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In this paper, we present an analysis of the solution to a number of geophysical inverse problems
which are generally non-unique. The mathematical inver se problem that arisesis commonly ill-posed in the
sensethat small changesin thedatalead to large changesin the solution. We conduct theinversion algorithm
to explore the conductivity for the ground structure. The algorithm uses the data in the form of magnetic
field measurements for magnetometric resistivity (MMR). The inversion example is performed to invest-
igate the conductivity ground profile that best fits the observed data. The result is compared with the true
model and discussed to show the efficiency of the method. The model for the inversion example with the
apparent conductivity and the true conductivity are plotted to show the conver gence of the algorithm.
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The recent geophysical literature includes
many works on development and application of
inversion techniques. It is a topic of widespread
active research such as the works conducted by
Backus and Gilbert (1967, 1968), Jupp and Vozoff
(1975), Yooyuanyong and Siew (1998), Yooyuan-
yong (2000), Yooyuanyong and Chumchob (2000),
Yooyuanyong and Siew (2000), Yooyuanyong et
al. (2005), and Yooyuanyong and Sripanya (2005).
The motivation for this study is to determine the
mathematical techniques that may have applic-
ationsfor mapping the ground structurein different
parts of Thailand.

In this paper, an analysis of the solution to
a number of geophysical inverse problems which
are generally non-unique (see Backus and Gilbert
(1967, 1968), Jupp and Vozoff (1975), Yooyuan-
yong et al. (2005)) is presented. The mathematical
inverse problem that arisesis commonly ill-posed
in the sense that small changes in the data lead to
large changesin the solution. Following the method
performed by Jupp and Vozoff (1975), we conduct
the algorithm to explore the conductivity for the
continuous ground structure. The method uses the
data in the form of magnetic field measurements
for magnetometric(MMR) survey methods. The
simplified inverse problem is to find the conduct-
ivity profile of the ground that best fit the observed
data. The synthesis data are employed to show the

robustness of the algorithm.

Analysis of theinver se problem

The p data values d,d,,...d, corresponding
to p sample points, or instrument reading, are
written as the vector

d=[d,d,d,..dJ".

In our example, for the MMT data d,i =
1,2,3,...,p are the magnetic fields at the source-
receiver spacing. The restricted earth models are
determined by q free parameters, which we write
as the vector

X=[X,X,X,...,x]".
1 2 3 q

In our example, the investigated parameter
is the conductivity profile of the ground. The
forward problem generates a set of model data
for each setting of x. This is denoted as a vector
function by

6(%) =[9,(%).9,(x).9,(X)..... g (X)]'-

Here, g(x) is the value predicted by the
model and corresponds to the observation d. The
inverse problem determines values of X such that

g(x) matches d in some sense, which in this
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paper, is the minimum of the sum of square error
between model and data:

F(®)=mins (d -g)"

I nversion process

Iterative method is a common tool for
practical inversion. The iterative method success-
ively improves a current model until the error
measure is small and the parameters are stable
with respect to reasonable changes in the model.
Following the method di scussed by Jupp and VVozoff
(1975), weexpand g(X) about X inaTaylor series
expansion

g(x + &) = g(X) + IoX + R(g, OX),

where J =

%‘ is the Jacobian matrix of the
vector function g(X), ox is the vector of small
change of the investigated parameters, i = 1,2,3,
..p andj =123,..,9. Theremainder term R
dependson g(x).If g(x) isalinear function, then
is exactly zero and

g(X + ox) = g(x) + JOX.

An amount of ox can be calculated by
solving the linear least-squares problem

mi n||EI- J 5>‘<||

p P P . .
where [0=d-g. In matrix form, we may write

and the vector of small change of the investigated
parameter can be derived by using the generalized
Gauss method as

Jox=J7'11 (1)

The dx will be used to improve the X
model. The matrix J as mention above now can

be derived for our geometric model which is
layered and assumed to be afunction of depth only.
The cylindrical coordinate system is used with the
positive downward to the ground.

Magnetic field due to a semi-infinite source in
a 1-dimensional ground structure

A semi-infinite vertical wire carries an
exciting current | and terminates at the electrode
Q. The electrode Q is deliberately placed at the
interface z = z_of layer sand layer s+ 1 where sis
apositive integer less than N-1 as shown in Figure
1. Each layer has conductivity as a function of
depth, 0,(2) with thickness h.

