INVITED ARTICLE

Impacts of Typhoon Vae and Linda on wind waves in the Upper Gulf of Thailand and East Coast

Suphat Vongvisessomjai¹

Abstract

Vongvisessomjai, S. Impacts of Typhoon Vae and Linda on wind waves in the Upper Gulf of Thailand and East Coast Songklanakarin J. Sci. Technol., 2007, 29(5) : 1199-1216

The Upper Gulf of Thailand and east coast are the locations of the 3 important deepsea ports of Thailand, namely Bangkok port, Laem Chabang port and Map Ta Phut port which needed wind wave data for designs of port structures and navigation of cargo vessels and container ships to and from the ports.

In the past, most wave data in the Gulf of Thailand were computed from wind data using the method proposed by Silvester and Vongvisessomjai (1970). Recently, Pornpinatepong *et al.* (1999) used the WAM Model to predict wind waves in the Gulf of Thailand and Andaman Sea using waves initially from satellites ERS-2 and TOPEX and later from 9 oceanographic buoys in the Gulf of Thailand and 2 buoys in the Andaman Sea for model calibration.

This study presents wind waves in 6 years (1997-2002) from the WAM Model at Petchaburi and Sichang buoys in the Upper Gulf of Thailand as well as Rayong and Ko Chang buoys on the east coast. Since the big waves in the study area are generated by strong winds of cyclones, emphasis is placed to the wind waves generated during the passage of cyclones Vae in 1952 formerly provided by Vongvisessomjai (1994b) and new data of Linda in 1997. Cyclonic waves are second in size to the tsunami waves in the Andaman Sea on December 26, 2004.

Key words : cyclone, deepsea port, disaster, oceanographic buoy, wind wave

¹D.Eng. (Coastal Engineering), Prof., Water and Environment Expert, TEAM Consulting Engineering and Management Co. Ltd., 151 TEAM Building, Nuan Chan Road, Klong Kum, Bueng Kum, Bangkok 10230 Thailand.

Corresponding e-mail: Suphat@team.co.th

Received, 19 September 2006 Accepted, 15 June 2007

Vongvisessomjai, S.

บทคัดย่อ

1200

สุภัทท์ วงศ์วิเศษสมใจ อิทธิพลของพายุโซนร้อนต่อคลื่นลมในอ่าวไทยตอนบนและชายฝั่งตะวันออก ว. สงขลานครินทร์ วทท. 2550 29(5) : 1199-1216

อ่าวไทยตอนบนและชายฝั่งตะวันออก เป็นที่ตั้งของท่าเรือน้ำลึกทั้งสามท่าของประเทศไทย ได้แก่ ท่าเรือ กรุงเทพ ท่าเรือแหลมฉบัง และท่าเรือมาบตาพุด ซึ่งต้องใช้ข้อมูลคลื่นลมในการออกแบบโครงสร้างท่าเรือต่าง ๆ และ ใช้ในการเดินเรือสินค้าเข้าและออกจากท่าเรือ

ในอดีตข้อมูลกลื่นในอ่าวไทยกำนวณจากข้อมูลลมโดยใช้วิธีที่เสนอโดย Silvester และ Vongvisessomjai (1970) ในปัจจุบัน พรพิเนตพงศ์ และคณะ (1999) ใช้แบบจำลองกลิ่น (The WAM Model) ในการพยากรณ์กลื่น ในอ่าวไทยและทะเลอันดามันแล้วนำมาสอบเทียบกับข้อมูลกลื่นในเบื้องต้นจากดาวเทียม ERS-2 และ TOPEX และ ต่อมาจากทุ่นสมุทรศาสตร์ 9 ทุ่น ในอ่าวไทย และ 2 ทุ่น จากทะเลอันดามัน

การ์ศึกษานี้จะใช้ข้อมูลคลื่น 6 ปี (1997-2002) จากแบบจำลองคลื่น (The WAM Model) ที่ทุ่นเพชรบุรีและ สีชังในอ่าวไทยตอนบน และทุ่นระยอง และเกาะช้างจากชายฝั่งตะวันออก เนื่องจากคลื่นขนาดใหญ่ในบริเวณที่ ศึกษาเกิดจากลมที่มีความเร็วสูงมากช่วงที่มีพายุโซนร้อนพัดผ่าน เช่น ใต้ฝุ่นเว้ ในปี ค.ศ. 1952 ซึ่งเสนอโดย Vongvisessomjai(1994b) และลินดาในปี ค.ศ. 1997 การศึกษานี้จึงเน้นถึงคลื่นที่เกิดจากพายุโซนร้อนนี้ ซึ่งมีขนาด ใหญ่รองจากคลื่นสึนามิที่เกิดในทะเลอันดามันเมื่อวันที่ 26 ธันวาคม ค.ศ. 2004

ผู้เชี่ยวชาญเรื่องน้ำและสิ่งแวดล้อม บริษัท ทีม คอนซัลติ้ง เอนจิเนียริ่ง แอนด์ แมเนจเมนท์ จำกัด 151 อาการทีม ถนนนวลจันทร์ แขวงกลองกุ่ม เขตบึงกุ่ม กรุงเทพฯ 10230

The 3 important deepsea ports of Thailand, namely Bangkok port, Laem Chabang port and Map Ta Phut port, are located in the Upper Gulf of Thailand and the east coast as shown in Figure 1 and needed wind wave data for design of the port structures.

