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Abstract

Various techniques have been used to solve a challenging architectural layout design problem for more than a decade,
such as an expert system, an evolutionary algorithm, a simulated annealing and a mathematical programming method. This
paper concentrates on the mathematical programming technique that formulates an architectural layout design optimization
as the mixed integer programming model using the state-of-the art optimization solver to determine the optimal solution. All
non-linear relationships among design components are captured using the corresponding linear equalities and linear in-
equalities. Due to the combinatorial nature of the MIP solutions, the MIP can be solved for small problem sizes, 2-6 rooms,
within a reasonable time limit. To remedy this situation, the valid inequality of non-circular connections has been adopted
that reduces the computational time significantly. Moreover, the guided constraints based on the architect’s preferences of a
specific room have been embraced. This helps abandon some alternative solutions and reduces the search space considerably.
The computational time and iterations gain of more than 80% is now achievable for the architectural layout design for 7-10
rooms.
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1. Introduction p

Architectural layout design is an initial phase of a
design process during which architect takes the specification
of spatial objects and generates numerous feasible drafts. It is
the most critical phase which influences the final designed
decision. This architectural layout design can be interpreted
as solving a combinatorial problem. Solution methodologies
for architectural layout design present the most comprehen-
sive challenges in the area of architectural design computa-
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tion. This problem is known to be NP-hard (Michalek et al.,
2002; Russell et al., 1999), see Figure 1.

Structural representation (Bloch et al., 1978; Gero,
1990; Honda et al.,1995; Schwarz et al., 1994) of a spatial
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Figure 1. Conceptually, there is a large number of possible place-
ments adjusted in a variety of ways.

requirement is needed to form the basic component of a
physical design problem to be automatically solved by a
computer. One representation used a grid system (Homa-
youni, 2006), see Figure 2(a). This representation is an in-
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Figure 2. (a) Grid system and (b) dissections of rectangular compo-
nent based on wall-representation.

herently discrete and multi-modal.

Due to the combinatorial configurations, the problem
cannot be solved exhaustively for reasonable-sized layout.
Liggett and Mitchell (1981) used a constructive placement
strategy on the grid system where a room space is allocated
one at a time. Then the iterative improvement based on the
objective function has been applied to improve the current
solution.

Another structural representation is the wall represen-
tation. Flemming (1978) identified the location of walls in
the space to partition a layout into rectangular components,
see Figure 2(b). This structural representation has an advan-
tage over the grid-based layout by limiting nonrectangular
shapes of space patterns which helps with decreasing the
computational time.

The primary structural representation used in this
paper is based on a mathematical programming (Bloch, 1978;
O’Sullivan, 1999; Willoughby, 1970) using a coordinated
system. Michalek, Choudhary and Papalambros (2002) con-
structed an optimization model of the quantifiable aspects of
an architectural layout design that determines the best loca-
tion and size of a group of interrelated rectangular spaces
using a middle coordinate (x, y) of each room. This allows
" an optimization algorithm to alter the position of a room
independently to achieve the optimal cost satisfying all archi-
tectural design requirements.

This research proposes a mathematical programming
technique to solve the layout design problem. We develop the
mixed integer programming model (MIP) (Grorge, 1988;
Linderoth et al., 1999; Russell et al., 1999) to determine the
‘optimal objective architectural layout design which simulta-
neously solves the topological and geometrical requirements
(Scott et al., 1999). The approach presented here called base
AL-MIP guarantee the global optimal solution if the base
AL-MIP solver stops normally (Keatruangkamala and Sina-
piromsaran, 2005). The advantage of base AL-MIP model is
an easy adaptability for other architectural requirements such
as the fixed room location, the unused grid cells, the fixed
border location and the favorable choice of the nearest room
to the top left corner. These formulations allow architects to
design a layout beyond the rectangular boundary (Scott et
al., 1999). However, the architectural layout design problem
is considered to be an ill-defined and over-constrained
problem (Simon, 1973) that deals with a large set of possible
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solutions which cannot be solved exhaustively for reason-
ably-sized problems. This situation can be resolved using
special constraints via the mathematical programming tech-
nique. ‘ ‘
Our base AL-MIP model is formulated as the multi-
objective MIP model based on objective and subjective pre-
ferences which can practically be solved for 2-6 rooms. To
handle the medium-sized instances, two classes of mathema-
tical inequalities have been developed to decrease the com-
putational time. The first class of mathematical inequalities is
based on a valid inequality of non-circular constraints, called
non-circular AL-MIP. This utilizes two decision variables p
and ¢ from the base AL-MIP, which causes the reduction of
the feasible region while maintaining all integral solution
points. The second class of mathematical inequalities is
based on the North-South-East-West guided constraint called
guided AL-MIP. Both non-circular and guided AL-MIP
abandon alternative solutions but maintain the final object-
ive value. By applying these two classes of mathematical
inequalities, we could immensely reduce computational time
from the base AL-MIP.