Electrical probe

Ground surface n

Figurel. Geometricmodel of theground structure

The Maxwell's equations can be used to determine
the magnetic field intensity H as

[x E=0, 2
and
[x H=o0E, ©)

where E is the electric field intensity, H is the
magnetic field intensity and o is the conductivity
of the medium. Using (2) and (3), we have

1 _

[x =[x H=0.
. (4)
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Since the problem is axi-symmetric, and A has only an azimuthal component in cylindrical
coordinate system (r,0,z). For simplicity, we use H to represent the azimuthal component in the follow-
ing derivations. Expanding equation (4) yields

y 7 .

18H a(1\eH 1(18 a(1)o a(1)18
— | = || = (rH) =] = | = (rH) |+ =| — |-=(rH) =0. h
o &’ az(crj 0z cr[r or’ (r ) 5r[r}6r(r )]+6r[o')r 6r(rH} 0 )
Since o is a function of depth z only, the above equation becomes
2 2
ﬂ+gi(lj§£+ 4 fj{l)ﬁ ~La=o (6)
8z? oz\o ) &z or r)ér) r

Taking the Hankel transform defined by

@

H(a,2) = [rH(r,2)J,(Ar)dr,

0

where J, is the Bessel function of the first kind of order one, to the equation (6) and we have

o'H a(ljaﬁ
0z

207
822 +O’—a; = — -AH=0 (7)

The solution to equation (7) is

H(A,z) = Ae™ + Be™,
where A and B are arbitrary constants, and m, and m, are denoted by
ogd(l 1 a1y’
m=—-———|+—_[g*d 2| = 2
[ 2 62[0‘J+2\/J {62[0’]} sk
o8 (1) 1 o (1)’
O L ) 22 2
m, 2 52((7} 2\/0 {82[0'}} +41°,

and o is the conductivity of the medium. Since the current probe has z_long and the magnetic is gen-
erated azimuthal around the probe which can be expressed by the Ampere law as

~ I
H(l,z)=—0,
(4,2) 30

thus, the solution to equation (7) now is

- !
H(A,z)= Ae™ + Be™ +—.
(4,2) e e )

The arbitrary constants A and B can be obtained from the boundary conditions that at the probe
on the ground surface

o(2)E(r,z)|:20=0,

and the continuity of the magnetic field at the interface of the layer.
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Anisotropic layered earth model

In this section, since the stratified models are often relevant and can usually be applied to real
geoelectric structure, the two-layered earth model will be considered. Thus, following the derivation in
the previous section, we obtain the magnetic field in the overburden as

@

H(F,2) por = J‘{Aem\: — Ae™* +2_;;JU= (Ar)dA, 0<zsz, (8)

0

The magnetic field in the host medium, after applying the boundary conditions as z— oo, H — 0,
can be written as

H(r, 2y, = [De™ 0 P, Gr)dh, 222, (9)
0

2
Gp... & 1 1 o 1
where m, = ——te = = 8 2
2 52[0'@“] 2‘/6 “"'{52(0',.9:. J} ¥l

and o, is the conductivity of the host medium. The arbitrary constants A and D can be obtained from
the boundary conditions that at the probe on the ground surface

o(2)E(r,2) ;0= 0,

and the continuity of the magnetic field at the interface of the first and second layered which give

A = m 6 ] L
27r11|:e’":‘ +em + 2 {H (ﬂ}r m[J-e (z{a 2]+mzﬂ
m, 0z m,
and
p=-1 ks +1],

T orne g B om, e om,
—e™ 4™ + z,| — |[+m |-—| 2, +m,
my oz m, 0z

m am
where o now is the conductivity of the overburden. The values of a—' and 3 % can be determined by
< Z
_1[60}’ +L[B_GJ &'
om, 2 (Bcr)l | 8% | o*\&) o*lazfa’
oy _ e JE8a) i ’
oz 267\ &z 20 62° 2
4 %[aij +447
o\ oz

2 [60]3 2 (80‘) oo
om, » (80’ 2y g | of\ez) oPlez e
2 2 (6o} 1L B .
oz 20 62) 20 dz* 2
4#(6—"] +44
a iz
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Derivation of jacobian matrix for MMR method

The elements of the Jacobian matrix as mention in section 3 can be derived by using equatiohs
(8) and (9) and can be written in the form of

=pver b o4 mz, myz, Omy _B_A Waky: "‘IZJE{HL Ar)dA (10)
J,’, (r”z’)=ﬂi§e +A2j€ HE 50’8 Azje . ( (Ar)dA,
0
and
E’ oD mz myZ 4
host - i+ Dze "t — 1 (Ar)dA
J;,- (rl Zf) Lﬂ:ao’hm' ¢ k 00 host (11)
where
@ = 6A( 7 emiz‘)-ﬁ-A z @™ a‘wl myz, amz
8c do e s
log oo

mz, g mz, 2
E 1(%mj+ LI om
m; do oz my \ " dodz  bo

z.e"™ Om. am g™
o)
m, do 0z m, oo\ ' oz %

eﬂl).’. a]mz am2
~S—a SRy,
m, dotz  do
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00 202\ O4a) 2 2|0,
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The apparent conductivity calculated by MMR method
In this paper, we use the apparent conductivity conducted by Chen and Oldenburg (2006) for