Five cyclone disasters in Thailand due to strong winds and surges have occurred since the mid 20^{th} century among which the first 3 were reported by Vongvisessomjai (1994 b). These were (i) in 1952 when typhoon Vae attacked the Upper Gulf; (ii) in 1962 when typhoon Harriet caused disaster at Laem Talumpuk of Nakorn Si Thammarat province due to its devastating winds and surges causing 800 deads; (iii) in 1970 when cyclone Ruth attacked Ko Samui and coastline of Surat Thani and Chumphon; (iv) new data in 1989 when typhoon Gay caused disaster at Patiew and Tha Sae of Chumphon province due to strong winds and surges, with 580 deads, mostly fishermen, 620 boats sunk, 40,000 houses destroyed causing about 11 billion baht damage; and (v) new data in

1997, when typhoon Linda attacked Thupsake of Prachuap Khiri Khan province resulting in 30 deads, 102 missing and more than 400,000 rai of agricultural land destroyed. This paper presents the characteristics of these cyclones.

Cyclones over Thailand

In summer, air over sea-surface near the equator which is overheated will become lighter and rise, creating a low pressure center defined as cyclone. The outer cooler air blows towards the center in counterclockwise direction over the northern hemisphere due to coriolis effect, and clockwise in the southern hemisphere. This results in a system of cloud which precipitates when it passes over a mountainous area and thus produces flood.

A tropical cyclone is characterized by four parameters, namely, its forward speed V_r , radius of the eye R, the minimum pressure at its center p_0 and the maximum wind speed at the radius of

Vol. 29 No. 5 Sep. - Oct. 2007

Figure 1. Location of 3 deepsea ports and oceanographic buoys operated by NRCT.

the eye $U_{\mbox{\tiny max}}.$ The pressure distribution of a cyclone pincreases as a function of the radial distance r

from its center p_0 to the atmospheric pressure p_n , as proposed by Myers (1954) :

Songklanakarin J. Sci. Technol.	In	inda on win	id waves		
Vol. 29 No. 5 Sep Oct. 2007	1202			omjai, S.	
$p - p_o = (p_n - p_o) e x p (-R/r) \text{ for } o < r <$	(1)	$U = U_{_{max}} \left(R/r \right)$	for	r > R	(3)
The wind velocity distribution of a c U varies as a function of the radial distan	cyclone w	here $U_{max} = $ the max cyclone	kimum s ;;	sustained w	ind in a
proposed by Jelesnianski (1965) is given b	elow.	R = the radi speed;	us of m	aximum su	stained
$U = U_{_{max}} \left(r/R \right) \qquad for \qquad r \leq R$	(2)	r = distance	e betwe	en center of	f the

Figure 2. Tracks of 5 most disastrous cyclones over Thailand

Songklanakarin J. Sci. Technol.	Impacts of Ty	yphoon Vae and Linda on wind waves
Vol. 29 No. 5 Sep Oct. 2007	1203	Vongvisessomjai, S.

Tracks of 5 disastrous cyclones over the South China Sea affecting Thailand are shown in Figure 2. Characteristics of the first three cyclones affecting Thailand as provided by Vongvisessomjai (1994b) are shown in Figure 3 for their variations of pressure and wind speed versus radial distance r. These cyclones can be seen clearly from weather satellite in form of huge clouds. These clouds caused heavy rainfall and floods, while strong winds caused destruction of houses and ships.

1. Cyclone in the Upper Gulf of Thailand

Vongvisessomjai (1994b) reported on

cyclonic waves and surges generated by typhoon Vae at Ao Phai near to Laem Chabang port. The limited fetch length of the Upper Gulf of Thailand resulted in quite small values of extreme surge of 1.17 m and significant wave height of 2.3 m and period of 5.9 s. However, when typhoons Harriet and Gay attacked southern shorelines, which are open sea, the resulting surges and waves were much larger and caused much more damage and many more casualties. These disasters can be alleviated from known characteristics of cyclones and through proper warning. Figure 2 shows tracks of 5 most disastrous cyclones over Thailand.

Figure 3. Radial distributions of pressures and wind velocity of typhoons Vae, Harriet and Ruth.

Songklanakarin J. Sci. Technol.	Impacts of Typhoon	Vae and Linda on wind waves
Vol. 29 No. 5 Sep Oct. 2007	1204	Vongvisessomjai, S.

Typhoon Vae was the most severe one for the Upper Gulf of Thailand, therefore, it was considered to be the Probable Maximum Cyclone (PMC) here.

(i) Cyclonic Surge Analysis

The PMC and the 250 year cyclones, determined from historical data and shown in Table 1, are plotted in Figure 4, assuming that the Central Pressure Index (CPI) of the minimum central pressure (p_o) values of storms belong to a normally distribution population. This permits the

extrapolation of the CPI to theoretically high recurrence interval so as to get inherent parameters adopted for PMC and the 250 year cyclone. It can be seen in Table 1 and Figure 2 that severe typhoon Vae (1952); Harriet (1962); Ruth (1970); Gay (1989) and Linda (1997) occurred once every 8-10 or 9 years, which is the recurrence interval of El Nino. (Trenberth, 1992).

Illustrated in Figures 5 and 6 respectively are the designed PMC wind field and typical

Figure 4. Recurrence intervals of cyclone characteristics for the Gulf of Thailand.