The empirical study in Keatruangkamal and Sina-
piromsaran 2006, showed that no binary variables were
assigned all ones or all zeros. Therefore, they eliminated those
extreme cases using the heuristic cuts such as the sum of all
binary variables must be less than a specified threshold.
There is a trade-off between the processing speed and the
merit of the objective values. It was shown that the solution
time could be reduced up to 70% by accepting non-optimal
solution based on a specified threshold. ‘

To practically apply AL-MIP model, this research has
been developed using the software named ALDO (Architec-
tural Layout Design Optimization) to help an architect
identifying the layout requirements graphically (Keatruang-
kamala and Sinapiromsaran, 2005), (Figure 3). This software
utilizes the graphic user interface (GUI) running on the
Windows operating system and automatically solves the
given architectural layout instance. Furthermore, an architect
can request a drawing presentation of the global optimal solu-
tion or save it as a DXF format file to use with other CAD
softwares. :

In the next section, we briefly present the base AL-
MIP. In section 3, we describe the non-circular AL-MIP and
the guided AL-MIP. The valid inequalities and the architect’s
preference will be presented and explained in details. In sec-
tion 4, we present experiments and show the computational
time improvement. Also, comparison has been resulted with
a case study from another paper. Finally, in section 5, we
draw the conclusion and suggest future work.

2. Optimizing architectural layout design via mixed integer
programming

In this research, we proposed the mixed integer pro-
gramming to solve an architectural layout design problem.
Our AL-MIP formulation proposed here guarantees the
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Figure 3. The GUI software ALDO, (a) the graphical input of room
connectivity and (b) the graphical output.

optimal design based on our objective preferences and
architect’s requirements, which are formulated as linear
relationship.

2.1 Mixed integer programming (MIP)

The integer linear programming problem (George,
1988) is simply a linear program (LP) in which all variables
are restricted to integral values. The mixed integer program
(MIP) is a linear program which some variables must be
integer.

(MIP) maximize c'x +d'y
subject to: Ax+Dy<b

(IP) maximize c¢'x
subjectto: Ax<b

x>0, x>0,
x is integer x is integer
y20

where x and y are vectors of design variables, 4 and D are
matrices of inequality constraints.
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2.2 Formulations
2.2.1 Architectural layout design optimization

The architectural layout design problem is posed as a
process of finding the best location and size of a group of"
interrelated rectangular rooms. In this research, we define the
room as a rectangular space to represent a specific architec-
tural function such as living spaces, storage spaces, and
facilities space. Given a set of rooms {1, 2, ..., n}, Figure
4(a) shows the i® room represented by (x, ) from the top
left corner with its height 4, and width w,.

Our AL-MIP model is formulated based on the co-
ordinate system using the top left corner of the boundary area
as the reference origin (0, 0). The positive value of x cor-
responds to x units to the right of the origin while the
positive value of y corresponds to y units below the origin.
According to this AL-MIP model, x, y, w, and 4, are defined
as continuous variables. We avoid the excessive use of inte-
gral variables due to the explosive combinatorial number of
possible values. Coordinates and dimensions are used as
design variables, see Figure 4(a).

x, = X coordinate of the top left corner of the room /.
Y coordinate of the top left corner of the room i.
the horizontal width of the room i.
the vertical height of the room i.
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I
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Two boundary parameters are the layout width and
the layout height which are represented by # and H, respec-
tively. Moreover, there are specific parameters for each room,
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Figure 4. (a) Model variables and parameters based on the coordi-
nate system and (b) model relationships between two
connected rooms.
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the lower and upper limits of the room width and the room
height, w ., w h. . h respectively. In addition, T,

mini® " max.i® " “mini® " max.i®

is a minimal contact length parameter between room i and j'

for a passage way or a door, see Figure 4(b).
2.2.2 Multiobjective

In the past, research usually concentrated on a single
objective function. Fleming (1978) presented a singular
objective layout via the representation and generation of
rectangular dissections that minimized room space. In 2000,
the work of Li, et al. (2000) dealt with maximizing the area
in a given floor layout. In contrast, new researches are more
interested in multiobjective preferences (Medjdoub et al.,
1998; Michalek et al., 2002; Mitchell et al., 1976). In this
paper, we are interested in maximizing room sizes and mini-
mizing absolute distance between rooms. To cope with these
multiobjective preferences, we combine two objective func-
tions into a summation of weighted components. These
weights can be adjusted according to architect’s favor. In our
experiment, we use equal weights to measure performance of
our MIP model.

At the optimum, there always exist alternative solu-
tions with the same objective values due to the layout
rotation. In order to eliminate alternative solutions, we select
the first room to be placed near the top left corner. For
selected i room,

Minimize
u,(x, +y)) + u,Z absolute distance — u,Z maximizing room sizes
‘where u, is the weight of the /" room positioning to the

nearest top left corner, u, is the weight of the total absolute
distance and u, is the welght of the total room sizes. If an

~ architect prefers a larger total room size then the weighted

sum of u, is set to be greater than u,. If an architect prefers a
short total distance among rooms then u, is set to be greater
than u,.

1) Placing a room position near the origin.

The combinatorial nature of the alternative optimal
solutions having the same objective values could affect the
total solution time. To allow the MIP algorithm to prune
other alternative solutions, architects will pick the io"1 room
position to the nearest origin of the boundary area.

min x:t Y (1)

10

where x, isthe X coordinate of the i, room,
y,, istheY coordinate of the i ™ room.

