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Abstract

The purpose of this paper is to propose a new variable for the generalized confidence interval method to estimate the
confidence interval of the lognormal mean. In order to evaluate the efficiency of this new method, here called t-generalized
method, a simulation study was conducted to examine and compare the coverage probability, interval width, and relative
bias of this new method and three other methods, the generalized confidence method of Krishnamoorthy and Mathew, the
Modified Cox method, and the Angus’s conservative method, The results show that at small sample sizes with large
variances, only the t-generalized method and generalized confidence method of Krishnamoorthy and Mathew provide
coverage probabilities greater than the nominal level. The t-generalized method is more accurate with a shorter confidence
interval than the old generalized confidence method in the case of small sample sizes with large variances.
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1. Introduction

The lognormal distribution is a skewed distribution
whis is widely used for analyzing the data sets where most of
the observations are small, but with a few very large values.
Such data, for example, may be the costs of a hospital stay,
the incomes of individuals, the height of flood in a river, the
amount of Hartmonelly hyaline per gram of soil.

Let X be a random variable having a lognormal dis-
tribution, ~ lognormal( 4, o’ ). Then ¥ = log(X) has a
normal distribution, N( 4, o’ ). The density of X'is

1 2 2
—exp(—(Inx—- )" /26°))
xo\2r ’

0<x<%, 050 €09,

f(l,ﬂ, 0-2) =

The mean and variance of X are E(X)=0=exp(u+0°/2)
and V(X) = (exp(oz) —1exp(2u+ 02) , respectively. The
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most commonly used method for obtaining the confidence
limits for @ is the so-called naive transformation method.
This method constructs a confidence interval for exp(u)
which is the median of X. The result of this method is toler-
ably accurate for & when ¢ is relatively small, but becomes
intolerably inaccurate as o increases. The accuracy gets
worse as the sample size increases. In 1957, Aitchison and
Brown (Land, 1972) suggested an approximate confidence
interval method or transformation method which should con-
verge to the exact limits only when the sample size becomes
infinitely large. Zhou and Gao (1997) compared the cover-
age probabilities of from the naive transformation method,
the Cox method, the Angus’s conservative method and the
parametric bootstrap. The simulation results showed that
the parametric bootstrap method was the most appropriate
method for small variances, whereas Angus’s conservative
method always gave coverage probabilities more than the
nominal level. After Weerahandi (1993) developed the gener-
alized confidence interval, Krishnamoorthy and Mathew
(2003) compared the upper limit of the 95% confidence
interval of In @ from this method with the Land formula
and the parametric bootstrapt method. The result showed
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that the generalized confidence limit and the confidence limit
obtained by Land’s formula practically coincide. The cover-
age probability from the generalized confidence interval
method is always close to the nominal level. When sample
sizes were small, the parametric bootstrap gave coverage
probabilities less than the nominal level. Olsson (2005) sug-
gested the modified Cox method and used simulation studies
to compare the coverage probabilities of this new method
with the naive transformation, the Cox, the generalized confi-
dence interval and the large sample methods. The results
showed that only the coverage probabilities from the Modi-
fied Cox method and the generalized confidence interval
method are close to the nominal level, but the interval widths
from the Modified-Cox method are larger.

The purpose of this paper is to suggest another
method of constructing the confidence interval of the log-
normal mean. This new method, t-generalized method, is
derived from Weerahandi’s generalized confidence interval.
In Section 4, the efficiency of estimation is evaluated by a
simulation study. The coverage probability, interval width
and relative bias from the t-generalized method is compared
to the generalized confidence interval method of Krishna-
moorthy and Mathew, the Angus’s conservative method and
the Modified Cox method.

2. The four methods of confidence interval estimation

In this section, the four methods for constructing two-
sided (1-c) 100%confidence intervals for 8= exp(u+ ¢°/2),
the lognormal mean, is reviewed.