Figure 5. Wind field of the probable maximum cyclone for the Gulf of Thailand.

Vongvisessomjai, S.

No.	Year, Month, Date	Name	CPI or	Max. Velocity	Forward Speed.	Radius, R
			p _o (m bars)	U _{max} (mph)	V _f (mph)	(nautical miles)
1	1952 Oct 21-22	VAE	992	84	14.97	76
2	Oct 24-25	TRIX	998	44	17.27	60
3	1960 Oct 03-04	-	992	52	3.45	8.4
4	1962 Oct 25-26	HARRIET	997	69	18.45	76
5	1966 Jun 17-18	-	-	-	12.67	-
6	Oct 25-26	-	990	48	9.21	49
7	1967 Jun 17-18	-	978	62	12.67	140
8	Oct 05-06	-	996	49	11.52	16
9	Oct 09-10	-	998	44	17.27	90
10	Nov 10-11	-	-	-	12.67	-
11	1968 Sep 05-06	BESS	992	44	2.30	115
12	Oct 21-22	HESTER	998	46	11.52	10
13	1967 Jun 24-25	-	998	46	6.91	7.5
14	Sep 20-21	-	992	51	12.67	57
15	Nov 10-11	-	1000	45	16.12	10
16	1970 Sep 20-21	-	994	52	13.82	20
17	Oct 25-26	KATE	1000	27	13.82	314
18	Nov 29-30	RUTH	1000	42	11.52	43
19	1972 Jun 03-04	NAMIE	990	48	6.91	123
20	Sep 06-07	-	990	49	4.61	16
21	Sep 18-19	-	-	-	-	-
22	Dec 04-05	SALLY	994	50	5.76	5
23	1973 Nov 12-13	-	1002	38	5.76	4
24	Nov 17-18	THELMA	998	45	5.76	39
25	1974 Oct 09-10	-	1002	34	6.91	15
26	Nov 05-06	-	998	45	13.82	60
А	1989 Nov. 01-04	GAY	989	116	12.00	-
В	1997 Nov. 01-05	LINDA	976	64	30.00	-

Table 1. Historical typhoon (cyclone) characteristics from Vongvisessomjai (1994b).

1205

four-hourly values of the wind field over the Gulf. Plotted in Figure 7 are the magnitudes and directions of wind that would be observed at different radial distances from the centers of the PMC and of the 250 year cyclone, for a span of 46 hours. The surge computation is then performed on an IMB-370 computer using the derived PMC data. The surge hydrography thus obtained is shown in Figure 8.

(ii) Cyclonic Waves

The observed seasonal waves are found to be insignificant in height and period. However,

short-duration waves generated by cyclones, known as "cyclonic waves" are important aspects of cyclones occurring in the nearshore zone and in the immediate neighborhood of coastal front structures. They can be prominently superposed on the surge levels. Quantitative estimates of the waves associated with cyclones are forecasted and included here.

A procedure for present computation of cyclone waves has been developed (Day, 1977). Two design cyclones, the PMC and the 250-year cyclone as used for the surge computation, are

Vol. 29 No. 5 Sep. - Oct. 2007

Figure 6. Probable maximum cyclone (PMC) wind field over the Gulf of Thailand.

adopted. The results are shown in Figure 9, in which the starting time of computation is taken to be that when the iso-velocity line of zero wind velocity touches the shoreline at the west side of the Gulf. The distance of the cyclone center from Ao Phai shown in this same figure indicates that the cyclone center is nearest to Ao Phai at about the 18th hour. At this time, the cyclonic waves would be the most severe; this would be particularly so if the track of the cyclone is about 35 nautical miles north of Ao Phai. The severest cyclonic wave characteristics were found to be 2.3 m in height and 5.9 s in period at PMC condition. For the condition of the 250-year cyclone, the severest cyclonic wave characteristics were found to be 1.9 m and 5.1s. No cyclonic waves have been actually recorded to permit comparisons. However, this cyclonic wave model has been successfully applied to tropical cyclones in Hong Kong and Taiwan (Day,1977), and the computed magnitudes obtained above are within this expectation.

Due to the limited fetch length of the Upper

Vol. 29 No. 5 Sep. - Oct. 2007

Figure 7. Probable maximum cyclone (PMC) and 250-year cyclone characteristics as would be observed at Ao Phai.

Figure 8. Probable maximum cyclonic surge (PMC and 250-year) and high tide at Ao Phai.

Vongvisessomjai, S.

1208

Figure 9. Probable maximum cyclonic wave (PMC and 250-year) at Ao Phai.

Gulf of Thailand, which has a surface area of 100 km. x 100 km., quite small values of extreme surges of 1.2 m and 0.9 m were obtained for PMC and 250 year cyclones respectively, while their corresponding significant waves are 2.3 m, 5.9 s and 1.9 m, 5.1 s at Ao Phai. It is to be noted that NEDECO (1972) in the study of the deepsea port of Laem Chabang estimated the design wave height of 2.3 m for a return period of 50 years.