2) Minimizing the absolute room distance

One interesting criterion of an architect preference
deals with a short distance among rooms. We apply the abso-

R =
‘ =

®)

Figure 5. (a) Comparison between Euclidian distance function and
Manhattan distance function and (b) an absolute distance
function formulated using a linear model.

lute distance function called Manhattan distance, instead of
the normal Euclidean distance, see Figure 5(a). This distance
function is preferred over the Euclidean distance function
since it maintains the unit scale and a distance measure from
the room layout should not be diagonal. The linear formula-
tion of Manhattan distance is computed as the summation of
an absolute difference on the X coordinate and Y coordinate,
(Figure 5(b)).

min z‘u. +Z, ?2)
subjectto:  x,—x, < z, 3)
x,—x, < z"iJ. 0))

-y,27, 5)

-y,<2, ©)

where z" and 2, are absolute distances on X coordinate and
Y coordmate respectlvely, x, and x, are the X coordinates of
room i and j, y, and y, are the Y coordinates of room i and j.

Figure 5(b) illustrates the absolute dlstance and its equiva-
lent linear model.

3) Maximizing room size

Another important architect’s preference is the
spacious room space. A rectangular area can be computed by
multiplying two sides as a non-linear function. However, the
MIP model only deals with linear functions and constraints.
Therefore, we decide to maximize the room size which has

the direct effect to the room area. The larger the room size
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w; maximizing w;
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imizing 1 room i niaximizing o
maximizing A mi| —> room i area maximizing A
3
e maximizing w

Figure 6. Maximizing room area is constructed by maximizing each
room side.

is, the greater the area will be, (Figure 6).

max z! @)
subjectto:  z" < w, (8)
z" < h )

i 1

2.2.3 Architectural constraints

Architect’s requirements have been captured using
two principle constraints (Honda et al., 1995; Li et al,
2000), functional constraints and dimensional constraints.
Functional constraints determine the placement location of
rooms according to the architectural requirements while
dimensional constraints determine the room geometries
according to the room proportional requirements. The con-
nectivity constraints, the unoccupied unit constraints, the
fixed room location constraints, boundary constraints and the
fixed border constraints are classified as functional constraints
while the non-intersecting constraints, the overlapping
constraints and the length constraints are classified as dimen-
sional constraints, see Figure 7.

1) Functional constraints

- Location constraints explain the relationship

it

1 1
( Functional Constraints ] [ Dimensional Constraints]

- Locational constraints

- Fixed position constraints

- Unused unit cell constraints
- Boundary constraints

- Fixed border constraints

- Connectivity constraints
- Access-way constraints
- Length constraints

Figure 7. The functional and dimensional constraints.
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between distinct rooms that ensure the non-overlapping of
rooms using two binary variables (p,, ,), see Figure 8.

pu=0,9y=0 py=0.qy=1 py=lay=0 py=lagy =1

Figure 8. p, and g, represent the connection of room i and room .

x+tw <x+Wp,+q,) i to the left of j, p=0,4,=0 (10)

y+th <y +H1+p,-q,) ibelowj, p=0,q9=1 (11)

x,+w, <x+WH1-p,+gq,) itotheright ofj,p=1,4,=0 (12)

y,th <y +H*Q2-p;-q,) i above j, p=lg=1 (13)

The decision variables p, and g, force the room i to
the left, the bottom, the right and the above of room j cor-
responding to constraint 10, 11, 12 and 13. Four possible
cases of (pij, q,) are (0, 0), (0, 1), (1, 0) and (1, 1) which can
easily be checked. The following figures present the i room
placement on the left, the bottom, the right and the top for
different values of p, and g,.

- Fixed position constraints determine the room
positioning in a boundary area. In a practical design, this
constraint helps an architect to secure the room location. For
example, a high-rise building has the lift core position fixed
in every level.

x, = fixed X coordinate (14)

(15)

y, = fixed Y coordinate

- Unoccupied unit constraints determine the unusable
area. This constraint helps an architect design various ortho-
gonal boundary shapes by avoiding the room positioning
placement on an unoccupied unit. We use two binary vari-
ables (s,, ,) to identify the location of unoccupied unit cell,

1

k", see Figure 9.

x, > x',+1-W¥s,+t,) unoccupied space to left of i

(16)
x> x, +w—W¥1+s,~t,) unoccupied space to right of i (17)
y, 2 ¥\ +1-H*(1-s,+1t,) unoccupied space to top ofi (18)

Y,>y,+h— H*Q2-s,—t,) unoccupied space to bottom of i
(19)

where x“,, )", are unoccupied positions in X, Y coordinate of
the unoccupied £™ cell.
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Figure 9. x, and y, represent an unoccupied unit () of room i on
the various directions using the decision variables s, and

lye
The decision variables s, and #, make sure that loca-
tion of the room i does not cover a unit cell &, (see Figure 9
for illustrations).
- Boundary constraints force a room to be inside a
boundary.

x +w < W aroom within the horizontal boundary (20)

y,+h < H aroom within the vertical boundary  (21)

- Fixed border constraints address the absolute place-
ment of the room. This constraint is divided into four types:
the north, the south, the east and the west. For example,
a room is positioned to the north if its touch the top border,

see Figure 10.

=0 touch the north border (22)
y+th = H touch the south border (23)
x+w =W touch the east border (24)
x =0 touch the west border (25)

i ™ at the west

at the east

™ at the north " at the south

Figure 10. The fixed room i" touch at each layout boundary.
2) Dimensional constraints

Dimensional constraints determine the adjustment of
room geometry according to proportional requirements.