2.1 The generalized confidence interval method of Krish-
namoorthy and Mathew

Krishnamoorthy and Mathew (2003) recommended
an exact confidence interval using the ideas of the general-
ized confidence interval of Weerahandi (1993). Their confi-
dence interval for the lognormal mean has the following
algorithm:

For a given lognormal data set X, ..., X

,let y, =ln(xl.);
i=luyn

Z(y, y)

Compute Y =— Zy, and s 1
P

2
Generate Z ~ N(0,1) and U?~ X(n-1)
Z s s*

—— .
UlNn- 1Jn 2U /(n- 1)

Set R= y-

The 100 (@ /2)" and the (1- a/2)" percentile of R
are the lower and the upper limit, respectively, of the (1-a)
100%confidence interval for In 6.
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2.2 Angus’s conservative method

The Angus’s conservative method for construction of
a confidence interval for In & is based on the following
approximate pivotal statistic:

Jn(@ +5%/2 =1n6)

V() =
T 5P+ 82 /)

@.2.1)

where ¥ and S are the mean and variance of ¥ =
respectively.

In a finite sample, the approximate pivotal statistic in
Equation (2.2.1) has the same distribution as

2
N+a\/2;[£(iﬂ~1}

log(X),

. (2.2.2)

where N and ,1’(2,,,,) are independent, N has a the standard
normal distribution, and x(z,,_” is a - distribution with n-1
degrees of freedom. Let F(z;0) be the cumulative distribution
of T{(o). For fixed z and fixed n > 2, F(z;o) is monotone
increasing in . We have

hm T(o) = N ~

\/Z(n 1 /(n—1)

(n=1)

and lim T'(o) =

g0
hence
inf F(z;0)=Pr({,;) < z)and sup F(z0) =
o>0 o>0
—(1— i 1)52
X{n 1)

Let #_g, ,; bethe (I—a)" quantile of a  distribution with

n-1 degrees of freedom, and let g, (n—1) = ( —1),
Za n-1

2 ; o g L
where X, ,- denote the o' quantile of a ;{Z-dlstrlbutlon

with n-1 degrees of freedom.

Then a conservative (1-ct) 100% confidence interval for
In @ is
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2.3 The Modified Cox method

Olsson (2005) modified the confidence interval of
the Cox method by using the ¢ - distribution instead of the
standard normal distribution, so that the confidence interval
for (1-a) 100% confidence interval for In & is

7_21:_[ £+§‘—4 _7£+f S_2+ 54
J 5l 2(n—l),y 5 e[ 2n-1) J

where f,_, /5 ,_; is the (1—a/2)" quantile of a ¢ distribu-

tion with n-1 degrees of freedom.

2.4 The proposed method or t-generalized method

Let X),..., X, be asample from lognormal( 4, a’),
and let ¥, = log(X), i = 1, ..., n. We shall develop the
generalized pivotal quantity for In £6 based on the sufficient

549

n 1
statistics 1 = lZY, and §° = ;l_—]Z(Y,- ~7)*. We denote
i=1 i=1
¥ and S, the observed values of ¥ and $, respectively. In
order to estimate the mean of the lognormal distribution,
we shall first define a generalized pivotal quantity T that is
a function of the random variables Y and §°, and their
observed values ¥ and §°, where T’ has following two prop-
erties referring to Weerahandi(1995):
(D Tj has a probability distribution that is free of
unknown parameters.
(2) The observed value of T! is free of any unknown
parameters.
‘We shall now construct a generalized pivotal statistic
satisfying the condition above. Consider the identity

s __ . 2 = ;2
— Y=g 5 +0'(n 1)s

a
By =27 5idn e 2m=-DS”

Table 1 Coverage probabilities from four methods of calculating 2-sided 95% confidence intervals.