MMR method to start the iteration process. The apparent conductivity conducted by Chen and Oldenburg
(2006) is denoted by

Uapmrsnf =

(12)
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where | is the magnetic permeability of free
space, r is the radial distance between the current
electrodes, a is the conductivity of ground surface
which is assumed to be known from the measure-
ment, & is denoted the depth of the electrode which
is deliberately placed at, z = h, I is the electric
current injected to the ground and o is denoted by

;
1.0 =<02,
= "
a= r a
a(x.y) otherwise x=logy W) y=logp| = |+

o, is the conductivity of the ground at the end of
the electrode, z = h, and

d(x,y) = (~0.023-0.055y+0.101y2)
+(-0.012-0.029y +0.005y% +0.087y }x
+(0.023 + 0.080y — 0.124y2 Jr?

+(0.021 + 0.064y - 0.136y* Jr*

Numerical experiments

We, firstly, start to consider and analyze
the behavior of magnetic field response from the
ground at different depths. The pattern of the field
hopefully may imply the ground structure. The
forward problems are performed to compute the
magnetic field by using the known geometric

models. The half-space of two layered earth will
be considered and used in our model and the
magnetic field data from the injection of 1 ampere
of DC probe source which 1 meter depth per-
pendicular to the ground surface are computed and
plotted as shown in Figure 2. The conductivity of
the two layered earth are 1 S/m. for overburden
and 0.2 S/m. for the host. The behavior that the
curves of magnetic field perform rarely oscillates
and seems to be meaningless for direct inter-
pretation for the ground structure.

In our inverse model example, we simulate
the magnetic field data from the injection of 1
ampere of DC probe source which 1 meter depth
perpendicular to the ground surface. The conduct-

(Ingy 3 )z, 05221

0.2,z21 ~

The magnetic field is used to calculate the appar-
ent conductivity by using Chen and Oldenburg
formula. The graph of apparent conductivity is
plotted and shown in Figure 3.

The matrixes J are constructed and the
vector g can be calculated by using the forward
model with initial guess for the conductivity o(z).
The Chave algorithm (Chave, 1983) is used to
compute the infinite integration under Fortran 90
code on Pentium IV, PC machine. The sensitivity
vector 60(z) can be determined to improve the
initial guess of o(z) by using equation (1). The
inversion is made to investigate the conductivity
o(z) by using MMR method. The speed of con-

ivity of the ground is denoted by o(z) = {

Magnetic field(Tesla)

1.00F-01 1 2 3

rm.)

Figure 2. The behavior of magnetic field against r at different depth z = 0, 0.1, 0.2,..., 1.0 m.
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5l

Bpparend conductivits |

Figure 3. Thegraph of apparent conductivity against r

Conguotivitg| S m.

Figure4. Graph of optimal solution compareswith the true model

vergence of inversion processis 12 iterations that
best fit the observed data. This record is good as
same as the work done by Yooyuanyong and
Sripanya (2005). However, we can see that the
speed of convergence of our algorithm is slower
than the algorithms conducted by Vozoff and Jupp
(1975) and Yooyuanyong et al. (2005). This leads
to our future works to analyze and compare the
structure of algorithms. The optimal solution for
conductivity of the ground isvery closeto thetrue
one and is shown in Figure 4.

Conclusions
In this paper, we perform both of mathema-

tical forward and inverse modeling to explore the
ground structure. The Maxwell's equationsare used

as our governing equations. The magnetic fields
computed from the forward problem are consid-
ered to investigate their relations with depth.
Unfortunately, the behavior of the magnetic fields
does not show any significant in pattern for
identifying the structure of the ground as the
curvesof magnetic field smoothly decay and rarely
oscillate so we need a more complicated method
to explore the earth structure.

In the inversion example, the algorithm to
invert the conductivity of the ground is presented.
The linearized inverse theory is employed to
construct the matrix which is used to iteratively
obtain the conductivity profile from the starting
model. The iterative scheme employs a smooth-
ing filter which aims to reduce high frequency
oscillations and to keep the conductivity structure
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realistic. The inversion of magnetometric resist-
ivity method has been used and performed to give
afast speed of convergence.
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