- Connectivity constraint forces two connecting
rooms to be placed next to one another. We use the same two
binary variables p, and g, with different set of constraints,
see Figure 11.

x,+w2x - Wp,+ q,) i to the right ofj, p,=0,¢,=0 (26)

yth2 y,—H*(1+p,—q,) iabovej, p=0.9=1 (27)

xl.-i'—wjzx,—— w*(1 —p”+q'j) i to the left j, P~ 9= 0 (28)

yt h> y/_H*(z —pu-q,,) i below j,
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pLa=1 (29)

Applying the locatlon constraints with connectnvnty
constraints, the room i* is forced to contact room " at the
right, the top, the left and the bottom corresponding the four
possible cases of (0, 0), (0, 1), (1, 0) and (1, 1), see Figure 11
for illustration.

i=0.94=0 p;=0,g;=1  py=Llg =0 p;=lgy=1

Figure 11. p, and g, are reused to formulate the non-intersecting
relation between room i and room J.

- Access-way constraints force the minimal contact
length between two connected rooms. Two rooms are touch-
ing each other with the minimal contact length defined by the
value (7). For example, the junction between room i and j
must be wide enough to accommodate an access way, the .
same binary variables g, have been reused. Only g has been
used due to the fact that the vertical contact is allowed to be
placed on the left (p, = 0) or on the right of the roomj (p, = 1).
This also true for the horizontal contact which ignores the
placement of the room i above (p; = 0) and below (p, = 1) the
room j, (Figure 12).

(30)

H*q)2y,+T,-y,- h, i upper-vertical contact j

(€2))

H*(q,) _>.le, +T,-y—h i lower-vertical contact j

W¥(1-q)2x+T, —x-w, i left-horizontal contactj (32)

ij

w*(1-q)2x+ T,—x—-w, i right-horizontal contactj (33)

gy =1

Figure 12. (a) g, is reused to formulate the overlapping region
between room i and room j and (b) 7, , represent a mini-
mal contact length between room i and roomj.
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- Length constraints determine minimal and maximal
lengths of the bounded size of each room. A room width and
height must be fitted according to its corresponding dimen-
sions between the horizontal range of w, . ,w, .. and the
vertical range of ., h__ respectively.

‘min.i® "“max,

w <w <w range of width of room i (34)

mini — i = " max,i

h, <h<h,

mini — i —

range of height of room i 35)

3. Non-circular connectivity and guided constraints

Due to the work of Keatruangkamala and Sinapirom-
saran (2006), the solution time to solve the architectural
layout design problem as the multiobjective mixed integer
programming model is prohibitive for a medium to large
problem size, even with the state-of-the-art optimization
solver. This paper proposes two modeling techniques to
alleviate this problem. The first technique is to add all valid
inequalities of non-circular configuration of the three con-
secutive rooms to the base AL-MIP model, called non-
circular AL-MIP. The second is to apply guided room loca-
tion based on architect’s preferences that helps eliminate
some alternative solutions.

3.1 Non-Circular constraints

The first technique uses valid inequalities (Das et al.,
2003; Pefferkorn, 1975) to tighten the feasible region. By
which, the LP-relaxation region has been cut off while all
integral points are maintained. The remaining LP-relaxation
region is strictly smaller than the LP-relaxation of the
original one with the corner extreme points are forced to be
integral. The notion of the valid inequality can be formulated
as follows.

Given the IP (Integer programming problem) as
(IP) max{c'x:xIX}
X={x:Ax<b,x1Z"}

The inequality 7’x < 7 is called a valid inequality for
Xif #'x < x, for all x € X, (Figure 13).

Valid inequality constraint
aTx < m

Smaller feasible

solution
The feasible search space

—

< T2 %

Figure 13. Valid inequality constraints cut off the non-integral fea-
sible region.

The valid inequality for the architectural layout design
problem is generated using the concept of non-circular con-
straints. These inequality constraints are defined among three
consecutive rooms i, j and &, connected in this ‘order. The
binary variables p, p,, Py» 4> 94 and g, from the base AL-
MIP model are used to present room connectivities. The
consecutive connectivity of room i and j prohibits the place-
ment of room i between room j and &, see Figure 14. There-
fore, the valid inequalities force the non-circulation of the
room i and k which eliminate configuration formed by four
different directions, top, left, right and bottom of the i room
and the j* room. The non-circular constraints for each direc-
tion have been illustrated as follows.

Pu=4x S<W*p,+q) itotheleftofj, p=0,9,=0 (36)

pptaq,— 1<l +p,—q,) iabovej, r~0.9,~1 (37)

1-p,—q, SW*1-p,+q,) itotheright ofj, p=1,4,=0 (38)

9.~ Py <W*2-p;,-q,) ibelowj, r~lg=1 (39)

P9 not equal 1,0

= ExI

P9 mnot equal 1,1

X

= O

Pi.qy equal 1,0 P9k not equal 0,0

00 =) O—OxE

Py4qy equal 1,1 Pisqu not equal 0,1

|
c#) [ i ]

]

Pyqy equal 0,0

Py9y  equal 0,1

Figure 14. (Left) four possible scenarios defined by consecutive
rooms i, j and k and (right) and four corresponding sce-
narios that are eliminated by valid inequality constraints.