n Method §£=0.1 §=05 &=1 =2 =5 §'=10 s'=15
10  Modified Cox 09760 0.9660 09578 0.9444 09216 0.9108 0.9052
Angus’s Conservative 0.9920 09880 09836 09712 09554 09404 0.9350
Generalized Confidence Interval 09748 09686 0.9638 09594 09570 0.9540 0.9530

t- Generalized Confidence 0.9796 09810 09778 09754 09706 09660 0.9634

15 Modified Cox 09746 0.9678 09602 09482 0.9354 0.9278  0.9246
Angus’s Conservative 0.9936 0.9912 09870 09798 0.9690 0.9624 0.9612
Generalized Confidence Interval 09742 0.9672 0.9660 09608 09534 0.9540 0.9544

t- Generalized Confidence 0.9734 09756 09740 ~ 0.9708 09652 0.9630 0.9602

20  Modified Cox 0.9678 0.9624 09576 09474 0.9360 0.9282 0.9246
Angus’s Conservative 0.9896 09920 0.9880 0.9828 09770 09710 0.9684
Generalized Confidence Interval 09714 0.9666 0.9630 0.9598 09580 0.9566 0.9558

The Adjusted Generalized Confidence 0.9726 09702 0.96%94 09672 0.9628 0.9608 0.9572

30  Modified Cox 0.9730 0.9676 0.9618 0.9532 09416 09366 0.9322
Angus’s Conservative 0.9914 09934 09940 09916 09876 09832 0.9824
Generalized Confidence Interval 09720 09710 0.9646 0.9632 09610 09572 0.9572

t- Generalized Confidence 09748 09708 0.9688 0.9648 0.9626 0.9602 0.9586

50  Modified Cox 09742 09692 0.9648 0.9596 09516 09482 0.9452
Angus’s Conservative 0.9906 09928 0.9932 0.9930 0.9908 0.9900 0.9890
Generalized Confidence Interval 09724 09720 0.9668 0.9646 09592 09550 0.9550

t- Generalized Confidence 0.9744 09728 09706 09662 0.9620 0.9584 0.9562

100 Modified Cox 0.9696 09666 09618 09576 0.9514 0.9506 0.9496
Angus’s Conservative 0.9870 0.9894 0.9904 0.9918 09932 09920 0.9914
Generalized Confidence Interval 0.9698 0.9664 09618 0.9566 09532 0.6544 0.9540

t- Generalized Confidence 0.9698 0.9658 0.9640 0.9590 0.9544 09560 0.9562

200 Modified Cox 09748 0.9704 0.9684 0.9624 0.9568 09512 0.9490
Angus’s Conservative 0.9888 09898 09906 09908 0.9910 0.9904 0.9894
Generalized Confidence Interval 0.9730 0.9700 09656 0.9610 0.9580 0.9552 0.9546

t- Generalized Confidence 0.9738 0.9714 0.9672 0.9638 09590 09568 0.9536
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Then the (1-a) 100% generalized confidence interval for
In @ is
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Pra< T, b) = 1, (2.4.3)

where a, b are the lower and upper limit, which satisfy Equa-
tion (2.4.3). To solve for @ and b, one can use the following
algorithm:

For a given lognormal data set x,, ..., X,

n?

let y, =ln(xl.);
b=l B
1 n Z(yrgy)z

Compute ¥ =—» ), and s> ==L
’ ”g n—1

Generate T~ [, ) and U~ Z(z,,_l).

2
= A §

L eap . &
St = VT W 1)

The 100 (@ /2)* and the 100(1-ct)” percentile of g

Table 2. Average lengths of the intervals from four methods of calculating 2-sided 95% confidence intervals