2. Cyclone in the East Coast

Pornpinatepong *et al.* (1999) used the WAM Model in predicting wind waves in the Gulf of Thailand and Andaman Sea under a joint project of Thai and US Government agencies with financial support from Thai Research Fund from 1996-1999. Wave data used in calibrating the wave model were taken initially from satellites ERS-2 and TOPEX and later from 9 buoys in the Gulf of Thailand and 2 buoys in the Andaman Sea operated by the National Research Council of Thailand (NRCT) as shown in Figure 1. The WAM Model, which was the third generation of the WAM group (1988), was originally developed over 10 years by the Max Planck Institute for Meteorology in Germany. This wave model has been used to forecast ocean wave height in conjunction with an input forecast wind data, 110-km resolution, provided by the Master Environmental Library (MEL), US Department of Defense. The model developed from this project has been used operationally at the Weather Forecast Department of the Royal Thai Navy. The forecast data are shown daily on the Royal Thai Navy Website (Wirattipong, Ekmahachai et al., 1999).

The most important results of the WAM Model are the wind waves generated by typhoon Linda, which was formed on October 26, 1997 as the tropical disturbance within an area of convect-

Vol. 29 No. 5 Sep. - Oct. 2007

Vongvisessomjai, S.

Figure 10. Six-hourly waves on November 2, 1997. (Color figure can be viewed in the electronic version)

ion east of the Philippine islands near latitude 10° N and longitude 130° E, and then moved westward under the subtropical ridge to the north. When entering the South China Sea, it transformed into a tropical storm and moved westward to the southern tip of Cape Camau of Vietnam at 00Z on November 2 with the intensity of 55 knots (28 m/s) as shown in Figure 2. It approached the Gulf of Thailand around 00Z on November 3 with

typhoon intensity and turned northwestward following steering from the subtropical ridge. Its strength weakened as it encountered mountains (Prachuap Khiri Khan province). After crossing over the Andaman Sea, it reconsolidated and became a typhoon once again at 00Z on November 6. Six hourly waves on November 2 and 3, 1997 are shown in Figures 10 and 11 respectively. The wave heights increase at 0.3 m (1 foot) internal

Vol. 29 No. 5 Sep. - Oct. 2007

Figure 11. Six-hourly waves on November 3, 1997. (Color figure can be viewed in the electronic version)

using blue colours from 0.3-1.5 m, green colours from 1.5-2.7 m, and yellow colours from 2.7-3.9 m. The black arrows show wave directions and the white arrows show directions of cyclonic winds which rotate counterclockwise around the center of cyclone. It can be seen that very big waves are located at the eye of the cyclone near to its center due to its maximum wind speed here. Figure 12 shows three-hourly waves of oceanographic buoys

at Ko Chang with the maximum wave height of 2.2 m at noon on November 3, at Rayong with the maximum wave height of 2.5 m and at Huahin with the maximum wave height of 2.7 m around midnight on November 3, 1997. Note that the maximum wave heights at the eye of cyclone shown in Figures 10 and 11 are about 4.0 m, which are bigger than those waves recorded at the three buoys shown in Figure 12.

Vol. 29 No. 5 Sep. - Oct. 2007

Figure 12. Three-hourly waves of buoys at Ko Chang , Rayong and Huahin November 1-5, 1997.

The increased fetch length of the east coast but still limited by the existence of its shoreline resulted in an increase of wave height of 2.5 m at Rayong and 2.7 m at Huahin while the maximum significant wave height at the eye of the cyclone is about 4.0 m. It is to be noted that in the study of the deepsea port at Map Ta Phut, JICA (1983) estimated the design wave height of 3.67 m for a return period of 50 years and 3.85 m for a return period of 100 years.

When typhoon Harriet (1962) and Gay (1989) attacked the southern shorelines, which are open sea, with unlimited fetch length, the resulting surges and waves at the southern shorelines were much larger and caused much more damage and many more casualties.

Wind Waves in the Upper Gulf of Thailand and the East Coast

Wind waves in the Upper Gulf of Thailand

and the east coast for 6 years (1997-2002) were used in this study. These waves were kindly provided by the Royal Thai Navy using the WAM Model for weather forecast of waves in the Upper Gulf of Thailand and the Andaman Sea. These waves were mostly quite small, less than 0.5 m in the Upper Gulf of Thailand, while those on the east coast were moderate, about 1.0 m, which were much smaller than cyclonic waves presented before.

Wave roses of Petchaburi buoy as tabulated in Table 2 are plotted in Figure 13a. During the northeast monsoon, most of these waves were from NE (12%), NNE (11%), and ENE (5%), while during the southwest monsoon, most of these waves were from WSW (15%), W (12%) and SW (9%); 98.5% of these waves were smaller than 0.5 m and 1.5% were from 0.5-1.0 m.

The wave rose of Sichang buoy as tabulated

Vol. 29 No. 5 Sep. - Oct. 2007

Figure 13. Wave roses of Petchaburi and Sichang from 1997-2002.

Figure 14. Wave roses of Rayong and Ko Chang from 1997-2002.

180

(Color figure can be viewed in the electronic version)

in Table 3 is plotted in Figure 13b. During the northeast monsoon most of these waves were from NE (13%), NNE (10%) and ENE (5%), while during the southwest monsoon most of these waves were from WSW (14%), SW (11%) and SSW (11%); 98.0% of these waves were smaller than 0.5 m and 2.0% were from 0.5-1.0 m.

The wave rose of Rayong buoy as tabulated in Table 4 is plotted in Figure 14a. During the northeast monsoon most of these waves were from NE (15%), NNE (7%) and ENE (7%) while during the southwest monsoon most of these waves were from WSW (16%), W (11%) and SW (9%); 77.1% of these waves were smaller than 0.5 m and 21.4% were from 0.5-1.0 m.