3.2 Guided constraints

Other inequality constraints correspond to the
architect’s preferences. Traditionally, some room positions
in as architectural layout design may often be placed to the
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Percentage gain (%) . : Percentage gain (%)
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40
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0
4 5 6 7 8 9 10 pooms 4 5 6 7 8 9 10
~-PATTERN A -8 PATTERN B -o-PATTERN A & PATTERN B
(@) (@)
Percentage gain (%) - - ) Percentage gam (%)
100 e vy 100
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60 4
40
20
O(’IIIJ 0

5 10 H 10
@PATTERN A OPATTERN B WPATTERN C @PATTERN D @PATTERN A OPATTERN B @ PATTERN C @PATTERN D
®) ®)
Figure 16. (a) iteration comparisons between pattern A and B and  Figure 17. (a) iteration comparisons between pattern A and B and
(b) iteration comparisons between room 5 and room 10 (b) iteration comparisons between 5 rooms and 10 rooms
for pattern A, B, C and D. for pattern A, B, C and D.

Table 3. Two stories house example

No. Room “i‘dth (m.) H'elght (m.) Connect
min  max min  max

1st Floor

1. Garage x 2 cars 5 6 5 7 2, 4, South

2. Living Rm. 5 8 5 8 1,6

3. Dining Rm. 5 7 5 7 4,6

4. Kitchen 5 6 5 7 1,3

5. Staircase 4 4 3 3 6

6. Halll 4 6 4 6 2,3,5,7

7. Bath 3 4 3 4 6

2nd Floor

8. Master bedroom 6 7 6 7 10, 11, East i

9. Bedroom 2 5 7 5 7 10, 11

10. Hall 2 3 5 3 5 8,9,11,12

11. Bath 3 4 3 4 8,9,10

12. Staircase 4 4 3 3 10

Remark: unit scale in meter.
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Percentage gain (%)
100

PATTERN C PATTERN D
B Disconnected-gnided Al.-MIP

()

PATTERN A PATTERN B
0 Disconnected AL-MIP

Percentage gam (%)

PATTERN C

PATTERN D
@ Disconnected-guided AL-MIP

®)

PATTERN A PATTERN B
O Disconnected AL-MIP

Figure 18. Percentage gain of the number of iterations between non-
circular AL-MIP and non-circular and guided AL-MIP
for (a) 5 rooms and (b) 10 rooms.

iterations and computational time of the second floor are
48369 and 12.843 seconds, respectively. The optimal layout
- design is shown in Figure 19.

4.3.2 Case study

The drastic reduction of the computational time shows
a practical use of the non-circular and guided AL-MIP to
handle the realistic architectural layout design. We compared
the performance of our model with a standard one-storey
house solved by the genetic algorithm (Chen et al., 1993;
Goldberg, 1989) from Romualdas et al. (2005). The initial
specification of the layout is shown in Table 4 This layout
consists of three bedrooms, a bathroom, dining and living
room and two hallway connecting among different rooms.

From their paper (Romualdas et al., 2005), the local
optimal solution from the genetic algorithm (GA) used 800
generations with 156 seconds. Their experiments have been
performed with 94 variables, 156 constraints, crossover
probability (P ) is 0.6 and mutation probability (P,) is 0.125.
The initial population of solution was generated randomly
with no feasible initial starting points while crossover and
mutation synthesized new solutions. After 300 and 650
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i

)

Figure 19. The realistic of the two-storey house solved by the non-
circular AL-MIP cooperate with three adjustable con-
straints and the gray color presents the unoccupied unit
spaces. ~
(a) the computational time of 1* floor plan is 41.625

seconds.
(b) the computational time of 2™ floor plan is 12.843
seconds.

Table 4. Room specifications

Width (m.) Height (m.)
min max

Living Rm. 4
Dining Rm.
Bedroom 1
Bedroom 2
Bedroom 3
Hallway 1
Hallway 2
Bathroom

No. Room Connect

min max

o
0

Jk‘!\.)
wn 9

PN BAR LN =
WLWNWWWLN

(VT VIV - NV -
W WWULbH BDWadswm
(VY AN NEV.Ir- N- N> NF-N
NW—~9uNuo o

Remark: unit scale in meter.

generations the intermediate feasible' layouts have been
reported.

Our AL-MIP model using non-circular and guided
constraints determines the global optimal solution of the
architectural layout design based on CPLEX solver used
178537 computational iterations, 12575 branch nodes and
105 seconds of computational time. Even though these
measures are not comparable between GA and AL-MIP
model with non-circular and guided constraints, both solu-
tions are similar. :
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Figure 20. Comparison between (a) a layout design using genetic
algorithm (GA) presents 800 generations with 156 sec-
onds and (b) a layout design using non-circular and guided
AL-MIP model presents 105 seconds of computational
time.

5. Conclusions

From our experiments, the non-circular and guided
AL-MIP model performs substantially well with respect to
the medium-sized problems. Our approaches incorporate the
mathematical concept of valid inequalities and the architect
intuition of placing a specific room in the desired direction.
The combined model can handle medium-sized problems
efficiently gaining an average of ninety percent, taking less
than 1,000 seconds or less. The result of our method is
comparable with the genetic algorithm (GA) and suitable for
practical case studies. Furthermore, the separation of the
AL-MIP model into the model section and the data section
from GAMS can easily be extended to larger number of
connected rooms without affecting the model formulation.

Finally, the non-circular and guided AL-MIP model
exhibits significant potential to be used in the early concep-
tual stage of a design process to help architects balance all
their preferences and constraints.
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north, the south, the east and the west directions; for
example, architects fix a bedroom on the north or the east
direction to avoid the sunlight corresponding to the benign
Feng Shui (Chinese belief). According to this traditional
belief, we define constraints to allocate the bedroom on a
required direction. By which, we proposed the North-South-
East-West guided constraints, called guided AL-MIP to allo-
cate the room positioning based on an architect’s preference.
The following constraints present the allocation of the
guided room i’ for all possible room ;.