n Method s =0.1 =05 =1 s=2 =5 s:=10 s =15
10 Modified Cox 0.465 1290 2.538 10.368 298885.5 2.782et+14 2.673et+23
Angus’s Conservative 0.552  1.633 3.519 20914 5167054 7.242e+16 1.032e+27
Generalized Confidence Interval 0.500 1.890 6.345 430.289 5.828e+11 7.607e+26 1.649e+42
t- Generalized Confidence 0492 1.776  5.647 244.413 6.122e+10 1.926e+25 5.148e+39
15  Modified Cox 0.361 0956 1.692 4.152 169.158 4018109 2.301e+11
Angus’s Conservative 0.440 1.234 2345 6.953 909.148 178319203 6.851e+13
Generalized Confidence Interval 0375 1.159 2,535 10.830 10586.66 4.037e+10 2.204e+17
t- Generalized Confidence 0.371 1.115 2383 9.968 11638.94 8.678e+10 9.680e+17
20  Modified Cox 0.305 0.788 1.338 2.839 30.631 27987.04 129191380
Angus’s Conservative 0.380 1.038 1.878 4.640 114.262 849276.9 2.46%9e+10
Generalized Confidence Interval 0313 0.894 1.731 4.952 249.260 9377732 9.812e+11
t- Generalized Confidence 0310 0.869 1.654 4.639 239.383 12890751 2.217e+12
30 Modified Cox 0.242 0.610 0997 1.893 9.309 337.727  40849.78
Angus’s Conservative 0313 0.833 1440 3.100 26.525 4111.384 2352536
Generalized Confidence Interval 0245 0.657 1.156 2.562 23.011 3874.806 2597548
t- Generalized Confidence 0244 0.645 1.123 2.457 21.826 372591 2355466
50  Modified Cox 0.185 0460 0737 1.316 4.388 40.605 946.596
Angus’s Conservative 0.253 0663 1.118 2222 11.371 328.989 33199.490
Generalized Confidence Interval 0.186 0480 0.799 1.543 6.737 117.079  5993.573
t- Generalized Confidence 0.185 0474 0786 1.506 6.499 111.107  5491.695
100 Modified Cox 0.129 0317 0499 0.847 2157 7.270 26.633
Angus’s Conservative 0.192 0496 0.816 1.520 5.327 35.828 304.552
Generalized Confidence Interval 0.129 0.323 0.517 0.911 2.583 10.593 48.567
The Adjusted Generalized Confidence 0.129  0.321 0513  0.899 2.536 10.356 47359
200 Modified Cox 0.090 0221 0346 0.575 1.318 3225 7.278
Angus’s Conservative 0.149 0380 0.618 1.113 3.318 13.925 60.088
Generalized Confidence Interval 0.090 0223 0.352 0.595 1.433 3.815 9.430
t- Generalized Confidence 0.090 0.223 0350 0.591 1.419 3.772 9314
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are respectively the lower and the upper limit, respectively, of
the (1-a) 100% confidence interval for In 6.

3. Simulation framework

A simulation study was conducted to compare the
coverage probability, interval width, and relative bias of the
four methods for constructing two-sided 95% confidence
intervals for In 6. Sample sizes of n = 10, 15, 20, 30, 50,
100, and 200 were used while values of the variance, o 2,
used were 0.1, 0.5, 1, 2, 5, 10 and 15. To avoid losing gener-
ality, u, the mean of Y, are set Y =— O 22, so that In 6 = 0.
For each parameter configuration, 5,000 random samples
from the lognormal distribution were generated. The loop of
m in the generalized confidence interval method of Krishna-
moorthy and Mathew and the t-generalized method was
10,000.

The criteria for comparison are coverage probability,
average length of the intervals, and how the intervals fail to
cover the true parameter 0 defined as relative bias, which is
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(%CI < 0)—(%CI > 0)
(%CI < 0)+(%CI > 0)

Relative bias =

where %CI < @ is the percentage of the intervals falling
below the true parameter 0 and %CI < @ is the percentage
of the intervals falling above the true parameter.

4. Simulation results

The coverage probabilities as shown in Table 1 from
the t-generalized method are significantly higher than those
from the generalized confidence interval method of Krishna-
moorthy and Mathew. However, the t-generalized method
provides average lengths values that are shorter than those
from the generalized confidence interval method of Krishna-
moorthy and Mathew (Table 2). When the sample size is small
with a very large variance, the Modified Cox and Angus’s
conservative methods yield coverage probabilities signific-
antly lower than 0.95. Even though for sample sizes not less

