
specification, the system performs by periodically
sampling a temperature from the sensor, display-
ing the current temperature on the LED display
unit, comparing the temperature to its set point
and setting/clearing the relay appropriately. Under
normal condition, the relay is always turned on.
At any instant of time, however, if the temperature
is greater than its set point, the relay will be turned
off. Another responsibility of the system is to peri-
odically scan the 4×4 matrix keyboard.  If the
system encounters that a key is pressed, it will
read the status of both row and column ports which
control the operation of the matrix keyboard, then
look for the numeric value of the pressed key
and finally store the numeric value as the temp-
erature’s set point in an appropriate variable for
later retrieval. Finally, if users press the “shut down”
key, the system must respond immediately by
switch-off the relay. It is noted that in order to
ease the design and reduce the complexity of the
resulting model, an on-off control system is used.

From  the  requirement,  it  is  obvious  that
the system has both type of tasks: periodic and
sporadic. Table 1 classifies the type of tasks, the
assigned name which is going to be used in the
model and the timing attributes in the form of (re-
lease time, worst case execution time and dead-
line). It is noted again that the worst case execu-
tion time attribute is optional and will be auto-
matically calculated by the modeler. With the in-
formation about the whole system on a task-by-
task basis, the ertCPN model of the system can be

constructed. Figure 7 illustrates the resulting model
created by EnVisAGe modeler which has been de-
veloped as part of our research.

According to Figure 7, ertCPN clearly shows
the architecture of the system which consists of
4 tasks.   It also illustrates the relationships
amongst the tasks; i.e.: each time the (period-
ic)DisplayScan-task is activated, it retrieves a
byte of data at location cDigit from a global vari-
able data which is an array of 4 bytes. It also up-
dates the global variable digit to always point to
the next digit of the LED to be enabled next time
the task is activated. The digit is of integer type
which has a value between 0 and 3. This is clearly
specified by the inscription: (digit>=3)?(digit=
0):(digit++)  at  the  arc  connecting  between  the
digit-place and the T0-transition.

According to ertCPN theory given in Sec-
tion 3, the behaviour of any task is described by
a group of places and transitions within the task.
Let’s consider Task#0:DisplayScan first, once
the task is activated it retrieves the global varia-
ble digit and assigns to cDigit which is later used
to refer to the member of enable and data. The cur-
rent value of enable, or enable[cDigit], is sent out
to the enablePort. Additionally, the current value
of data, which is in decimal form, is converted to
its corresponding seven segment code and sent
out to the segmentPort. It is noted that cDigit is
globally declared to be of type byte and is used by
the Task3:KeyboardScan.

Behaviourally,  Task#1:ReadTempAnd

Action  is  responsible  for  sampling  a  current
temp-erature value from the tempSensor.  After
changing from 8-bit data to a correct temperature
value, the task stores the temperature into the

Table 1. The type of task, the assigned name and the timing attributes of the temperature

monitoring and control system. (imm: immediately)

  Type   Assigned Name Time Attributes          Action

Sporadic UserShutDown (imm, ?) Users shut down the system immediately.
Periodic DisplayScan (20mS, ?, 20mS) Scan the multiplexed LED display digit by digit.
Periodic KeyboardScan (50mS, ?, 30mS) Scan the matrix keyboard.
Periodic ReadTempAndAction (20mS, ?, 20mS) Read temperature and control the relay.
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data-variable. The inscription to convert from an
integer to an array of 4 bytes, V12-arc, consists
of 4 statements which are of type assignment.
This task is also responsible for setting or clear-
ing the state of the Relay as a result of comparing
the variable Temp with the Setpoint value.  The
Setpoint value used by this task is a result of con-
verting from (global)keyBuffer which is an array
of 3 bytes into an integer (see V10-arc’s inscrip-
tion).

Task#2:UserShutDown  is the easiest to
understand task. This task is of type sporadic and
consists of only 1 transition. Once the status of
the  shutDownButton  (which  is  0  by  default)  is
changed to one, the transition clears the status of
the Relay unconditionally and immediately.

The last task with the most complex struc-
ture is Task3#KeyboardScan. The main duty of
this task is to periodically sample the value of
the rowInPort, keeps only the last four bits and as-
signs the result to cRow. Logically, pressing any
key causes the cRow to be any value other than 15
(0Fh).  The task tests this condition and returns
immediately if no key is pressed. If a key is pressed
however,  the task converts a current cKey=
cDigit*16+cRow into a correct key value by use of
loop-comparison, formed by T8-V30-P10-V33-T9-
V34-P19-V31. The key value is stored in keyBuffer
at the location specified by kDigit.
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