Y2y, guided room i’ to the north direction (40)

x. <x guided room i’ to the west direction (41)

=17

xtw <x.+tw, guided room i’ to the east direction (42)
y,+h < y.+h, guided room i’tothe south direction (43)

where x.andy, are coordinates of guided room i’ina
required direction,
x,and y, are coordinates of room.

4. Experiments

The experiments presented in this paper have been
carried out on a PC computer using Pentium 1.6 MHz and 1.5
GB of memory using GAMS with CPLEX 9.0. In order to
measure the performance growth, we simulated architectural
layout design instances with 4, 5, 6, 7, 8, 9 and 10 rooms
based on four distinct configurations which are 1) a linear
configuration, 2) a rail configuration, 3) a connected wheel
configuration and 4) a nested wheel configuration, (Figure
15). Each configuration is composed of five instances and
the average measurements were recorded. Total of 140 ex-

- perimental runs were tested and gathered. The boundary area
is set on 100x100 square meters and defined the minimum
and maximum room widths and heights between 5 to 10
meters. We collected objective values, the number of itera-
tions, the computational time and the memory usage, which
are illustrated in Table 1 and Table 2.

4.1 Non-circular AL-MIP experiments

We run the experiments for medium-sized instances.
Table I illustrates the experimental results between base AL-
MIP and non-circular AL-MIP.

Table 1 shows the objective value, the number of
iterations, the computational time in seconds, the memory
usage (MB) and the percentage gain from the base AL-MIP
of four architectural patterns varying from 4 to 10 rooms.
The column of the objective value is used to compare the
optimal solutions from the base AL-MIP and the non-circular
AL-MIP. All experiments have the same objective values even
though they have different coordinates.

To measure the performance between base AL-MIP
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Pattern A
A linear configuration

Pattern B
A rail configuration
2 ' [5} 5] 10
1 E E LT g
Pattern C

A connected wheel configuration

Pattern D

Figure 15. The distinct pattern A, B, C and D present 10 room con-
figurations.

and non-circular AL-MIP, we report the number of iterations
and total computational time of both models. The percentage
gain is computed by subtracting a measure (iteration or com-
putational time) of the non-circular AL-MIP from the base
AL-MIP. The larger the positive value is, the better the gain
will be. Different patterns have different percentage gains.
For a linear pattern (Pattern A), the average iteration gain and
computational time gain are 50.34 and 50.33, respectively.
For a rail pattern (Pattern B), the average iteration gain and
computational time gainare 41.11 and 34.51. For a connected
wheel pattern (Pattern C), the average iteration gain and com-
putational time gain are 30.85 and 27.46. For a nested wheel
pattern (Pattern D), the average iteration gain and computa-
tional time gain are 65.09 and 64.05. Overall patterns, the
iteration gains are more than 20% and 51% for non-circular
AL-MIP of 5 rooms and 10 rooms respectively. For the linear
configuration (pattern A) and the rail configuration (pattern
B), we can achieve more than 30% of the iteration improve-
ment over 7 rooms. This is due to the structural connectivity
which is composed of a large number repeated patterns of
connections. Moreover, the memory usages also improve for
larger problem sizes due to the small number of iterations.
Figure 16(a), a linear configuration (pattern A)
presents the increasing percentage gains from 4 to 10 rooms.
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Table 1. Comparison between base AL-MIP and non-circular AL-MIP

Objective value Iterations Computational time Memory usage  Percentage gains
(sec) (MB) (%)
Room Patterns Base Non- Base Non- Base Non- Base Non- Iteration Time
No. AL-MIP circular AL-MIP circular AL-MIP circular AL-MIP circular (%) (sec)
AL-MIP AL-MIP AL-MIP AL-MIP

4rm. A 15 15 1097 849 0.156 0.125 0.00 0.00 22.61 19.87
B 17 17 1191 1040 0.203 0.187 0.00 0.00 12.68 7.88

C . 18 18 1390 1212 0.156 0.140 0.00 0.00 12.61 10.26

D 15 15 1071 1006 0.140 0.125 0.00 0.00 6.07 10.71

S5rm. A 50 50 13147 10599 0.899 0.765 0.04 0.04 19.38 14.91
' B 50 50 8884 7618 0.686 0.609 0.02 0.01 14.25 11.22
C 55 55 11101 8658 0.796 0.609 0.07 0.02 22.01 23.49

D 50 50 15184 11271 1.031 0.750 0.02 0.05 25.77 27.26

6rm. A 90 90 184446 115680 14.828 9.046 0.37 0.28 37.28 38.99
B 93 93 43795 25943 2.875 1.937 0.07 0.02 40.76 32.63

C 104 104 61113 26227 4.656 1.968 0.07 0.05 57.08 57.73

D 94 94 226719 126238 18.093 10.187 0.27 0.19 44.32 43.70

7m. A 150 150 5251485 3226400 802.437 449.265 10.90 7.21 38.56 44.01
B 166 166 175561 85368 13.312 6.953 0.19 0.11 51.37 49.29