The wave rose of Ko Chang buoy as tabulated in Table 5 is plotted in Figure 14b. During the northeast monsoon most of these waves were from NE (15%), ENE (9%) and NNE (6%), while during the southwest monsoon, most of these waves were from WSW (16%), SW (12%) and W (10%); 71.8% of these waves were smaller than 0.5 m and 24.6% were from 0.5-1.0 m.

Vol. 29 No. 5 Sep. - Oct. 2007

1213

Vongvisessomjai, S.

Table 2. Wave occurrence by WAM model at Petchaburi from 1 August 1997 - 31 December 2002.

Direction				V	Vave Height	of Occurre	nces (Hours	5)				Total(Hours)	Percentage
Direction	0.1-0.5	0.5-1.0	1.0-1.5	1.5-2.0	2.0-2.5	2.5-3.0	3.0-3.5	3.5-4.0	4.0-4.5	4.5-5.0	5.0->		
N	1 305	6	0	0	0	0	0	0	0	0	0	1,311	2.76
IN NINT	5 157	54	3	0	0	0	0	0	0	0	0	5,214	10.98
ININE	5,107	111	3	0	0	0	0	0	0	0	0	5,541	11.67
NE	5,427	45	3	0	0	0	0	0	0	0	0	2,361	4.97
ENE	2,313	40	10	0	0	0	0	0	0	0	0	1,275	2.68
E	1,233	30	12	0	0	0	0	0	0	0	0	1,167	2.46
ESE	1,140	12	3	12	0	0	0	0	0	0	0	1.248	2.63
SE	1,239	6	0	3	U	0	0	0	0	0	0	2 238	471
SSE	2,190	48	0	0	0	0	0	0	0	0	0	3 726	7.84
S	3,672	54	0	0	0	0	0	0	0	0	0	3,720	8.26
SSW	3,903	21	0	0	0	0	0	0	0	0	0	3,324	0.20
SW	4,176	117	0	0	0	0	0	0	0	0	0	4,293	9.04
WSW	7.020	141	0	0	0	0	0	0	0	0	0	7,161	15.08
W	5 628	33	0	0	0	0	0	0	0	0	0	5,661	11.92
10/01/0/	1,650	6	0	0	0	0	0	0	0	0	0	1,656	3.49
NIM	378	0	0	0	0	0	0	0	0	0	0	378	0.80
NINUA/	342	0	0	0	0	0	0	0	0	0	0	342	0.72
	AC 773	684	24	15	0	0	0	0	0	0	0	47,496	
i otal(Hours)	40,773	004	0.05	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	

Wave Period (second) Wave Period of Occurrences (Hours) 0.1-1.0 1.0-2.0 2.0-3.0 3.0-4.0 4.0-5.0 5.0-6.0 6.0-7.0 0 222 411 519 159 0 0 0 504 1.791 2.058 822 39 0 0 228 1.896 2.304 1.041 66 6 0 39 597 1.197 501 27 0 0 24 339 663 228 18 3 0 15 411 567 152 0 12 Total(Hours) Percentage Direction 8.0-9.0 9.0-10.0 10.0-> 7.0-8.0 2.76 10.98 1,311 5,214 5,541 2,361 1,275 1,167 1,248 2,238 3,726 3,924 4,293 7,161 5,661 1,656 378 342 411 1,791 1,896 597 339 411 462 873 1,860 2,076 2,532 4,479 3,459 885 165 123 519 2,058 2,304 1,197 663 567 684 1,110 1,428 1,476 1,371 2,301 1,893 591 162 168 NNE NE ENE 11.67 4.97 2.68 2.46 2.63 4.71 7.84 8.26 9.04 15.08 11.92 3.49 ESE SE SSE 66 120 204 165 240 255 213 153 42 36 13 135 231 198 141 114 84 SSW SW WSW W WNW NW NNW 18 0.80 0 4,407 213 0.45 47,496 24 0.05 0.00 0 2,001 4.21 18,492 38.93 Total(Hours) 0 22,359 0.00 0.00 0.00 0.00 47.08 Percentage

Table 3. Wave occurrence by WAM model at Sichang from 1 August 1997 - 31 December 2002.

Direction				V	Vave Height	of Occurre	nces (Hour:	s)				Total/Hours)	Percentage
	0.1-0.5	0.5-1.0	1.0-1.5	1.5-2.0	2.0-2.5	2.5-3.0	3.0-3.5	3.5-4.0	4.0-4.5	4.5-5.0	5.0->	rotal(nours)	reicentage
N	1,104	0	0	0	0	0	0	0	0	0	0	1,104	2.32
NNE	4,800	9	0	0	0	0	0	0	0	0	0	4,809	10.12
NE	6,312	6	3	0	0	0	0	0	0	0	0	6,321	13.31
ENE	2,439	6	0	0	0	0	0	0	0	0	0	2,445	5.15
E	1,239	9	0	0	0	0	0	0	0	0	0	1,248	2.63
ESE	954	12	9	0	0	0	0	0	0	0	0	975	2.05
SE	1,056	6	3	0	0	0	0	0	0	0	0	1,065	2.24
SSE	1,599	27	0	0	0	0	0	0	0	0	0	1,626	3.42
S	3,780	21	0	0	0	0	0	0	0	0	0	3,801	8.00
SSW	5,208	48	0	0	0	0	0	0	0	0	0	5,256	11.07
SW	5,055	213	0	0	0	0	0	0	0	0	0	5,268	11.09
WSW	6,450	405	9	0	0	0	0	0	0	0	0	6,864	14.45
W	4,485	123	0	0	0	0	0	0	0	0	0	4,608	9.70
WNW	1,314	27	0	0	0	0	0	0	0	0	0	1,341	2.82
NW	411	3	0	0	0	0	0	0	0	0	0	414	0.87
NNW	354	0	0	0	0	0	0	0	0	0	0	354	0.75
otal(Hours)	46,560	915	24	0	0	0	0	0	0	0	0	47,499	
Percentage	98.02	1.93	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	