Table 3. Relative bias obtained from four methods of calculating 2-sided 95% confidence intervals

n Method s=0.1 =05 =1 s?=2 s =5 =10 §*=15
10  Modified Cox -0.62 -0.92 -0.99 -1 -1 -1 -1
Angus’s Conservative 0.15 -0.73 -0.98 -1 -1 -1 -1
Generalized Confidence Interval 0.17 0.36 0.35 0.32 0.2 0.16 0.123
t- Generalized Confidence -0.29 -0.49 -0.46 -0.48 -0.32 -0.21 -0.126
15  Modified Cox -0.67 -0.91 -0.98 -1 -1 -1 -1
Angus’s Conservative 0.31 -0.68 -0.94 -0.98 -1 -1 -1
Generalized Confidence Interval -0.12 0.10 0.15 0.16 0.15 0.13 0.13
t- Generalized Confidence -0.44 -0.65 -0.54 -0.45 -0.28 -0.13 -0.03
20  Modified Cox -0.49 -0.84 -0.94 -0.98 -1 -1 -1
Angus’s Conservative 0.58 -0.20 -0.80 -0.93 -1 -1 -1
Generalized Confidence Interval -0.06 -0.02 -0.01 0.02 0.09 0.06 0.04
t- Generalized Confidence -0.34 -0.41 -0.52 -0.43 -0.21 -0.13 -0.08
30 Modified Cox -0.42 -0.72 -0.86 -0.91 -0.96 -0.98 -0.99
Angus’s Conservative 0.86 0.45 0.07 -0.29 -0.71 -0.86 -0.93
Generalized Confidence Interval 0.04 0.10 0.15 0.11 0.05 0.07 0.09
t- Generalized Confidence -0.24 -0.27 -0.28 -0.26 -0.21 -0.05 0
50 Modified Cox -0.27 -0.56 -0.67 -0.76 -0.80 -0.83 -0.85
Angus’s Conservative 1 0.89 0.76 0.49 0.22 -0.04 -0.20
Generalized Confidence Interval 0.03 0.08 0.12 0.20 0.20 0.19 0.18
The Adjusted Generalized Confidence -0.15 -0.29 -0.22 -0.14 -0.02 0.04 0.08
100  Modified Cox -0.14 -0.39 -0.51 -0.67 -0.78 -0.79 -0.80
Angus’s Conservative 1 1 0.96 0.76 0.71 0.30 0.26
Generalized Confidence Interval 0.09 0.06 0.03 0.01 -0.02 -0.05 -0.05
t- Generalized Confidence -0.05 -0.12 -0.20 -0.20 -0.16 -0.13 -0.10
200 Modified Cox -0.11 -0.31 -0.40 -0.52 -0.59 -0.61 0.59
Angus’s Conservative 1 1 1 1 1 1 1
Generalized Confidence Interval 0.07 0.05 0.06 0.03 -0.02 -0.06 -0.09
t- Generalized Confidence -0.04 -0.11 -0.14 -0.18 -0.11 -0.12 -0.08
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than 15 the Angus’s conservative method gave the greatest
coverage probabilities and, it provided the largest average
length among the four methods. The results show that the
relative bias of the Modified Cox method has negative values
in every situation (table 3). If the sample size is small and
the variance is large, the Modified Cox method and Angus’s
conservative method have a relative bias value of -1. Atn =
200 the Angus’s conservative method provided +1 for the
value of the relative bias. The relative bias of the t-general-
ized method and the generalized confidence interval method
of Krishnamoorthy and Mathew are not far from 0. Almost
all of the relative biases of the t-generalized method are less
than the relative biases of the generalized confidence interval
method of Krishnamoorthy and Mathew.

5. Concluding remarks

The results for the generalized confidence interval
method of Krishnamoorthy and Mathew always provide
coverage probabilities more than the nominal level, whereas
Olsson (2005) and Krishnamoorthy and Mathew (2003)
found that this method gave coverage probabilities close to
the nominal level. The coverage probabilities from the
Angus’s method are significantly smaller than the nominal
level, whenever the sample size is 10 and . This observation
indicates, contrary to the studies of Zhou and Gao (1997),
that the coverage probabilities based on the Angus’s method
are always over the nominal level. To estimate the confidence
interval of the lognormal mean based on the Weerahandi’s
method, the suggested pivotal statistic should give coverage

probabilities not less than the nominal level with smaller
interval widths.
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