D 165 165 201216 135517 16.375 10.578 - 0.20 0.18 32.65 35.40

C 151 151 1110458 1014039 112.015 101.046 1.08 1.15 8.68 9.79

8§rm. A 225 225 164927909 103553047 28611.765 19742.890 483.49 336.28 37.21 31.00
B 239 239 779762 626950 67.156 54.859 0.41 0.45 19.60 18.31

C 250 250 868866 442377 91.125 44.750 0.83 0.40 49.09 50.89

D 232 232 9066768 4862432 1487.656 792.000 8.69 4.87 46.37 46.76

9rm. A 310 310 1355233860 674859635 191713.715 95905.441 783.49 520.05 50.20 49.97
B 350 350 2895371 1768215 287.437 179.640 1.00 1.20 3893 37.50

C 353 353 3571721 2849157 430.171 347.203 2.87 1.86 20.23 19.29

D 324 324 240923666 75485112 44748.906 14949.437 241.00 84.21 68.67 66.59

10rm. A 425 425 3178839384 1524459635 784127.587 383167.441 1466.30 921.90 51.10 51.13
B - 462 462 14148776 8037023 1874.984 1274984 535 2.45 43.20 32.00

C 496 496 10758972 5650376 1455.859 904.078 4.69 3.44 47.48 37.90

D 449 449 823668688 293742408 182469.374 66402.515 455.35 320.14 64.34 63.61

The non-circular constraints can effectively reduce the
feasible search space of consecutive room connections, for
example, the five room configuration 1-2-3-4-5 is used to
construct three non-circular constraints, the first constraint
deals with rooms 1-2-3, the second constraint deals with
rooms 2-3-4 and the last constraint deals with rooms 3-4-5.

A rail configuration (pattern B) shows a significant
drop of iteration percentage gain when there are eight rooms
which differs from a linear configuration. This phenomenon
is caused. by the presolved modules in the preprocess of
CPLEX solver that reduces the small number of cuts in the
case of eight room configuration.

4.2 Non-circular and guided AL-MIP experiments
Additional North-South-East-West guided constraints

are added to the non-circular AL-MIP formulation, called
non-circular and guided AL-MIP to abandon some alternative

solutions. The concept is to utilize the architect’s expert
opinion to place a specific room in the required direction. In
this experiment, we specify the first room at top left corner
(North-West corner).

Table 2 shows the number of iterations and the com-
putational time in seconds among the non-circular AL-MIP
and the non-circular and guided AL-MIP for four architec-
tural patterns varying rooms from 4 to 10 rooms. The result is
that the non-circular AL-MIP uses more iterations and time
than the non-circular and guided AL-MIP. The percentage
gains of the number of iterations of the non-circular and
guided AL-MIP model are reported in the last column. More-
over, in pattern A, an average iteration gain of more than 70%
while in pattern B and pattern C, average iteration gains of
45% and 38%, were achieved respectively. In pattern D, the
average significant iteration gain presents more than 70%.

Figure 17(a), a linear configuration (pattern A)
presents the increasing percentage gains from 4 to 10 rooms.
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Table 2. The comparison results comparison between non-circular AL-MIP and non-circular and guided AL-MIP

Rooms Iterations Computational time (sec.) Iteration gains (%)
Non-circular ~ Non-circular and Non-circular Non-circular and Perceritage '
AL-MIP guided AL-MIP  AL-MIP guided AI-MIP
4m. A 849 615 0.125 0.093 27.56
B 1040 617 0.187 0.140 40.67
C 1212 655 0.187 0.140 45.96
D 1006 551 0.125 0.125 4523
5rm. A 10599 6989 0.765 0.578 34.06
B 7618 3650 0.609 0.406 52.09
C 8658 5037 0.609 0.515 41.82
D 11271 5555 0.750 0.421 50.71
6 rm A 115680 43814 9.046 3.375 62.12
B 25943 16214 1.937 1.343 37.50
C 26227 25500 1.968 1.953 2.77
D 126238 27074 10.187 2.171 78.55
7 rm A 32226400 251128 449.265 23.546 92.22
B 85368 56489 6.750 6.500 33.83
C 135517 92226 10.578 7.343 31.95
D 1014039 134698 101.046 10.797 86.72
8§rm. A 103553047 3002986 19475.625 287.250 97.10
B 626950 278537 54.859 24.546 55.57
C 442377 362324 44.750 36.875 18.10
D 4862432 1746258 792.000 200.406 64.09
9 rm A 674859635 37080970 95905.441 7156.046 94.51
B 1768215 1031533 179.640 107.828 41.66
C 2849157 855421 347.203 73.453 69.98
D 75485112 3767553 14949.437 527.390 95.01
10rm. A - 1554459635 61545177 383167.441 33568.822 96.04
B 8037023 3628086 1274.984 474.468 54.86
C 5650376 2278195 904.078 313.984 59.68
D 293742408 28143987 66402.515 5132.046 90.42

The guided constraints help reduce the feasible search space
of consecutive room connections drastically which the
medium room number (7-10 rooms) shows the percentage
raises up to 90 percents, while the rail configuration (pattern
B) shows a fluctuated trend of percentage gain. Similar to
the non-circular constraints effect, the presolved modules in
the preprocess of CPLEX solver reduces a small number of
cuts.

Finally, Figure 18 illustrates the iteration percentage
gains among the base AL-MIP, non-circular AL-MIP and non-
circular and guided AL-MIP for 5 and 10 rooms. The non-
circular and guided AL-MIP presents more than 40% and
75% achievement of the number of iterations and computa-
tional time reduction among all patterns. Especially, more
than 90% gain is achievable for the pattern A and the pattern
D while more than 55% gain for the pattern B and the
pattern C.