Wave Period (second)

Direction				V	vave Period	of Occurre	nces (Hour	'S)				Total/Hours)	Dercontono
	0.1-1.0	1.0-2.0	2.0-3.0	3.0-4.0	4.0-5.0	5.0-6.0	6.0-7.0	7.0-8.0	8.0-9.0	9.0-10.0	10.0->	Total(Hours)	Fercentage
N	0	90	321	513	168	12	0	0	0	0	0	1,104	2.32
NNE	0	564	1,131	1,998	990	126	0	0	0	0	0	4,809	10.12
NE	0	501	1,551	2,610	1,443	210	6	0	0	0	0	6,321	13.31
ENE	0	60	798	1,134	414	39	0	2 0	0	0	0	2,445	5.15
E	0	39	411	588	195	15	0	0	0	0	0	1,248	2.63
ESE	0	66	399	402	93	9	6	0	0	0	0	975	2.05
SE	0	81	501	408	72	0	3	0	0	0	0	1,065	2.24
SSE	0	147	888	555	36	0	0	0	0	0	0	1,626	3.42
S	0	471	2,295	984	51	0	0	0	0	0	0	3,801	8.00
SSW	0	483	3,267	1,461	42	3	0	0	0	0	0	5,256	11.07
SW	0	252	3,201	1,686	105	24	0	0	0	0	0	5,268	11.09
WSW	0	162	3,603	2,925	135	39	0	0	0	0	0	6,864	14.45
W	0	96	2,553	1,887	72	0	0	0	0	0	0	4,608	9.70
WNW	0	18	873	396	54	0	0	0	0	0	0	1,341	2.82
NW	0	3	252	135	24	0	0	0	0	0	0	414	0.87
NNW	0	9	189	144	12	0	0	0	0	0	0	354	0.75
Total(Hours)	0	3,042	22,233	17,826	3,906	477	15	0	0	0	0	47,499	
Descentage	0.00	6 40	46.81	37 53	8.22	1.00	0.02	0.00	0.00	0.00	0.00	100.00	

Vol. 29 No. 5 Sep. - Oct. 2007

1214

Vongvisessomjai, S.

Table 4. Wave occurrence by WAM model at Rayong from 1 August 1997 - 31 December 2002.

Direction				V	Vave Height	of Occurre	nces (Hour	s)				Total(Hours)	Percentage
	0.1-0.5	0.5-1.0	1.0-1.5	1.5-2.0	2.0-2.5	2.5-3.0	3.0-3.5	3.5-4.0	4.0-4.5	4.5-5.0	5.0->	(otal(i ouro)	1 broomuge
N	639	24	0	0	0	0	0	0	0	0	0	663	1.40
NNE	2.781	474	3	0	0	0	0	0	0	0	0	3,258	6.86
NE	5.010	1,902	54	0	0	0	0	0	0	0	0	6,966	14.67
ENE	2,835	333	21	0	0	0	0	0	0	0	0	3,189	6.72
E	1,452	87	6	3	3	0	0	0	0	0	0	1,551	3.27
ESE	1.068	33	6	0	3	3	0	0	0	0	0	1,113	2.34
SE	1,179	57	3	6	3	0	0	0	0	0	0	1,248	2.63
SSE	1,809	144	0	0	0	0	0	0	0	0	0	1,953	4.11
S	3 732	180	12	0	0	0	0	0	0	0	0	3,924	8.26
SSW	4,170	303	0	0	0	0	0	0	0	0	0	4,473	9.42
SW	3.375	957	63	15	0	0	0	0	0	0	0	4,410	9.29
WSW	3,987	3,159	261	60	0	0	0	0	0	0	0	7,467	15.72
W	2,868	2.295	171	0	0	0	0	0	0	0	0	5,334	11.23
WNW	1.032	192	30	0	0	0	0	0	0	0	0	1,254	2.64
NW	348	12	0	0	0	0	0	0	0	0	0	360	0.76
NNW	309	15	0	0	0	0	0	0	0	0	0	324	0.68
Total(Hours)	36,594	10,167	630	84	9	3	0	0	0	0	0	47,487	
Percentage	77.06	21.41	1.33	0.18	0.02	0.01	0.00	0.00	0.00	0.00	0.00	100.00	

Wave Period (second)

Direction				V	Vave Period	of Occurre	nces (Hour	s)		- Water Company		Total(Hours)	Percentage
	0.1-1.0	1.0-2.0	2.0-3.0	3.0-4.0	4.0-5.0	5.0-6.0	6.0-7.0	7.0-8.0	8.0-9.0	9.0-10.0	10.0->	(induita)	i creentage
N	0	114	279	252	• 18	0	0	0	0	0	0	663	1.40
NNE	0	501	1,935	720	102	0	0	0	0	0	0	3,258	6.86
NE	0	612	4.137	2.049	165	3	0	0	0	0	0	6,966	14.67
ENE	0	93	1,236	1,614	243	3	0	0	0	0	0	3,189	6.72
F	0	39	537	837	135 .	3	0	0	0	0	0	1,551	3.27
ESE	0	48	420	570	66	3	6	0	0	0	0	1,113	2.34
SE	0	78	531	561	69	6	3	0	0	0	0	1,248	2.63
SSE	0	90	915	891	57	0	0	0	0	0	0	1,953	4.11
S	0	426	2.232	1.224	42	0	0	0	0	0	0	3,924	8.26
SSW	0	456	2 772	1.215	30	0	0	0	0	0	0	4,473	9,42
SW	0	237	2,706	1,350	99	18	0	0	0	0	0	4,410	9.29
WSW	0	207	3,924	2,988	294	54	0	0	0	0	0	7,467	15.72
W	0	102	2.853	2,205	174	0	0	0	0	0	0	5,334	11.23
WNW	0	15	726	426	87	0	0	0	0	0	0	1,254	2.64
NW	0	0	192	135	33	0	0	0	0	0	0	360	0.76
NNW	0	12	129	162	21	0	0	0	0	0	0	324	0.68
Total(Hours)	0	3.030	25.524	17,199	1,635	90	9	0	0	0	0	47,487	
Percentage	0.00	6.38	53.75	36.22	3.44	0.19	0.02	0.00	0.00	0.00	0.00	100.00	

Table 5. Wave occurrence by WAM model at Ko Chang from 1 August 1997 - 31 December 2002.

Direction				V	Vave Height	of Occurre	nces (Hour	s)				Total(Hours)	Percentage
	0.1-0.5	0.5-1.0	1.0-1.5	1.5-2.0	2.0-2.5	2.5-3.0	3.0-3.5	3.5-4.0	4.0-4.5	4.5-5.0	5.0->	rotal(rioura)	rerearinge
N	627	27	0	0	0	0	0	0	0	0	0	654	1.38
NNE	2,151	501	3	0	0	0	0	0	0	0	0	2,655	5.59
NE	5,103	2,031	96	15	0	0	0	0	0	0	0	7,245	15.26
ENE	3,576	468	18	15	0	0	0	0	0	0 -	0	4,077	8.59
E	1.548	78	3	3	0	0	0	0	0	0	0	1,632	3,44
ESE	1.086	42	6	6	9	0	0	0	0	0	0	1,149	2.42
SE	1.251	81	0	0	0	0	0	0	0	0	0	1,332	2.81
SSE	1,956	162	0	0	0	0	0	0	0	0	0	2,118	4.46
S	3.078	117	0	0	0	0	0	0	0	0	0	3,195	6.73
SSW	3,702	309	6	0	0	0	0	0	0	0	0	4,017	8.46
SW	4.029	1,320	78	24	12	0	0	0	0	0	0	5,463	11.51
WSW	3,204	3,684	651	57	60	0	0	0	0	0	0	7,656	16.13
W	1,557	2,376	549	75	0	0	0	0	0	0	0	4,557	9.60
WNW	639	420	12	12	0	0	0	0	0	0	0	1,083	2.28
NW	261	24	0	0	0	0	0	0	0	0	0	285	0.60
NNW	339	21	0	0	0	0	0	0	0	0	0	360	0.76
Total(Hours)	34,107	11,661	1,422	207	81	0	0	0	0	0	0	47,478	
Percentage	71.84	24 56	3 00	0.44	0.17	0.00	0.00	0.00	0.00	0.00	0.00	100.00	

Wave Period (second)

Direction				V	Vave Period	of Occurre	nces (Hours	5)				Total/Hours)	Percentage
	0.1-1.0	1.0-2.0	2.0-3.0	3.0-4.0	4.0-5.0	5.0-6.0	6.0-7.0	7.0-8.0	8.0-9.0	9.0-10.0	10.0->	Total(Hours)	Feicentage
N	0	42	351	243	18	0	0	0	0	0	0	654	1.38
NNE	0	384	1,554	651	54	12	0	0	0	0	0	2,655	5.59
NE	0	861	4,722	1,590	72	0	0	0	0	0	0	7,245	15.26
ENE	0	222	2,109	1,614	123	9	0	0	0	0	0	4,077	8.59
E	0	87	699	783	63	0	0	0	0	0	0	1,632	3.44
ESE	0	72	480	549	30	18	0	0	0	0	0	1,149	2.42
SE	0	93	582	630	27	0	0	0	0	0	0	1,332	2.81
SSE	0	150	1,122	810	36	0	0	0	0	0	0	2,118	4.46
S	0	432	1,920	804	39	0	0	0	0	0	0	3,195	6.73
SSW	0	621	2,508	852	36	0	0	0	0	0	0	4,017	8.46
SW	0	486	3,447	1,401	102	27	0	0	0	0	0	5,463	11.51
WSW	0	210	3,276	3,387	681	72	30	0	0	0	0	7,656	16.13
W	0	72	1,635	2,232	567	51	0	0	0	0	0	4,557	9.60
WNW	0	15	456	564	42	6	0	0	0	0	0	1,083	2.28
NW	0	12	123	135	15	0	Ő	0	0	0	0	285	0.60
NNW	0	27	195	126	12	0	0	0	0	0	0	360	0.76
Total(Hours)	0	3,786	25,179	16,371	1,917	195	30	0	0	0	0	47,478	
Percentane	0.00	7 97	53.03	34 48	4 04	0.41	0.06	0.00	0.00	0.00	0.00	100.00	

Vol. 29 No. 5 Sep. - Oct. 2007

Vongvisessomjai, S.