4.3 Practical experiments
4.3.1 Two stories house experiments

In this section, we present the usage of fixed position
constraint, fixed border constraint and unoccupied unit con-
straints for a non-circular AL-MIP model. This example
allows us to construct non-rectangular boundary shape which
is motivated by the staircase area.

To exhibit the flexibility of these three constraints, a
realistic two-storey house allocated on asymmetric boundary,
has been solved using the non-circular AL-MIP model. The
initial specification of the requirements is shown in Table 3.

Based on our non-circular AL-MIP model, the total
computational time of this two- storey house is 54.468
seconds. The number of iterations and computational time

of the first floor are 179282 and 41.625 seconds while the
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Figure 16. (a) iteration comparisons between pattern A and B and  Figure 17. (a) iteration comparisons between pattern A and B and
(b) iteration comparisons between room 5 and room 10 (b) iteration comparisons between 5 rooms and 10 rooms
for pattern A, B, C and D. for pattern A, B, C and D.

Table 3. Two stories house example

No. Room “i‘dth (m.) H'elght (m.) Connect
min  max min  max

1st Floor

1. Garage x 2 cars 5 6 5 7 2, 4, South

2. Living Rm. 5 8 5 8 1,6

3. Dining Rm. 5 7 5 7 4,6

4. Kitchen 5 6 5 7 1,3

5. Staircase 4 4 3 3 6

6. Halll 4 6 4 6 2,3,5,7

7. Bath 3 4 3 4 6

2nd Floor

8. Master bedroom 6 7 6 7 10, 11, East i

9. Bedroom 2 5 7 5 7 10, 11

10. Hall 2 3 5 3 5 8,9,11,12

11. Bath 3 4 3 4 8,9,10

12. Staircase 4 4 3 3 10

Remark: unit scale in meter.
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Figure 18. Percentage gain of the number of iterations between non-
circular AL-MIP and non-circular and guided AL-MIP
for (a) 5 rooms and (b) 10 rooms.

iterations and computational time of the second floor are
48369 and 12.843 seconds, respectively. The optimal layout
- design is shown in Figure 19.

4.3.2 Case study

The drastic reduction of the computational time shows
a practical use of the non-circular and guided AL-MIP to
handle the realistic architectural layout design. We compared
the performance of our model with a standard one-storey
house solved by the genetic algorithm (Chen et al., 1993;
Goldberg, 1989) from Romualdas et al. (2005). The initial
specification of the layout is shown in Table 4 This layout
consists of three bedrooms, a bathroom, dining and living
room and two hallway connecting among different rooms.

From their paper (Romualdas et al., 2005), the local
optimal solution from the genetic algorithm (GA) used 800
generations with 156 seconds. Their experiments have been
performed with 94 variables, 156 constraints, crossover
probability (P ) is 0.6 and mutation probability (P,) is 0.125.
The initial population of solution was generated randomly
with no feasible initial starting points while crossover and
mutation synthesized new solutions. After 300 and 650
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i

)

Figure 19. The realistic of the two-storey house solved by the non-
circular AL-MIP cooperate with three adjustable con-
straints and the gray color presents the unoccupied unit
spaces. ~
(a) the computational time of 1* floor plan is 41.625

seconds.
(b) the computational time of 2™ floor plan is 12.843
seconds.

Table 4. Room specifications

Width (m.) Height (m.)
min max

Living Rm. 4
Dining Rm.
Bedroom 1
Bedroom 2
Bedroom 3
Hallway 1
Hallway 2
Bathroom

No. Room Connect

min max

o
0
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Remark: unit scale in meter.

generations the intermediate feasible' layouts have been
reported.

Our AL-MIP model using non-circular and guided
constraints determines the global optimal solution of the
architectural layout design based on CPLEX solver used
178537 computational iterations, 12575 branch nodes and
105 seconds of computational time. Even though these
measures are not comparable between GA and AL-MIP
model with non-circular and guided constraints, both solu-
tions are similar. :




K. Keatruangkamala & K. Sinapiromsaran / Songklanakarin J. Sci. Technol. 30 (5), 673-686, 2008

! - Badroam 2
[rrinvg Wowns [ L]
(a)
1 8 3
e
L/ R
i 7 |
6 -

(b

Figure 20. Comparison between (a) a layout design using genetic
algorithm (GA) presents 800 generations with 156 sec-
onds and (b) a layout design using non-circular and guided
AL-MIP model presents 105 seconds of computational
time.

5. Conclusions

From our experiments, the non-circular and guided
AL-MIP model performs substantially well with respect to
the medium-sized problems. Our approaches incorporate the
mathematical concept of valid inequalities and the architect
intuition of placing a specific room in the desired direction.
The combined model can handle medium-sized problems
efficiently gaining an average of ninety percent, taking less
than 1,000 seconds or less. The result of our method is
comparable with the genetic algorithm (GA) and suitable for
practical case studies. Furthermore, the separation of the
AL-MIP model into the model section and the data section
from GAMS can easily be extended to larger number of
connected rooms without affecting the model formulation.

Finally, the non-circular and guided AL-MIP model
exhibits significant potential to be used in the early concep-
tual stage of a design process to help architects balance all
their preferences and constraints.
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