Conclusion

Cyclone disasters in Thailand could be grouped into two, namely, disasters due to strong winds and those due to heavy rainfall over high mountains causing severe floods and landslides (Vongvisesomjai, 1994a). In the past, these disasters caused high casualties and damage due to unknown characteristics and the lack of warning of cyclones; their pressure and wind velocity distributions are presented in Eqs. 1-3. These cyclones could be clearly seen from weather satellites so that their movement could be easily monitored and warning could be made several days before their attacks.

Strong winds of cyclones generated big waves which had tremendous destructive powers to cause high casualties and damages. Cyclonic waves are the second biggest next to the tsunami waves in the Andaman Sea on December 26, 2004 (Vongvisessomjai and Suppataratarn ,2005).

The Upper Gulf of Thailand with a limited fetch length of about 100 km in the north/south direction and about 100 km wide in the east/west direction, resulted in a limited maximum wave height of 2.3 or 2.5 m generated by Typhoon Vae (1952), as indicated by Vongvisessomjai (1994b), while the east coast, with longer fetch length but still limited by the existence of its shoreline, resulted an increase of maximum wave height to 4 m generated by Typhoon Linda (1997) as indicated of the new results of the WAM Model.

The southern shorelines, with unlimited fetch length on the east by cyclones approaching from the South China Sea, would produce maximum wave height larger than 6 m generated by Typhoon Harriet in 1962 and 11 m generated by Typhoon Gay in 1989, resulting in more casualties and damages. These cyclones prevailed only for a short period of a few days to a week while the two monsoonal winds prevailed for a longer period of half a year each. The waves generated by the monsoonal winds in the Upper Gulf of Thailand had a height of about 0.5 m and on the east coast a height of about 1.0 m, which are much smaller than the cyclonic waves.

Acknowledgements

The author is grateful to Captain Song Ekmahachai, Hydrographic Department of the Royal Thai Navy, for kind provision of the WAM Model's wave data for 6 years from 1997-2002 at 9 oceanographic buoys in the Gulf of Thailand and 2 buoys in the Andaman Sea.

References

1215

- Day, C.H. 1977. Cyclonic Wave in South China Sea. AIT Master Thesis No.935, Bangkok, Thailand.
- Myers, V.A. 1954. Characteristics of United States Hurricanes Pertinent to Levee Design for Lake Okeechobee, Florida, Hydrometeorol. Rep. No.32, March 1954. U.S. Weather Bureau, Washington, DC. 106 p.
- Jelesnianski, C.P. 1965. A Numerical Calculation of Storm Tides Induced by a Tropical Storm Impinging on a Continental Shelf. Mon. Weather Rev., 93 : 343-360.
- JICA. 1983. The Development Project of the Industrial Port on the Eastern Seaboard in the Kingdom of Thailand. Phase II.
- NEDECO. 1972. Deep-Seaport of Leam Chabang. Survey and Design.
- Pornpinatepong, S., Wirattipong, T., Wittmann, P., Ekmahachai, S., Sritangnan, K., Lueangaram, V., Junthorn, P., Samosorn, B., Kanbua, W., and Tanglumlead, B. 1999. Wave Prediction in the Gulf of Thailand and the Andaman Sea. Songklanakarin J. Sci. Technol., 21(2): 207-212.
- Silvester, R. and Vongvisessomjai, S. 1970. Energy Distribution Curves of Developing and Fully Arisen Seas. J. of Hydraulic Research. 8 : 493-521.
- The WAM Group. 1988. The WAM Model-A Third Generation Ocean Wave Prediction Model. J. Phys. Oceanogr. 18(12) : 1775-1810.
- Trenberth, K.E. 1992. Climate System Modeling. Chapter 10, Tropical Pacific ENSO models: ENSO as a mode of the coupled system by Cane, M.A. Cambridge University Press, New York.
- Vongvisessomjai, S. 1994 a. Cyclone Disasters in Southern Thailand Due to Heavy Rainfall.

Songklanakarin J. Sci. Technol.	Impacts of Typhoon Vae and Linda on wind waves
Vol. 29 No. 5 Sep Oct. 2007 12	16 Vongvisessomjai, S.
Research and Development J. Eng. Inst. of	Vongvisessomjai, S. and Suppataratarn, P. 2005. 2004
Thailand, 5 (1):113-128.	Sumatra Tsunami. Songklanakarin J. Sci.
Vongvisessomjai, S. 1994 b. Cyclone Disasters in	Technol., 27(5) : 929-942.
Thailand Due to Strong Wind and Surge. Re-	Wirattipong, T., Ekmahachai, S., <i>et al.</i> 1999. Ocean
search and Development J. Eng. Inst. of Thai-	Wave Modeling and Forecasting Project. Re-
land, 5(2) : 34-46.	search Report Submitted to Thai Research Fund,

November 1, 1999, 75 p.